1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
|
/**************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 Lechner Michael / smoking gnu
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
* ----------------------------------------------------------------------------
*
* INTRODUCTION:
* OK, this is an attempt to write an instrument tuner for rockbox.
* It uses a Schmitt trigger algorithm, which I copied from
* tuneit [ (c) 2004 Mario Lang <mlang@delysid.org> ], for detecting the
* fundamental freqency of a sound. A FFT algorithm would be more accurate
* but also much slower.
*
* TODO:
* - Adapt the Yin FFT algorithm, which would reduce complexity from O(n^2)
* to O(nlogn), theoretically reducing latency by a factor of ~10. -David
*
* MAJOR CHANGES:
* 08.03.2008 Started coding
* 21.03.2008 Pitch detection works more or less
* Button definitions for most targets added
* 02.04.2008 Proper GUI added
* Todo, Major Changes and Current Limitations added
* 08.19.2009 Brought the code up to date with current plugin standards
* Made it work more nicely with color, BW and grayscale
* Changed pitch detection to use the Yin algorithm (better
* detection, but slower -- would be ~4x faster with
* fixed point math, I think). Code was poached from the
* Aubio sound processing library (aubio.org). -David
* 08.31.2009 Lots of changes:
* Added a menu to tweak settings
* Converted everything to fixed point (greatly improving
* latency)
* Improved the display
* Improved efficiency with judicious use of cpu_boost, the
* backlight, and volume detection to limit unneeded
* calculation
* Fixed a problem that caused an octave-off error
* -David
* 05.14.2010 Multibuffer continuous recording with two buffers
*
*
* CURRENT LIMITATIONS:
* - No gapless recording. Strictly speaking true gappless isn't possible,
* since the algorithm takes longer to calculate than the length of the
* sample, but latency could be improved a bit with proper use of the DMA
* recording functions.
* - Due to how the Yin algorithm works, latency is higher for lower
* frequencies.
*/
#include "plugin.h"
#include "lib/pluginlib_actions.h"
#include "lib/picture.h"
#include "lib/helper.h"
#include "pluginbitmaps/pitch_notes.h"
/* Some fixed point calculation stuff */
typedef int32_t fixed;
#define FIXED_PRECISION 18
#define FP_MAX ((fixed) {0x7fffffff})
#define FP_MIN ((fixed) {-0x80000000})
#define int2fixed(x) ((fixed)((x) << FIXED_PRECISION))
#define int2mantissa(x) ((fixed)(x))
#define fixed2int(x) ((int)((x) >> FIXED_PRECISION))
#define fixed2float(x) (((float)(x)) / ((float)(1 << FIXED_PRECISION)))
#define float2fixed(x) ((fixed)(x * (float)(1 << FIXED_PRECISION)))
/* I adapted these ones from the Rockbox fixed point library */
#define fp_mul(x, y) \
((fixed)((((int64_t)((x))) * ((int64_t)((y)))) >> (FIXED_PRECISION)))
#define fp_div(x, y) \
((fixed)((((int64_t)((x))) << (FIXED_PRECISION)) / ((int64_t)((y)))))
/* Operators for fixed point */
#define fp_add(x, y) ((fixed)((x) + (y)))
#define fp_sub(x, y) ((fixed)((x) - (y)))
#define fp_shl(x, y) ((fixed)((x) << (y)))
#define fp_shr(x, y) ((fixed)((x) >> (y)))
#define fp_neg(x) ((fixed)(-(x)))
#define fp_gt(x, y) ((x) > (y))
#define fp_gte(x, y) ((x) >= (y))
#define fp_lt(x, y) ((x) < (y))
#define fp_lte(x, y) ((x) <= (y))
#define fp_sqr(x) fp_mul((x), (x))
#define fp_equal(x, y) ((x) == (y))
#define fp_round(x) (fixed2int(fp_add((x), float2fixed(0.5))))
#define fp_data(x) (x)
#define fp_frac(x) (fp_sub((x), int2fixed(fixed2int(x))))
#define FP_ZERO ((fixed)0)
