1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
*
* Copyright (C) 2010 Thomas Martitz
* Copyright (c) 2020 Solomon Peachy
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* Based, but heavily modified, on the example given at
* http://www.alsa-project.org/alsa-doc/alsa-lib/_2test_2pcm_8c-example.html
*
* This driver uses the so-called unsafe async callback method.
*
* To make the async callback safer, an alternative stack is installed, since
* it's run from a signal hanlder (which otherwise uses the user stack).
*
* TODO: Rewrite this to properly use multithreading and/or direct mmap()
*/
#include "autoconf.h"
#include <stdlib.h>
#include <stdbool.h>
#include <alsa/asoundlib.h>
//#define LOGF_ENABLE
#include "system.h"
#include "debug.h"
#include "kernel.h"
#include "panic.h"
#include "pcm.h"
#include "pcm-internal.h"
#include "pcm_mixer.h"
#include "pcm_sampr.h"
#include "audiohw.h"
#include "pcm-alsa.h"
#include "logf.h"
#include <pthread.h>
#include <signal.h>
/* plughw:0,0 works with both, however "default" is recommended.
* default doesnt seem to work with async callback but doesn't break
* with multple applications running */
#define DEFAULT_PLAYBACK_DEVICE "plughw:0,0"
#define DEFAULT_CAPTURE_DEVICE "default"
#if MIX_FRAME_SAMPLES < 512
#error "MIX_FRAME_SAMPLES needs to be at least 512!"
#elif MIX_FRAME_SAMPLES < 1024
#warning "MIX_FRAME_SAMPLES <1024 may cause dropouts!"
#endif
static const snd_pcm_access_t access_ = SND_PCM_ACCESS_RW_INTERLEAVED; /* access mode */
#if defined(HAVE_ALSA_32BIT)
static const snd_pcm_format_t format = SND_PCM_FORMAT_S32_LE; /* sample format */
typedef int32_t sample_t;
#else
static const snd_pcm_format_t format = SND_PCM_FORMAT_S16; /* sample format */
typedef int16_t sample_t;
#endif
static const int channels = 2; /* count of channels */
static unsigned int real_sample_rate;
static unsigned int last_sample_rate;
static snd_pcm_t *handle = NULL;
static snd_pcm_sframes_t buffer_size;
static snd_pcm_sframes_t period_size;
static sample_t *frames = NULL;
static const void *pcm_data = 0;
static size_t pcm_size = 0;
static unsigned int xruns = 0;
static snd_async_handler_t *ahandler = NULL;
static pthread_mutex_t pcm_mtx;
static char signal_stack[SIGSTKSZ];
static const char *playback_dev = DEFAULT_PLAYBACK_DEVICE;
#ifdef HAVE_RECORDING
static void *pcm_data_rec = DEFAULT_CAPTURE_DEVICE;
static const char *capture_dev = NULL;
static snd_pcm_stream_t current_alsa_mode; /* SND_PCM_STREAM_PLAYBACK / _CAPTURE */
#endif
static const char *current_alsa_device;
void pcm_alsa_set_playback_device(const char *device)
{
playback_dev = device;
}
#ifdef HAVE_RECORDING
void pcm_alsa_set_capture_device(const char *device)
{
capture_dev = device;
}
#endif
static int set_hwparams(snd_pcm_t *handle)
{
int err;
unsigned int srate;
snd_pcm_hw_params_t *params;
snd_pcm_hw_params_malloc(¶ms);
/* Size playback buffers based on sample rate.
Buffer size must be at least 4x period size!
