1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
|
/* Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2008 Xiph.Org Foundation
Written by Jean-Marc Valin */
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This is a simple MDCT implementation that uses a N/4 complex FFT
to do most of the work. It should be relatively straightforward to
plug in pretty much and FFT here.
This replaces the Vorbis FFT (and uses the exact same API), which
was a bit too messy and that was ending up duplicating code
(might as well use the same FFT everywhere).
The algorithm is similar to (and inspired from) Fabrice Bellard's
MDCT implementation in FFMPEG, but has differences in signs, ordering
and scaling in many places.
*/
#ifndef SKIP_CONFIG_H
#ifdef HAVE_CONFIG_H
#include "opus_config.h"
#endif
#endif
#include "mdct.h"
#include "kiss_fft.h"
#include "_kiss_fft_guts.h"
#include <math.h>
#include "os_support.h"
#include "mathops.h"
#include "stack_alloc.h"
#ifdef CUSTOM_MODES
int clt_mdct_init(mdct_lookup *l,int N, int maxshift)
{
int i;
int N4;
kiss_twiddle_scalar *trig;
#if defined(FIXED_POINT)
int N2=N>>1;
#endif
l->n = N;
N4 = N>>2;
l->maxshift = maxshift;
for (i=0;i<=maxshift;i++)
{
if (i==0)
l->kfft[i] = opus_fft_alloc(N>>2>>i, 0, 0);
else
l->kfft[i] = opus_fft_alloc_twiddles(N>>2>>i, 0, 0, l->kfft[0]);
#ifndef ENABLE_TI_DSPLIB55
if (l->kfft[i]==NULL)
return 0;
#endif
}
l->trig = trig = (kiss_twiddle_scalar*)opus_alloc((N4+1)*sizeof(kiss_twiddle_scalar));
if (l->trig==NULL)
return 0;
/* We have enough points that sine isn't necessary */
#if defined(FIXED_POINT)
for (i=0;i<=N4;i++)
trig[i] = TRIG_UPSCALE*celt_cos_norm(DIV32(ADD32(SHL32(EXTEND32(i),17),N2),N));
#else
for (i=0;i<=N4;i++)
trig[i] = (kiss_twiddle_scalar)cos(2*PI*i/N);
#endif
return 1;
}
void clt_mdct_clear(mdct_lookup *l)
{
int i;
for (i=0;i<=l->maxshift;i++)
opus_fft_free(l->kfft[i]);
opus_free((kiss_twiddle_scalar*)l->trig);
}
#endif /* CUSTOM_MODES */
#if 0
/* Forward MDCT trashes the input array */
void clt_mdct_forward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
const opus_val16 *window, int overlap, int shift, int stride)
{
int i;
int N, N2, N4;
kiss_twiddle_scalar sine;
VARDECL(kiss_fft_scalar, f);
SAVE_STACK;
N = l->n;
N >>= shift;
N2 = N>>1;
N4 = N>>2;
ALLOC(f, N2, kiss_fft_scalar);
/* sin(x) ~= x here */
#ifdef FIXED_POINT
sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N;
#else
sine = (kiss_twiddle_scalar)2*PI*(.125f)/N;
#endif
/* Consider the input to be composed of four blocks: [a, b, c, d] */
/* Window, shuffle, fold */
{
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
kiss_fft_scalar * OPUS_RESTRICT yp = f;
const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
for(i=0;i<(overlap>>2);i++)
{
/* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
*yp++ = MULT16_32_Q15(*wp2, xp1[N2]) + MULT16_32_Q15(*wp1,*xp2);
*yp++ = MULT16_32_Q15(*wp1, *xp1) - MULT16_32_Q15(*wp2, xp2[-N2]);
xp1+=2;
xp2-=2;
wp1+=2;
wp2-=2;
}
wp1 = window;
wp2 = window+overlap-1;
for(;i<N4-(overlap>>2);i++)
{
/* Real part arranged as a-bR, Imag part arranged as -c-dR */
*yp++ = *xp2;
*yp++ = *xp1;
xp1+=2;
xp2-=2;
}
for(;i<N4;i++)
{
/* Real part arranged as a-bR, Imag part arranged as -c-dR */
*yp++ = -MULT16_32_Q15(*wp1, xp1[-N2]) + MULT16_32_Q15(*wp2, *xp2);
*yp++ = MULT16_32_Q15(*wp2, *xp1) + MULT16_32_Q15(*wp1, xp2[N2]);
xp1+=2;
xp2-=2;
wp1+=2;
wp2-=2;
}
}
/* Pre-rotation */
{
kiss_fft_scalar * OPUS_RESTRICT yp = f;
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
{
kiss_fft_scalar re, im, yr, yi;
re = yp[0];
im = yp[1];
yr = -S_MUL(re,t[i<<shift]) - S_MUL(im,t[(N4-i)<<shift]);
yi = -S_MUL(im,t[i<<shift]) + S_MUL(re,t[(N4-i)<<shift]);
/* works because the cos is nearly one */
*yp++ = yr + S_MUL(yi,sine);