#define FP_LOW ((fixed)2)
/* Some defines for converting between period and frequency */
/* I introduce some divisors in this because the fixed point */
/* variables aren't big enough to hold higher than a certain */
/* value. This loses a bit of precision but it means we */
/* don't have to use 32.32 variables (yikes). */
/* With an 18-bit decimal precision, the max value in the */
/* integer part is 8192. Divide 44100 by 7 and it'll fit in */
/* that variable. */
#define fp_period2freq(x) fp_div(int2fixed(sample_rate / 7), \
fp_div((x),int2fixed(7)))
#define fp_freq2period(x) fp_period2freq(x)
#define period2freq(x) (sample_rate / (x))
#define freq2period(x) period2freq(x)
#define sqr(x) ((x)*(x))
/* Some constants for tuning */
#define A_FREQ float2fixed(440.0f)
#define D_NOTE float2fixed(1.059463094359f)
#define LOG_D_NOTE float2fixed(1.0f/12.0f)
#define D_NOTE_SQRT float2fixed(1.029302236643f)
#define LOG_2 float2fixed(1.0f)
/* The recording buffer size */
/* This is how much is sampled at a time. */
/* It also determines latency -- if BUFFER_SIZE == sample_rate then */
/* there'll be one sample per second, or a latency of one second. */
/* Furthermore, the lowest detectable frequency will be about twice */
/* the number of reads per second */
/* If we ever switch to Yin FFT algorithm then this needs to be
a power of 2 */
#define BUFFER_SIZE 4096
#define SAMPLE_SIZE 4096
#define SAMPLE_SIZE_MIN 1024
#define YIN_BUFFER_SIZE (BUFFER_SIZE / 4)
#define LCD_FACTOR (fp_div(int2fixed(LCD_WIDTH), int2fixed(100)))
/* The threshold for the YIN algorithm */
#define DEFAULT_YIN_THRESHOLD 5 /* 0.10 */
static const fixed yin_threshold_table[] IDATA_ATTR =
{
float2fixed(0.01),
float2fixed(0.02),
float2fixed(0.03),
float2fixed(0.04),
float2fixed(0.05),
float2fixed(0.10),
float2fixed(0.15),
float2fixed(0.20),
float2fixed(0.25),
float2fixed(0.30),
float2fixed(0.35),
float2fixed(0.40),
float2fixed(0.45),
float2fixed(0.50),
};
/* Structure for the reference frequency (frequency of A)
* It's used for scaling the frequency before finding out
* the note. The frequency is scaled in a way that the main
* algorithm can assume the frequency of A to be 440 Hz.
*/
static const struct
{
const int frequency; /* Frequency in Hz */
const fixed ratio; /* 440/frequency */
const fixed logratio; /* log2(factor) */
} freq_A[] =
{
{435, float2fixed(1.011363636), float2fixed( 0.016301812)},
{436, float2fixed(1.009090909), float2fixed( 0.013056153)},
{437, float2fixed(1.006818182), float2fixed( 0.009803175)},
{438, float2fixed(1.004545455), float2fixed( 0.006542846)},
{439, float2fixed(1.002272727), float2fixed( 0.003275132)},
{440, float2fixed(1.000000000), float2fixed( 0.000000000)},
{441, float2fixed(0.997727273), float2fixed(-0.003282584)},
{442, float2fixed(0.995454545), float2fixed(-0.006572654)},
{443, float2fixed(0.993181818), float2fixed(-0.009870244)},
{444, float2fixed(0.990909091), float2fixed(-0.013175389)},
{445, float2fixed(0.988636364), float2fixed(-0.016488123)},
};
/* Index of the entry for 440 Hz in the table (default frequency for A) */
#define DEFAULT_FREQ_A 5
#define NUM_FREQ_A (sizeof(freq_A)/sizeof(freq_A[0]))
/* How loud the audio has to be to start displaying pitch */
/* Must be between 0 and 100 */
#define VOLUME_THRESHOLD (50)
/* Change to AUDIO_SRC_LINEIN if you want to record from line-in */
#ifdef HAVE_MIC_IN
#define INPUT_TYPE AUDIO_SRC_MIC
#else
#define INPUT_TYPE AUDIO_SRC_LINEIN
#endif
/* How many decimal places to display for the Hz value */
#define DISPLAY_HZ_PRECISION 100