Note these are in FRAMES, and are sized to be about 8.5ms
for the buffer and 2.1ms for the period
*/
if (pcm_sampr > SAMPR_96) {
buffer_size = MIX_FRAME_SAMPLES * 4 * 4;
period_size = MIX_FRAME_SAMPLES * 4;
} else if (pcm_sampr > SAMPR_48) {
buffer_size = MIX_FRAME_SAMPLES * 2 * 4;
period_size = MIX_FRAME_SAMPLES * 2;
} else {
buffer_size = MIX_FRAME_SAMPLES * 4;
period_size = MIX_FRAME_SAMPLES;
}
/* choose all parameters */
err = snd_pcm_hw_params_any(handle, params);
if (err < 0)
{
panicf("Broken configuration for playback: no configurations available: %s", snd_strerror(err));
goto error;
}
/* set the interleaved read/write format */
err = snd_pcm_hw_params_set_access(handle, params, access_);
if (err < 0)
{
panicf("Access type not available for playback: %s", snd_strerror(err));
goto error;
}
/* set the sample format */
err = snd_pcm_hw_params_set_format(handle, params, format);
if (err < 0)
{
logf("Sample format not available for playback: %s", snd_strerror(err));
goto error;
}
/* set the count of channels */
err = snd_pcm_hw_params_set_channels(handle, params, channels);
if (err < 0)
{
logf("Channels count (%i) not available for playbacks: %s", channels, snd_strerror(err));
goto error;
}
/* set the stream rate */
srate = pcm_sampr;
err = snd_pcm_hw_params_set_rate_near(handle, params, &srate, 0);
if (err < 0)
{
logf("Rate %luHz not available for playback: %s", pcm_sampr, snd_strerror(err));
goto error;
}
real_sample_rate = srate;
if (real_sample_rate != pcm_sampr)
{
logf("Rate doesn't match (requested %luHz, get %dHz)", pcm_sampr, real_sample_rate);
err = -EINVAL;
goto error;
}
/* set the buffer size */
err = snd_pcm_hw_params_set_buffer_size_near(handle, params, &buffer_size);
if (err < 0)
{
logf("Unable to set buffer size %ld for playback: %s", buffer_size, snd_strerror(err));
goto error;
}
/* set the period size */
err = snd_pcm_hw_params_set_period_size_near (handle, params, &period_size, NULL);
if (err < 0)
{
logf("Unable to set period size %ld for playback: %s", period_size, snd_strerror(err));
goto error;
}
if (frames) free(frames);
frames = calloc(1, period_size * channels * sizeof(sample_t));
/* write the parameters to device */
err = snd_pcm_hw_params(handle, params);
if (err < 0)
{
logf("Unable to set hw params for playback: %s", snd_strerror(err));
goto error;
}
err = 0; /* success */
error:
snd_pcm_hw_params_free(params);
return err;
}
/* Set sw params: playback start threshold and low buffer watermark */
static int set_swparams(snd_pcm_t *handle)
{
int err;
snd_pcm_sw_params_t *swparams;
snd_pcm_sw_params_malloc(&swparams);
/* get the current swparams */
err = snd_pcm_sw_params_current(handle, swparams);
if (err < 0)
{
logf("Unable to determine current swparams for playback: %s", snd_strerror(err));
goto error;
}
/* start the transfer when the buffer is half full */
err = snd_pcm_sw_params_set_start_threshold(handle, swparams, buffer_size / 2);
if (err < 0)
{
logf("Unable to set start threshold mode for playback: %s", snd_strerror(err));
goto error;
}
/* allow the transfer when at least period_size samples can be processed */
err = snd_pcm_sw_params_set_avail_min(handle, swparams, period_size);
if (err < 0)
{
logf("Unable to set avail min for playback: %s", snd_strerror(err));
goto error;
}