*yp++ = yi - S_MUL(yr,sine);
}
}
/* N/4 complex FFT, down-scales by 4/N */
opus_fft(l->kfft[shift], (kiss_fft_cpx *)f, (kiss_fft_cpx *)in);
/* Post-rotate */
{
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * OPUS_RESTRICT fp = in;
kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
const kiss_twiddle_scalar *t = &l->trig[0];
/* Temp pointers to make it really clear to the compiler what we're doing */
for(i=0;i<N4;i++)
{
kiss_fft_scalar yr, yi;
yr = S_MUL(fp[1],t[(N4-i)<<shift]) + S_MUL(fp[0],t[i<<shift]);
yi = S_MUL(fp[0],t[(N4-i)<<shift]) - S_MUL(fp[1],t[i<<shift]);
/* works because the cos is nearly one */
*yp1 = yr - S_MUL(yi,sine);
*yp2 = yi + S_MUL(yr,sine);;
fp += 2;
yp1 += 2*stride;
yp2 -= 2*stride;
}
}
RESTORE_STACK;
}
#endif
void clt_mdct_backward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride)
{
int i;
int N, N2, N4;
kiss_twiddle_scalar sine;
/* VARDECL(kiss_fft_scalar, f); */
VARDECL(kiss_fft_scalar, f2);
SAVE_STACK;
N = l->n; /* static modes => N = 1920 */
N >>= shift;
N2 = N>>1;
N4 = N>>2;
/* ALLOC(f, N2, kiss_fft_scalar); */
kiss_fft_scalar f[N2]; /* worst case 3840b */
ALLOC(f2, N2, kiss_fft_scalar);
/* sin(x) ~= x here */
#ifdef FIXED_POINT
sine = TRIG_UPSCALE*(QCONST16(0.7853981f, 15)+N2)/N;
#else
sine = (kiss_twiddle_scalar)2*PI*(.125f)/N;
#endif
/* Pre-rotate */
{
/* Temp pointers to make it really clear to the compiler what we're doing */
const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
kiss_fft_scalar * OPUS_RESTRICT yp = f2;
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
{
kiss_fft_scalar yr, yi;
yr = -S_MUL(*xp2, t[i<<shift]) + S_MUL(*xp1,t[(N4-i)<<shift]);
yi = -S_MUL(*xp2, t[(N4-i)<<shift]) - S_MUL(*xp1,t[i<<shift]);
/* works because the cos is nearly one */
*yp++ = yr - S_MUL(yi,sine);
*yp++ = yi + S_MUL(yr,sine);
xp1+=2*stride;
xp2-=2*stride;
}
}
/* Inverse N/4 complex FFT. This one should *not* downscale even in fixed-point */
opus_ifft(l->kfft[shift], (kiss_fft_cpx *)f2, (kiss_fft_cpx *)f);
/* Post-rotate */
{
kiss_fft_scalar * OPUS_RESTRICT fp = f;
const kiss_twiddle_scalar *t = &l->trig[0];
for(i=0;i<N4;i++)
{
kiss_fft_scalar re, im, yr, yi;
re = fp[0];
im = fp[1];
/* We'd scale up by 2 here, but instead it's done when mixing the windows */
yr = S_MUL(re,t[i<<shift]) - S_MUL(im,t[(N4-i)<<shift]);
yi = S_MUL(im,t[i<<shift]) + S_MUL(re,t[(N4-i)<<shift]);
/* works because the cos is nearly one */
*fp++ = yr - S_MUL(yi,sine);
*fp++ = yi + S_MUL(yr,sine);
}
}
/* De-shuffle the components for the middle of the window only */
{
const kiss_fft_scalar * OPUS_RESTRICT fp1 = f;
const kiss_fft_scalar * OPUS_RESTRICT fp2 = f+N2-1;
kiss_fft_scalar * OPUS_RESTRICT yp = f2;
for(i = 0; i < N4; i++)
{
*yp++ =-*fp1;
*yp++ = *fp2;
fp1 += 2;
fp2 -= 2;
}
}
out -= (N2-overlap)>>1;
/* Mirror on both sides for TDAC */
{
kiss_fft_scalar * OPUS_RESTRICT fp1 = f2+N4-1;
kiss_fft_scalar * OPUS_RESTRICT xp1 = out+N2-1;
kiss_fft_scalar * OPUS_RESTRICT yp1 = out+N4-overlap/2;
const opus_val16 * OPUS_RESTRICT wp1 = window;
const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
for(i = 0; i< N4-overlap/2; i++)
{
*xp1 = *fp1;
xp1--;
fp1--;
}
for(; i < N4; i++)
{
kiss_fft_scalar x1;
x1 = *fp1--;
*yp1++ +=-MULT16_32_Q15(*wp1, x1);
*xp1-- += MULT16_32_Q15(*wp2, x1);
wp1++;
wp2--;
}
}
{
kiss_fft_scalar * OPUS_RESTRICT fp2 = f2+N4;
kiss_fft_scalar * OPUS_RESTRICT xp2 = out+N2;
kiss_fft_scalar * OPUS_RESTRICT yp2 = out+N-1-(N4-overlap/2);
const opus_val16 * OPUS_RESTRICT wp1 = window;
const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
for(i = 0; i< N4-overlap/2; i++)
{
*xp2 = *fp2;
xp2++;
fp2++;
}
for(; i < N4; i++)
{
kiss_fft_scalar x2;
x2 = *fp2++;
*yp2-- = MULT16_32_Q15(*wp1, x2);
*xp2++ = MULT16_32_Q15(*wp2, x2);
wp1++;
wp2--;
}
}
RESTORE_STACK;
}
|