/* Where to put the various GUI elements */
static int note_y;
static int bar_grad_y;
#define LCD_RES_MIN (LCD_HEIGHT < LCD_WIDTH ? LCD_HEIGHT : LCD_WIDTH)
#define BAR_PADDING (LCD_RES_MIN / 32)
#define BAR_Y (LCD_HEIGHT * 3 / 4)
#define BAR_HEIGHT (LCD_RES_MIN / 4 - BAR_PADDING)
#define BAR_HLINE_Y (BAR_Y - BAR_PADDING)
#define BAR_HLINE_Y2 (BAR_Y + BAR_HEIGHT + BAR_PADDING - 1)
#define HZ_Y 0
#define GRADUATION 10 /* Subdivisions of the whole 100-cent scale */
/* Bitmaps for drawing the note names. These need to have height
<= (bar_grad_y - note_y), or 15/32 * LCD_HEIGHT
*/
#define NUM_NOTE_IMAGES 9
#define NOTE_INDEX_A 0
#define NOTE_INDEX_B 1
#define NOTE_INDEX_C 2
#define NOTE_INDEX_D 3
#define NOTE_INDEX_E 4
#define NOTE_INDEX_F 5
#define NOTE_INDEX_G 6
#define NOTE_INDEX_SHARP 7
#define NOTE_INDEX_FLAT 8
static const struct picture note_bitmaps =
{
pitch_notes,
BMPWIDTH_pitch_notes,
BMPHEIGHT_pitch_notes,
BMPHEIGHT_pitch_notes/NUM_NOTE_IMAGES
};
static unsigned int sample_rate;
static int audio_head = 0; /* which of the two buffers to use? */
static volatile int audio_tail = 0; /* which of the two buffers to record? */
/* It's stereo, so make the buffer twice as big */
#ifndef SIMULATOR
static int16_t audio_data[2][BUFFER_SIZE] MEM_ALIGN_ATTR;
static fixed yin_buffer[YIN_BUFFER_SIZE] IBSS_ATTR;
#ifdef PLUGIN_USE_IRAM
static int16_t iram_audio_data[BUFFER_SIZE] IBSS_ATTR;
#else
#define iram_audio_data audio_data[audio_head]
#endif
#endif
/* Notes within one (reference) scale */
static const struct
{
const char *name; /* Name of the note, e.g. "A#" */
const fixed freq; /* Note frequency, Hz */
const fixed logfreq; /* log2(frequency) */
} notes[] =
{
{"A" , float2fixed(440.0000000f), float2fixed(8.781359714f)},
{"A#", float2fixed(466.1637615f), float2fixed(8.864693047f)},
{"B" , float2fixed(493.8833013f), float2fixed(8.948026380f)},
{"C" , float2fixed(523.2511306f), float2fixed(9.031359714f)},
{"C#", float2fixed(554.3652620f), float2fixed(9.114693047f)},
{"D" , float2fixed(587.3295358f), float2fixed(9.198026380f)},
{"D#", float2fixed(622.2539674f), float2fixed(9.281359714f)},
{"E" , float2fixed(659.2551138f), float2fixed(9.364693047f)},
{"F" , float2fixed(698.4564629f), float2fixed(9.448026380f)},
{"F#", float2fixed(739.9888454f), float2fixed(9.531359714f)},
{"G" , float2fixed(783.9908720f), float2fixed(9.614693047f)},
{"G#", float2fixed(830.6093952f), float2fixed(9.698026380f)},
};
/* GUI */
#if LCD_DEPTH > 1
static unsigned front_color;
#endif
static int font_w,font_h;
static int bar_x_0;
static int lbl_x_minus_50, lbl_x_minus_20, lbl_x_0, lbl_x_20, lbl_x_50;
/* Settings for the plugin */
static struct tuner_settings
{
unsigned volume_threshold;
unsigned record_gain;
unsigned sample_size;
unsigned lowest_freq;
unsigned yin_threshold;
int freq_A; /* Index of the frequency of A */
bool use_sharps;
bool display_hz;
int key_transposition; /* Which note to display as 'C'. */
/* 0=C, 1=D-flat, 2=D, ..., 11=B. This is useful if you */
/* use a transposing instrument. In that case, this */
/* setting tells which 'real' note is played by the */
/* instrument if you play a written 'C'. Thus, this */
/* setting is the number of semitones from the real 'C' */
/* up to the 'instrument key'. */
} settings;
/* By default, the real 'C' is displayed as 'C' */
#define DEFAULT_KEY_TRANSPOSITION 0
/*=================================================================*/
/* Settings loading and saving(adapted from the clock plugin) */
/*=================================================================*/