/* write the parameters to the playback device */
err = snd_pcm_sw_params(handle, swparams);
if (err < 0)
{
logf("Unable to set sw params for playback: %s", snd_strerror(err));
goto error;
}
err = 0; /* success */
error:
snd_pcm_sw_params_free(swparams);
return err;
}
#if defined(HAVE_ALSA_32BIT)
/* Digital volume explanation:
* with very good approximation (<0.1dB) the convertion from dB to multiplicative
* factor, for dB>=0, is 2^(dB/3). We can then notice that if we write dB=3*k+r
* then this is 2^k*2^(r/3) so we only need to look at r=0,1,2. For r=0 this is
* 1, for r=1 we have 2^(1/3)~=1.25 so we approximate by 1+1/4, and 2^(2/3)~=1.5
* so we approximate by 1+1/2. To go from negative to nonnegative we notice that
* 48 dB => 63095 factor ~= 2^16 so we virtually pre-multiply everything by 2^(-16)
* and add 48dB to the input volume. We cannot go lower -43dB because several
* values between -48dB and -43dB would require a fractional multiplier, which is
* stupid to implement for such very low volume. */
static int dig_vol_mult_l = 2 << 16; /* multiplicative factor to apply to each sample */
static int dig_vol_mult_r = 2 << 16; /* multiplicative factor to apply to each sample */
void pcm_set_mixer_volume(int vol_db_l, int vol_db_r)
{
if(vol_db_l > 0 || vol_db_r > 0 || vol_db_l < -43 || vol_db_r < -43)
panicf("invalid pcm alsa volume %d %d", vol_db_l, vol_db_r);
if(format != SND_PCM_FORMAT_S32_LE)
panicf("this function assumes 32-bit sample size");
vol_db_l += 48; /* -42dB .. 0dB => 5dB .. 48dB */
vol_db_r += 48; /* -42dB .. 0dB => 5dB .. 48dB */
/* NOTE if vol_dB = 5 then vol_shift = 1 but r = 1 so we do vol_shift - 1 >= 0
* otherwise vol_dB >= 0 implies vol_shift >= 2 so vol_shift - 2 >= 0 */
int vol_shift_l = vol_db_l / 3;
int vol_shift_r = vol_db_r / 3;
int r_l = vol_db_l % 3;
int r_r = vol_db_r % 3;
if(r_l == 0)
dig_vol_mult_l = 1 << vol_shift_l;
else if(r_l == 1)
dig_vol_mult_l = 1 << vol_shift_l | 1 << (vol_shift_l - 2);
else
dig_vol_mult_l = 1 << vol_shift_l | 1 << (vol_shift_l - 1);
logf("l: %d dB -> factor = %d", vol_db_l - 48, dig_vol_mult_l);
if(r_r == 0)
dig_vol_mult_r = 1 << vol_shift_r;
else if(r_r == 1)
dig_vol_mult_r = 1 << vol_shift_r | 1 << (vol_shift_r - 2);
else
dig_vol_mult_r = 1 << vol_shift_r | 1 << (vol_shift_r - 1);
logf("r: %d dB -> factor = %d", vol_db_r - 48, dig_vol_mult_r);
}
#endif
/* copy pcm samples to a spare buffer, suitable for snd_pcm_writei() */
static bool copy_frames(bool first)
{
ssize_t nframes, frames_left = period_size;
bool new_buffer = false;
while (frames_left > 0)
{
if (!pcm_size)
{
new_buffer = true;
#ifdef HAVE_RECORDING
switch (current_alsa_mode)
{
case SND_PCM_STREAM_PLAYBACK:
#endif
if (!pcm_play_dma_complete_callback(PCM_DMAST_OK, &pcm_data, &pcm_size))
{
return false;
}
#ifdef HAVE_RECORDING
break;
case SND_PCM_STREAM_CAPTURE:
if (!pcm_play_dma_complete_callback(PCM_DMAST_OK, &pcm_data, &pcm_size))
{
return false;
}
break;
default:
break;
}
#endif
}
/* Note: This assumes stereo 16-bit */
if (pcm_size % 4)
panicf("Wrong pcm_size");
/* the compiler will optimize this test away */
nframes = MIN((ssize_t)pcm_size/4, frames_left);
#ifdef HAVE_RECORDING
switch (current_alsa_mode)
{
case SND_PCM_STREAM_PLAYBACK:
#endif
#if defined(HAVE_ALSA_32BIT)
if (format == SND_PCM_FORMAT_S32_LE)
{
/* We have to convert 16-bit to 32-bit, the need to multiply the
* sample by some value so the sound is not too low */
const int16_t *pcm_ptr = pcm_data;
sample_t *sample_ptr = &frames[2*(period_size-frames_left)];
for (int i = 0; i < nframes; i++)
{
*sample_ptr++ = *pcm_ptr++ * dig_vol_mult_l;
*sample_ptr++ = *pcm_ptr++ * dig_vol_mult_r;
}
}
else
#endif
{
/* Rockbox and PCM have same format: memcopy */
memcpy(&frames[2*(period_size-frames_left)], pcm_data, nframes * 4);
}
#ifdef HAVE_RECORDING
break;
case SND_PCM_STREAM_CAPTURE:
memcpy(pcm_data_rec, &frames[2*(period_size-frames_left)], nframes * 4);
break;
default:
break;
}
#endif
pcm_data += nframes*4;
pcm_size -= nframes*4;
frames_left -= nframes;
if (new_buffer && !first)
{
new_buffer = false;
#ifdef HAVE_RECORDING
switch (current_alsa_mode)
{
case SND_PCM_STREAM_PLAYBACK:
#endif
pcm_play_dma_status_callback(PCM_DMAST_STARTED);
#ifdef HAVE_RECORDING
break;
case SND_PCM_STREAM_CAPTURE:
pcm_rec_dma_status_callback(PCM_DMAST_STARTED);
break;
default:
break;
}
#endif
}
}
return true;
}
static void async_callback(snd_async_handler_t *ahandler)
{
int err;
if (!ahandler) return;
snd_pcm_t *handle = snd_async_handler_get_pcm(ahandler);
if (!handle) return;
if (pthread_mutex_trylock(&pcm_mtx) != 0)
return;
snd_pcm_state_t state = snd_pcm_state(handle);
if (state == SND_PCM_STATE_XRUN)
{
xruns++;
logf("initial underrun!");
err = snd_pcm_recover(handle, -EPIPE, 0);
if (err < 0) {
logf("XRUN Recovery error: %s", snd_strerror(err));
goto abort;
}
}
else if (state == SND_PCM_STATE_DRAINING)
{
logf("draining...");
goto abort;
}
else if (state == SND_PCM_STATE_SETUP)
{
goto abort;
}
#ifdef HAVE_RECORDING
if (current_alsa_mode == SND_PCM_STREAM_PLAYBACK)
{
#endif
while (snd_pcm_avail_update(handle) >= period_size)
{
if (copy_frames(false))
{
retry:
err = snd_pcm_writei(handle, frames, period_size);
if (err == -EPIPE)
{
logf("mid underrun!");
xruns++;
err = snd_pcm_recover(handle, -EPIPE, 0);
if (err < 0) {
logf("XRUN Recovery error: %s", snd_strerror(err));
goto abort;
}
goto retry;
}
else if (err != period_size)
{
logf("Write error: written %i expected %li", err, period_size);
break;
}
}
else
{
logf("%s: No Data (%d).", __func__, state);
break;
}
}
#ifdef HAVE_RECORDING
}
else if (current_alsa_mode == SND_PCM_STREAM_CAPTURE)
{
while (snd_pcm_avail_update(handle) >= period_size)
{
int err = snd_pcm_readi(handle, frames, period_size);
if (err == -EPIPE)
{
logf("rec mid underrun!");
xruns++;
err = snd_pcm_recover(handle, -EPIPE, 0);
if (err < 0) {
logf("XRUN Recovery error: %s", snd_strerror(err));
goto abort;
}
continue; /* buffer contents trashed, no sense in trying to copy */
}
else if (err != period_size)
{
logf("Read error: read %i expected %li", err, period_size);
break;
}
/* start the fake DMA transfer */
if (!copy_frames(false))
{
/* do not spam logf */
/* logf("%s: No Data.", __func__); */
break;
}
}
}
#endif
if (snd_pcm_state(handle) == SND_PCM_STATE_PREPARED)
{
err = snd_pcm_start(handle);
if (err < 0) {
logf("cb start error: %s", snd_strerror(err));
/* Depending on the error we might be SOL */
}
}
abort:
pthread_mutex_unlock(&pcm_mtx);
}
static void close_hwdev(void)
{
logf("closedev (%p)", handle);
if (handle) {
snd_pcm_drain(handle);