#define SETTINGS_FILENAME PLUGIN_APPS_DATA_DIR "/.pitch_detector_settings"
/* The settings as they exist on the hard disk, so that
* we can know at saving time if changes have been made */
static struct tuner_settings hdd_settings;
/*---------------------------------------------------------------------*/
static bool settings_needs_saving(void)
{
return(rb->memcmp(&settings, &hdd_settings, sizeof(settings)));
}
/*---------------------------------------------------------------------*/
static void tuner_settings_reset(void)
{
settings = (struct tuner_settings) {
.volume_threshold = VOLUME_THRESHOLD,
.record_gain = rb->global_settings->rec_mic_gain,
.sample_size = BUFFER_SIZE,
.lowest_freq = period2freq(BUFFER_SIZE / 4),
.yin_threshold = DEFAULT_YIN_THRESHOLD,
.freq_A = DEFAULT_FREQ_A,
.use_sharps = true,
.display_hz = false,
.key_transposition = DEFAULT_KEY_TRANSPOSITION,
};
}
/*---------------------------------------------------------------------*/
static void load_settings(void)
{
int fd = rb->open(SETTINGS_FILENAME, O_RDONLY);
if(fd < 0){ /* file doesn't exist */
/* Initializes the settings with default values at least */
tuner_settings_reset();
return;
}
/* basic consistency check */
if(rb->filesize(fd) == sizeof(settings)){
rb->read(fd, &settings, sizeof(settings));
rb->memcpy(&hdd_settings, &settings, sizeof(settings));
}
else{
tuner_settings_reset();
}
rb->close(fd);
}
/*---------------------------------------------------------------------*/
static void save_settings(void)
{
if(!settings_needs_saving())
return;
int fd = rb->creat(SETTINGS_FILENAME, 0666);
if(fd >= 0){ /* does file exist? */
rb->write (fd, &settings, sizeof(settings));
rb->close(fd);
}
}
/*=================================================================*/
/* MENU */
/*=================================================================*/
/* Keymaps */
const struct button_mapping* plugin_contexts[]={
pla_main_ctx,
#if NB_SCREENS == 2
pla_remote_ctx,
#endif
};
#define PLA_ARRAY_COUNT sizeof(plugin_contexts)/sizeof(plugin_contexts[0])
/* Option strings */
/* This has to match yin_threshold_table */
static const struct opt_items yin_threshold_text[] =
{
{ "0.01", -1 },
{ "0.02", -1 },
{ "0.03", -1 },
{ "0.04", -1 },
{ "0.05", -1 },
{ "0.10", -1 },
{ "0.15", -1 },
{ "0.20", -1 },
{ "0.25", -1 },
{ "0.30", -1 },
{ "0.35", -1 },
{ "0.40", -1 },
{ "0.45", -1 },
{ "0.50", -1 },
};
static const struct opt_items accidental_text[] =
{
{ "Flat", -1 },
{ "Sharp", -1 },
};
static const struct opt_items transpose_text[] =
{
{ "C (Concert Pitch)", -1 },
{ "D-flat", -1 },
{ "D", -1 },
{ "E-flat", -1 },
{ "E", -1 },
{ "F", -1 },
{ "G-flat", -1 },
{ "G", -1 },
{ "A-flat", -1 },
{ "A", -1 },
{ "B-flat", -1 },
{ "B", -1 },
};
static void set_min_freq(int new_freq)
{
settings.sample_size = freq2period(new_freq) * 4;
/* clamp the sample size between min and max */
if(settings.sample_size <= SAMPLE_SIZE_MIN)
settings.sample_size = SAMPLE_SIZE_MIN;
else if(settings.sample_size >= BUFFER_SIZE)
settings.sample_size = BUFFER_SIZE;
/* sample size must be divisible by 4 - round up */
settings.sample_size = (settings.sample_size + 3) & ~3;
}
/* Displays the menu. Returns true iff the user selects 'quit'. */
static bool main_menu(void)
{
int selection = 0;
bool done = false;
bool exit_tuner = false;
int choice;
int freq_val;
bool reset;
backlight_use_settings();
#ifdef HAVE_SCHEDULER_BOOSTCTRL
rb->cancel_cpu_boost();
#endif
MENUITEM_STRINGLIST(menu,"Tuner Settings",NULL,
"Return to Tuner",
"Volume Threshold",
"Listening Volume",
"Lowest Frequency",