#ifdef AUDIOHW_MUTE_ON_STOP
audiohw_mute(true);
#endif
if (ahandler) {
snd_async_del_handler(ahandler);
ahandler = NULL;
}
snd_pcm_close(handle);
handle = NULL;
}
current_alsa_device = NULL;
#ifdef HAVE_RECORDING
pcm_data_rec = NULL;
#endif
}
static void alsadev_cleanup(void)
{
free(frames);
frames = NULL;
close_hwdev();
}
static void open_hwdev(const char *device, snd_pcm_stream_t mode)
{
int err;
logf("opendev %s (%p)", device, handle);
if (handle && device == current_alsa_device
#ifdef HAVE_RECORDING
&& current_alsa_mode == mode
#endif
)
{
return;
}
/* Close old handle */
close_hwdev();
if ((err = snd_pcm_open(&handle, device, mode, 0)) < 0)
{
panicf("%s(): Cannot open device %s: %s", __func__, device, snd_strerror(err));
}
last_sample_rate = 0;
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
pthread_mutex_init(&pcm_mtx, &attr);
/* assign alternative stack for the signal handlers */
stack_t ss = {
.ss_sp = signal_stack,
.ss_size = sizeof(signal_stack),
.ss_flags = 0
};
struct sigaction sa;
err = sigaltstack(&ss, NULL);
if (err < 0)
{
panicf("Unable to install alternative signal stack: %s", strerror(err));
}
err = snd_async_add_pcm_handler(&ahandler, handle, async_callback, NULL);
if (err < 0)
{
panicf("Unable to register async handler: %s", snd_strerror(err));
}
/* only modify the stack the handler runs on */
sigaction(SIGIO, NULL, &sa);
sa.sa_flags |= SA_ONSTACK;
err = sigaction(SIGIO, &sa, NULL);
if (err < 0)
{
panicf("Unable to install alternative signal stack: %s", strerror(err));
}
#ifdef HAVE_RECORDING
current_alsa_mode = mode;
#else
(void)mode;
#endif
current_alsa_device = device;
atexit(alsadev_cleanup);
}
void pcm_play_dma_init(void)
{
logf("PCM DMA Init");
audiohw_preinit();
open_hwdev(playback_dev, SND_PCM_STREAM_PLAYBACK);
return;
}
void pcm_play_lock(void)
{
pthread_mutex_lock(&pcm_mtx);
}
void pcm_play_unlock(void)
{
pthread_mutex_unlock(&pcm_mtx);
}
static void pcm_dma_apply_settings_nolock(void)
{
logf("PCM DMA Settings %d %lu", last_sample_rate, pcm_sampr);
if (last_sample_rate != pcm_sampr)
{
last_sample_rate = pcm_sampr;
#ifdef AUDIOHW_MUTE_ON_SRATE_CHANGE
audiohw_mute(true);
#endif
snd_pcm_drop(handle);
set_hwparams(handle); // FIXME: check return code?
set_swparams(handle); // FIXME: check return code?
#if defined(HAVE_NWZ_LINUX_CODEC)
/* Sony NWZ linux driver uses a nonstandard mecanism to set the sampling rate */
audiohw_set_frequency(pcm_sampr);
#endif
/* (Will be unmuted by pcm resuming) */
}
}
void pcm_dma_apply_settings(void)
{
pcm_play_lock();
pcm_dma_apply_settings_nolock();
pcm_play_unlock();
}
void pcm_play_dma_stop(void)
{
logf("PCM DMA stop (%d)", snd_pcm_state(handle));
int err = snd_pcm_drain(handle);
if (err < 0)
if (err < 0)
logf("Drain failed: %s", snd_strerror(err));
#ifdef AUDIOHW_MUTE_ON_STOP
audiohw_mute(true);
#endif
}
void pcm_play_dma_start(const void *addr, size_t size)
{
logf("PCM DMA start (%p %d)", addr, size);
pcm_dma_apply_settings_nolock();
pcm_data = addr;
pcm_size = size;
#if !defined(AUDIOHW_MUTE_ON_STOP) && defined(AUDIOHW_MUTE_ON_SRATE_CHANGE)
audiohw_mute(false);
#endif
while (1)
{
snd_pcm_state_t state = snd_pcm_state(handle);
logf("PCM State %d", state);
switch (state)
{
case SND_PCM_STATE_RUNNING:
#if defined(AUDIOHW_MUTE_ON_STOP)
audiohw_mute(false);