"Algorithm Pickiness",
"Accidentals",
"Key Transposition",
"Display Frequency (Hz)",
"Frequency of A (Hz)",
"Reset Settings",
"Quit");
while(!done)
{
choice = rb->do_menu(&menu, &selection, NULL, false);
switch(choice)
{
case 1:
rb->set_int("Volume Threshold", "%", UNIT_INT,
&settings.volume_threshold,
NULL, 5, 5, 95, NULL);
break;
case 2:
rb->set_int("Listening Volume", "%", UNIT_INT,
&settings.record_gain,
NULL, 1, rb->sound_min(SOUND_MIC_GAIN),
rb->sound_max(SOUND_MIC_GAIN), NULL);
break;
case 3:
rb->set_int("Lowest Frequency", "Hz", UNIT_INT,
&settings.lowest_freq, set_min_freq, 1,
/* Range depends on the size of the buffer */
sample_rate / (BUFFER_SIZE / 4),
sample_rate / (SAMPLE_SIZE_MIN / 4), NULL);
break;
case 4:
rb->set_option(
"Algorithm Pickiness (Lower -> more discriminating)",
&settings.yin_threshold,
INT, yin_threshold_text,
sizeof(yin_threshold_text) / sizeof(yin_threshold_text[0]),
NULL);
break;
case 5:
rb->set_option("Display Accidentals As",
&settings.use_sharps,
BOOL, accidental_text, 2, NULL);
break;
case 6:
rb->set_option("Key Transposition",
&settings.key_transposition,
INT, transpose_text, 12, NULL);
break;
case 7:
rb->set_bool("Display Frequency (Hz)",
&settings.display_hz);
break;
case 8:
freq_val = freq_A[settings.freq_A].frequency;
rb->set_int("Frequency of A (Hz)",
"Hz", UNIT_INT, &freq_val, NULL,
1, freq_A[0].frequency, freq_A[NUM_FREQ_A-1].frequency,
NULL);
settings.freq_A = freq_val - freq_A[0].frequency;
break;
case 9:
reset = false;
rb->set_bool("Reset Tuner Settings?", &reset);
if (reset)
tuner_settings_reset();
break;
case 10:
exit_tuner = true;
done = true;
break;
case 0:
default:
/* Return to the tuner */
done = true;
break;
}
}
backlight_ignore_timeout();
return exit_tuner;
}
/*=================================================================*/
/* Binary Log */
/*=================================================================*/
/* Fixed-point log base 2*/
/* Adapted from python code at
http://en.wikipedia.org/wiki/Binary_logarithm#Algorithm
*/
static fixed log(fixed inp)
{
fixed x = inp;
fixed fp = int2fixed(1);
fixed res = int2fixed(0);
if(fp_lte(x, FP_ZERO))
{
return FP_MIN;
}
/* Integer part*/
/* while x<1 */
while(fp_lt(x, int2fixed(1)))
{
res = fp_sub(res, int2fixed(1));
x = fp_shl(x, 1);
}
/* while x>=2 */
while(fp_gte(x, int2fixed(2)))
{
res = fp_add(res, int2fixed(1));
x = fp_shr(x, 1);
}
/* Fractional part */
/* while fp > 0 */
while(fp_gt(fp, FP_ZERO))
{
fp = fp_shr(fp, 1);
x = fp_mul(x, x);
/* if x >= 2 */
if(fp_gte(x, int2fixed(2)))
{
x = fp_shr(x, 1);
res = fp_add(res, fp);
}
}
return res;
}
/*=================================================================*/
/* GUI Stuff */
/*=================================================================*/
/* Draw the note bitmap */
static void draw_note(const char *note)
{
int i;
int note_x = (LCD_WIDTH - BMPWIDTH_pitch_notes) / 2;
int accidental_index = NOTE_INDEX_SHARP;
i = note[0]-'A';
if(note[1] == '#')
{
if(!(settings.use_sharps))
{
i = (i + 1) % 7;
accidental_index = NOTE_INDEX_FLAT;
}
vertical_picture_draw_sprite(rb->screens[0],
¬e_bitmaps,
accidental_index,
LCD_WIDTH / 2,
note_y);
note_x = LCD_WIDTH / 2 - BMPWIDTH_pitch_notes;
}
vertical_picture_draw_sprite(rb->screens[0], ¬e_bitmaps, i,
note_x,
note_y);
}
/* Draw the red bar and the white lines */
static void draw_bar(fixed wrong_by_cents)
{
unsigned n;
int x;
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(LCD_RGBPACK(255,255,255)); /* Color screens */
#elif LCD_DEPTH > 1
rb->lcd_set_foreground(LCD_BLACK); /* Greyscale screens */
#endif
rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y);
rb->lcd_hline(0,LCD_WIDTH-1, BAR_HLINE_Y2);
/* Draw graduation lines on the off-by readout */
for(n = 0; n <= GRADUATION; n++)
{
x = (LCD_WIDTH * n + GRADUATION / 2) / GRADUATION;
if (x >= LCD_WIDTH)
x = LCD_WIDTH - 1;
rb->lcd_vline(x, BAR_HLINE_Y, BAR_HLINE_Y2);
}
#if LCD_DEPTH > 1
rb->lcd_set_foreground(front_color);
#endif
rb->lcd_putsxyf(lbl_x_minus_50 ,bar_grad_y, "%d", -50);
rb->lcd_putsxyf(lbl_x_minus_20 ,bar_grad_y, "%d", -20);
rb->lcd_putsxyf(lbl_x_0 ,bar_grad_y, "%d", 0);
rb->lcd_putsxyf(lbl_x_20 ,bar_grad_y, "%d", 20);
rb->lcd_putsxyf(lbl_x_50 ,bar_grad_y, "%d", 50);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_foreground(LCD_RGBPACK(255,0,0)); /* Color screens */
#elif LCD_DEPTH > 1
rb->lcd_set_foreground(LCD_DARKGRAY); /* Greyscale screens */
#endif
if (fp_gt(wrong_by_cents, FP_ZERO))
{
rb->lcd_fillrect(bar_x_0, BAR_Y,
fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)), BAR_HEIGHT);
}
else
{
rb->lcd_fillrect(bar_x_0 + fixed2int(fp_mul(wrong_by_cents,LCD_FACTOR)),
BAR_Y,
fixed2int(fp_mul(wrong_by_cents, LCD_FACTOR)) * -1,
BAR_HEIGHT);
}
}
/* Calculate how wrong the note is and draw the GUI */
static void display_frequency (fixed freq)
{
fixed ldf, mldf;
fixed lfreq, nfreq;
fixed orig_freq;
int i, note = 0;
if (fp_lt(freq, FP_LOW))
freq = FP_LOW;
/* We calculate the frequency and its log as if */
/* the reference frequency of A were 440 Hz. */
orig_freq = freq;
lfreq = fp_add(log(freq), freq_A[settings.freq_A].logratio);
freq = fp_mul(freq, freq_A[settings.freq_A].ratio);
/* This calculates a log freq offset for note A */
/* Get the frequency to within the range of our reference table, */
/* i.e. into the right octave. */
while (fp_lt(lfreq, fp_sub(notes[0].logfreq, fp_shr(LOG_D_NOTE, 1))))
lfreq = fp_add(lfreq, LOG_2);
while (fp_gte(lfreq, fp_sub(fp_add(notes[0].logfreq, LOG_2),
fp_shr(LOG_D_NOTE, 1))))
lfreq = fp_sub(lfreq, LOG_2);
mldf = LOG_D_NOTE;
for (i=0; i<12; i++)
{
ldf = fp_gt(fp_sub(lfreq,notes[i].logfreq), FP_ZERO) ?
fp_sub(lfreq,notes[i].logfreq) : fp_neg(fp_sub(lfreq,notes[i].logfreq));
if (fp_lt(ldf, mldf))
{
mldf = ldf;
note = i;
}
}
nfreq = notes[note].freq;
while (fp_gt(fp_div(nfreq, freq), D_NOTE_SQRT))
nfreq = fp_shr(nfreq, 1);
while (fp_gt(fp_div(freq, nfreq), D_NOTE_SQRT))
nfreq = fp_shl(nfreq, 1);
ldf = fp_mul(int2fixed(1200), log(fp_div(freq,nfreq)));
rb->lcd_clear_display();
draw_bar(ldf); /* The red bar */
if(fp_round(freq) != 0)
{
/* Raise the displayed pitch an octave minus key_transposition */
/* semitones, effectively lowering it. Note that the pitch */
/* displayed alongside the frequency is unaffected. */
int transposition = 12 - settings.key_transposition;
draw_note(notes[(note + transposition) % 12].name);
if(settings.display_hz)
{
#if LCD_DEPTH > 1
rb->lcd_set_foreground(front_color);
#endif
rb->lcd_putsxyf(0, HZ_Y, "%s : %d cents (%d.%02dHz)",
notes[note].name, fp_round(ldf) ,fixed2int(orig_freq),
fp_round(fp_mul(fp_frac(orig_freq),
int2fixed(DISPLAY_HZ_PRECISION))));
}
}
rb->lcd_update();
}
#ifndef SIMULATOR
/*-----------------------------------------------------------------------
* Functions for the Yin algorithm
*
* These were all adapted from the versions in Aubio v0.3.2
* Here's what the Aubio documentation has to say:
*
* This algorithm was developped by A. de Cheveigne and H. Kawahara and
* published in:
*
* de Cheveign?, A., Kawahara, H. (2002) "YIN, a fundamental frequency
* estimator for speech and music", J. Acoust. Soc. Am. 111, 1917-1930.