#endif
return;
case SND_PCM_STATE_XRUN:
{
logf("Trying to recover from underrun");
int err = snd_pcm_recover(handle, -EPIPE, 0);
if (err < 0)
logf("Recovery failed: %s", snd_strerror(err));
continue;
}
case SND_PCM_STATE_SETUP:
{
int err = snd_pcm_prepare(handle);
if (err < 0)
logf("Prepare error: %s", snd_strerror(err));
}
/* fall through */
case SND_PCM_STATE_PREPARED:
{
int err;
#if 0
/* fill buffer with silence to initiate playback without noisy click */
snd_pcm_sframes_t sample_size = buffer_size;
sample_t *samples = calloc(1, sample_size * channels * sizeof(sample_t));
snd_pcm_format_set_silence(format, samples, sample_size);
err = snd_pcm_writei(handle, samples, sample_size);
free(samples);
if (err != (ssize_t)sample_size)
{
logf("Initial write error: written %i expected %li", err, sample_size);
return;
}
#else
/* Fill buffer with proper sample data */
while (snd_pcm_avail_update(handle) >= period_size)
{
if (copy_frames(true))
{
err = snd_pcm_writei(handle, frames, period_size);
if (err < 0 && err != period_size && err != -EAGAIN)
{
logf("Write error: written %i expected %li", err, period_size);
break;
}
}
}
#endif
err = snd_pcm_start(handle);
if (err < 0) {
logf("start error: %s", snd_strerror(err));
/* We will recover on the next iteration */
}
break;
}
case SND_PCM_STATE_DRAINING:
/* run until drained */
continue;
default:
logf("Unhandled state: %s", snd_pcm_state_name(state));
return;
}
}
}
void pcm_play_dma_postinit(void)
{
audiohw_postinit();
#ifdef AUDIOHW_NEEDS_INITIAL_UNMUTE
audiohw_mute(false);
#endif
}
unsigned int pcm_alsa_get_rate(void)
{
return real_sample_rate;
}
unsigned int pcm_alsa_get_xruns(void)
{
return xruns;
}
#ifdef HAVE_RECORDING
void pcm_rec_lock(void)
{
pcm_play_lock();
}
void pcm_rec_unlock(void)
{
pcm_play_unlock();
}
void pcm_rec_dma_init(void)
{
logf("PCM REC DMA Init");
open_hwdev(capture_dev, SND_PCM_STREAM_CAPTURE);
}
void pcm_rec_dma_close(void)
{
logf("Rec DMA Close");
// close_hwdev();
open_hwdev(playback_dev, SND_PCM_STREAM_PLAYBACK);
}
void pcm_rec_dma_start(void *start, size_t size)
{
logf("PCM REC DMA start (%p %d)", start, size);
pcm_dma_apply_settings_nolock();
pcm_data_rec = start;
pcm_size = size;
if (!handle) return;
while (1)
{
snd_pcm_state_t state = snd_pcm_state(handle);
switch (state)
{
case SND_PCM_STATE_RUNNING:
return;
case SND_PCM_STATE_XRUN:
{
logf("Trying to recover from error");
int err = snd_pcm_recover(handle, -EPIPE, 0);
if (err < 0)
panicf("Recovery failed: %s", snd_strerror(err));
continue;
}
case SND_PCM_STATE_SETUP:
{
int err = snd_pcm_prepare(handle);
if (err < 0)
panicf("Prepare error: %s", snd_strerror(err));
}
/* fall through */
case SND_PCM_STATE_PREPARED:
{
int err = snd_pcm_start(handle);
if (err < 0)
panicf("Start error: %s", snd_strerror(err));
return;
}
case SND_PCM_STATE_DRAINING:
/* run until drained */
continue;
default:
logf("Unhandled state: %s", snd_pcm_state_name(state));
return;
}
}
}
void pcm_rec_dma_stop(void)
{
logf("Rec DMA Stop");
close_hwdev();
}
const void * pcm_rec_dma_get_peak_buffer(void)
{
uintptr_t addr = (uintptr_t)pcm_data_rec;
return (void*)((addr + 3) & ~3);
}
#ifdef SIMULATOR
void audiohw_set_recvol(int left, int right, int type)
{
(void)left;
(void)right;
(void)type;
}
#endif
#endif /* HAVE_RECORDING */
|