*
* see http://recherche.ircam.fr/equipes/pcm/pub/people/cheveign.html
-------------------------------------------------------------------------*/
/* Find the index of the minimum element of an array of floats */
static unsigned vec_min_elem(fixed *s, unsigned buflen)
{
unsigned j, pos=0.0f;
fixed tmp = s[0];
for (j=0; j < buflen; j++)
{
if(fp_gt(tmp, s[j]))
{
pos = j;
tmp = s[j];
}
}
return pos;
}
static inline fixed aubio_quadfrac(fixed s0, fixed s1, fixed s2, fixed pf)
{
/* Original floating point version: */
/* tmp = s0 + (pf/2.0f) * (pf * ( s0 - 2.0f*s1 + s2 ) -
3.0f*s0 + 4.0f*s1 - s2);*/
/* Converted to explicit operator precedence: */
/* tmp = s0 + ((pf/2.0f) * ((((pf * ((s0 - (2*s1)) + s2)) -
(3*s0)) + (4*s1)) - s2)); */
/* I made it look like this so I could easily track the precedence and */
/* make sure it matched the original expression */
/* Oy, this is when I really wish I could do C++ operator overloading */
fixed tmp = fp_add
(
s0,
fp_mul
(
fp_shr(pf, 1),
fp_sub
(
fp_add
(
fp_sub
(
fp_mul
(
pf,
fp_add
(
fp_sub
(
s0,
fp_shl(s1, 1)
),
s2
)
),
fp_mul
(
float2fixed(3.0f),
s0
)
),
fp_shl(s1, 2)
),
s2
)
)
);
return tmp;
}
#define QUADINT_STEP float2fixed(1.0f/200.0f)
static fixed ICODE_ATTR vec_quadint_min(fixed *x, unsigned bufsize, unsigned pos, unsigned span)
{
fixed res, frac, s0, s1, s2;
fixed exactpos = int2fixed(pos);
/* init resold to something big (in case x[pos+-span]<0)) */
fixed resold = FP_MAX;
if ((pos > span) && (pos < bufsize-span))
{
s0 = x[pos-span];
s1 = x[pos] ;
s2 = x[pos+span];
/* increase frac */
for (frac = float2fixed(0.0f);
fp_lt(frac, float2fixed(2.0f));
frac = fp_add(frac, QUADINT_STEP))
{
res = aubio_quadfrac(s0, s1, s2, frac);
if (fp_lt(res, resold))
{
resold = res;
}
else
{
/* exactpos += (frac-QUADINT_STEP)*span - span/2.0f; */
exactpos = fp_add(exactpos,
fp_sub(
fp_mul(
fp_sub(frac, QUADINT_STEP),
int2fixed(span)
),
int2fixed(span)
)
);
break;
}
}
}
return exactpos;
}
/* Calculate the period of the note in the
buffer using the YIN algorithm */
/* The yin pointer is just a buffer that the algorithm uses as a work
space. It needs to be half the length of the input buffer. */
static fixed ICODE_ATTR pitchyin(int16_t *input, fixed *yin)
{
fixed retval;
unsigned j,tau = 0;
int period;
unsigned yin_size = settings.sample_size / 4;
fixed tmp = FP_ZERO, tmp2 = FP_ZERO;
yin[0] = int2fixed(1);
for (tau = 1; tau < yin_size; tau++)
{
yin[tau] = FP_ZERO;
for (j = 0; j < yin_size; j++)
{
tmp = fp_sub(int2mantissa(input[2 * j]),
int2mantissa(input[2 * (j + tau)]));
yin[tau] = fp_add(yin[tau], fp_mul(tmp, tmp));
}
tmp2 = fp_add(tmp2, yin[tau]);
if(!fp_equal(tmp2, FP_ZERO))
{
yin[tau] = fp_mul(yin[tau], fp_div(int2fixed(tau), tmp2));
}
period = tau - 3;
if(tau > 4 && fp_lt(yin[period],
yin_threshold_table[settings.yin_threshold])
&& fp_lt(yin[period], yin[period+1]))
{
retval = vec_quadint_min(yin, yin_size, period, 1);
return retval;
}
}
retval = vec_quadint_min(yin, yin_size,
vec_min_elem(yin, yin_size), 1);
return retval;
/*return FP_ZERO;*/
}
/*-----------------------------------------------------------------*/
static uint32_t ICODE_ATTR buffer_magnitude(int16_t *input)
{
unsigned n;
uint64_t tally = 0;
const unsigned size = settings.sample_size;
/* Operate on only one channel of the stereo signal */
for(n = 0; n < size; n+=2)
{
int s = input[n];
tally += s * s;
}
tally /= size / 2;
/* now tally holds the average of the squares of all the samples */
/* It must be between 0 and 0x7fff^2, so it fits in 32 bits */
return (uint32_t)tally;
}
/* Stop the recording when the buffer is full */
static void recording_callback(int status, void **start, size_t *size)
{
int tail = audio_tail ^ 1;
/* Do not overrun the reader. Reuse current buffer if full. */
if (tail != audio_head)
audio_tail = tail;
/* Always record full buffer, even if not required */
*start = audio_data[tail];
*size = BUFFER_SIZE * sizeof (int16_t);
(void)status;
}
#endif /* SIMULATOR */
/* Start recording */
static void record_data(void)
{
#ifndef SIMULATOR
/* Always record full buffer, even if not required */
rb->pcm_record_data(recording_callback, audio_data[audio_tail],
BUFFER_SIZE * sizeof (int16_t));
#endif
}
/* The main program loop */
static void record_and_get_pitch(void)
{
int quit=0, button;
#ifndef SIMULATOR
bool redraw = true;
#endif
/* For tracking the latency */
/*
long timer;
char debug_string[20];
*/
#ifndef SIMULATOR
fixed period;
bool waiting = false;
#else
audio_tail = 1;
#endif
backlight_ignore_timeout();
record_data();
while(!quit)
{
while (audio_head == audio_tail && !quit) /* wait for the buffer to be filled */
{
button=pluginlib_getaction(HZ/100, plugin_contexts, PLA_ARRAY_COUNT);
switch(button)
{
case PLA_EXIT:
quit=true;
break;
case PLA_CANCEL:
rb->pcm_stop_recording();
quit = main_menu();
if(!quit)
{
#ifndef SIMULATOR
redraw = true;
#endif
record_data();
}
break;
}
}
if(!quit)
{
#ifndef SIMULATOR
/* Only do the heavy lifting if the volume is high enough */
if(buffer_magnitude(audio_data[audio_head]) >
sqr(settings.volume_threshold *
rb->sound_max(SOUND_MIC_GAIN)))
{
waiting = false;
redraw = false;
#ifdef HAVE_SCHEDULER_BOOSTCTRL
rb->trigger_cpu_boost();
#endif
#ifdef PLUGIN_USE_IRAM
rb->memcpy(iram_audio_data, audio_data[audio_head],
settings.sample_size * sizeof (int16_t));
#endif
/* This returns the period of the detected pitch in samples */
period = pitchyin(iram_audio_data, yin_buffer);
/* Hz = sample rate / period */
if(fp_gt(period, FP_ZERO))
{
display_frequency(fp_period2freq(period));
}
else
{
display_frequency(FP_ZERO);
}
}
else if(redraw || !waiting)
{
waiting = true;
redraw = false;
display_frequency(FP_ZERO);
#ifdef HAVE_ADJUSTABLE_CPU_FREQ
rb->cancel_cpu_boost();
#endif
}
/* Move to next buffer if not empty (but empty *shouldn't* happen
* here). */
if (audio_head != audio_tail)
audio_head ^= 1;
#else /* SIMULATOR */
/* Display a preselected frequency */
display_frequency(int2fixed(445));
#endif
}
}
rb->pcm_close_recording();
rb->pcm_set_frequency(REC_SAMPR_DEFAULT | SAMPR_TYPE_REC);
#ifdef HAVE_SCHEDULER_BOOSTCTRL
rb->cancel_cpu_boost();
#endif
backlight_use_settings();
}
/* Init recording, tuning, and GUI */
static void init_everything(void)
{
/* Disable all talking before initializing IRAM */
rb->talk_disable(true);
load_settings();
rb->storage_sleep();
/* Stop all playback */
rb->plugin_get_audio_buffer(NULL);
/* --------- Init the audio recording ----------------- */
rb->audio_set_output_source(AUDIO_SRC_PLAYBACK);
rb->audio_set_input_source(INPUT_TYPE, SRCF_RECORDING);
/* set to maximum gain */
rb->audio_set_recording_gain(settings.record_gain,
settings.record_gain,
AUDIO_GAIN_MIC);
/* Highest C on piano is approx 4.186 kHz, so we need just over
* 8.372 kHz to pass it. */
sample_rate = rb->round_value_to_list32(9000, rb->rec_freq_sampr,
REC_NUM_FREQ, false);
sample_rate = rb->rec_freq_sampr[sample_rate];
rb->pcm_set_frequency(sample_rate | SAMPR_TYPE_REC);
rb->pcm_init_recording();
/* avoid divsion by zero */
if(settings.lowest_freq == 0)
settings.lowest_freq = period2freq(BUFFER_SIZE / 4);
/* GUI */
#if LCD_DEPTH > 1
front_color = rb->lcd_get_foreground();
#endif
rb->lcd_getstringsize("X", &font_w, &font_h);
bar_x_0 = LCD_WIDTH / 2;
lbl_x_minus_50 = 0;
lbl_x_minus_20 = (LCD_WIDTH / 2) -
fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
lbl_x_0 = (LCD_WIDTH - font_w) / 2;
lbl_x_20 = (LCD_WIDTH / 2) +
fixed2int(fp_mul(LCD_FACTOR, int2fixed(20))) - font_w;
lbl_x_50 = LCD_WIDTH - 2 * font_w;
bar_grad_y = BAR_Y - BAR_PADDING - font_h;
/* Put the note right between the top and bottom text elements */
note_y = ((font_h + bar_grad_y - note_bitmaps.slide_height) / 2);
rb->talk_disable(false);
}
enum plugin_status plugin_start(const void* parameter)
{
(void)parameter;
init_everything();
record_and_get_pitch();
save_settings();
return PLUGIN_OK;
}
|