summaryrefslogtreecommitdiff
path: root/firmware/target/arm/s5l8700/ipodnano2g/nand-nano2g.c
blob: 3b5f88d3c2df4209f2951058ef808b270f7aab34 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2009 by Michael Sparmann
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/


#include "config.h"
#include "panic.h"
#include "system.h"
#include "kernel.h"
#include "cpu.h"
#include "inttypes.h"
#include "nand-target.h"
#include <pmu-target.h>
#include <mmu-target.h>
#include <string.h>
#include "led.h"


#define NAND_CMD_READ       0x00
#define NAND_CMD_PROGCNFRM  0x10
#define NAND_CMD_READ2      0x30
#define NAND_CMD_BLOCKERASE 0x60
#define NAND_CMD_GET_STATUS 0x70
#define NAND_CMD_PROGRAM    0x80
#define NAND_CMD_ERASECNFRM 0xD0
#define NAND_CMD_RESET      0xFF

#define NAND_STATUS_READY   0x40

#define NAND_DEVICEINFOTABLE_ENTRIES 33

static const struct nand_device_info_type nand_deviceinfotable[] =
{
    {0x1580F1EC, 1024, 968, 0x40, 6, 2, 1, 2, 1},
    {0x1580DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
    {0x15C1DAEC, 2048, 1936, 0x40, 6, 2, 1, 2, 1},
    {0x1510DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x95C1DCEC, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x2514DCEC, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0x2514D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2555D3EC, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2555D5EC, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
    {0x2585D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0x9580DCAD, 4096, 3872, 0x40, 6, 3, 2, 3, 2},
    {0xA514D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA550D3AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA560D5AD, 4096, 3872, 0x80, 7, 3, 2, 3, 2},
    {0xA555D5AD, 8192, 7744, 0x80, 7, 3, 2, 3, 2},
    {0xA585D598, 8320, 7744, 0x80, 7, 3, 1, 2, 1},
    {0xA584D398, 4160, 3872, 0x80, 7, 3, 1, 2, 1},
    {0x95D1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x1580DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x15C1D32C, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x9590DC2C, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0xA594D32C, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2584DC2C, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0xA5D5D52C, 8192, 7744, 0x80, 7, 3, 2, 2, 1},
    {0x95D1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x1580DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0x15C1D389, 8192, 7744, 0x40, 6, 2, 1, 2, 1},
    {0x9590DC89, 4096, 3872, 0x40, 6, 2, 1, 2, 1},
    {0xA594D389, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0x2584DC89, 2048, 1936, 0x80, 7, 2, 1, 2, 1},
    {0xA5D5D589, 8192, 7744, 0x80, 7, 2, 1, 2, 1},
    {0xA514D320, 4096, 3872, 0x80, 7, 2, 1, 2, 1},
    {0xA555D520, 8192, 3872, 0x80, 7, 2, 1, 2, 1}
};

uint8_t nand_tunk1[4];
uint8_t nand_twp[4];
uint8_t nand_tunk2[4];
uint8_t nand_tunk3[4];
uint32_t nand_type[4];
int nand_powered = 0;
long nand_last_activity_value = -1;
static long nand_stack[32];

static struct mutex nand_mtx;
static struct wakeup nand_wakeup;
static struct mutex ecc_mtx;
static struct wakeup ecc_wakeup;

static uint8_t nand_data[0x800] __attribute__((aligned(16)));
static uint8_t nand_ctrl[0x200] __attribute__((aligned(16)));
static uint8_t nand_spare[0x40] __attribute__((aligned(16)));
static uint8_t nand_ecc[0x30] __attribute__((aligned(16)));


uint32_t nand_unlock(uint32_t rc)
{
    led(false);
    mutex_unlock(&nand_mtx);
    return rc;
}

uint32_t ecc_unlock(uint32_t rc)
{
    mutex_unlock(&ecc_mtx);
    return rc;
}

uint32_t nand_timeout(long timeout)
{
    if (TIME_AFTER(current_tick, timeout)) return 1;
    else
    {
        yield();
        return 0;
    }
}

uint32_t nand_wait_rbbdone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_RBBDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_RBBDONE;
    return 0;
}

uint32_t nand_wait_cmddone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_CMDDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_CMDDONE;
    return 0;
}

uint32_t nand_wait_addrdone(void)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & FMCSTAT_ADDRDONE))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = FMCSTAT_ADDRDONE;
    return 0;
}

uint32_t nand_wait_chip_ready(uint32_t bank)
{
    long timeout = current_tick + HZ / 50;
    while (!(FMCSTAT & (FMCSTAT_BANK0READY << bank)))
        if (nand_timeout(timeout)) return 1;
    FMCSTAT = (FMCSTAT_BANK0READY << bank);
    return 0;
}

void nand_set_fmctrl0(uint32_t bank, uint32_t flags)
{
    FMCTRL0 = (nand_tunk1[bank] << 16) | (nand_twp[bank] << 12)
            | (1 << 11) | 1 | (1 << (bank + 1)) | flags;
}

uint32_t nand_send_cmd(uint32_t cmd)
{
    FMCMD = cmd;
    return nand_wait_rbbdone();
}

uint32_t nand_send_address(uint32_t page, uint32_t offset)
{
    FMANUM = 4;
    FMADDR0 = (page << 16) | offset;
    FMADDR1 = (page >> 16) & 0xFF;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    return nand_wait_cmddone();
}

uint32_t nand_reset(uint32_t bank)
{
    nand_set_fmctrl0(bank, 0);
    if (nand_send_cmd(NAND_CMD_RESET)) return 1;
    if (nand_wait_chip_ready(bank)) return 1;
    FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
    sleep(0);
    return 0;
}

uint32_t nand_wait_status_ready(uint32_t bank)
{
    long timeout = current_tick + HZ / 50;
    nand_set_fmctrl0(bank, 0);
    if ((FMCSTAT & (FMCSTAT_BANK0READY << bank)))
        FMCSTAT = (FMCSTAT_BANK0READY << bank);
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    if (nand_send_cmd(NAND_CMD_GET_STATUS)) return 1;
    while (1)
    {
        if (nand_timeout(timeout)) return 1;
        FMDNUM = 0;
        FMCTRL1 = FMCTRL1_DOREADDATA;
        if (nand_wait_addrdone()) return 1;
        if ((FMFIFO & NAND_STATUS_READY)) break;
        FMCTRL1 = FMCTRL1_CLEARRFIFO;
    }
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return nand_send_cmd(NAND_CMD_READ);
}

uint32_t nand_transfer_data(uint32_t bank, uint32_t direction,
                            void* buffer, uint32_t size)
{
    long timeout = current_tick + HZ / 50;
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    FMDNUM = size - 1;
    FMCTRL1 = FMCTRL1_DOREADDATA << direction;
    DMACON3 = (2 << DMACON_DEVICE_SHIFT)
            | (direction << DMACON_DIRECTION_SHIFT)
            | (2 << DMACON_DATA_SIZE_SHIFT)
            | (3 << DMACON_BURST_LEN_SHIFT);
    while ((DMAALLST & DMAALLST_CHAN3_MASK))
        DMACOM3 = DMACOM_CLEARBOTHDONE;
    DMABASE3 = (uint32_t)buffer;
    DMATCNT3 = (size >> 4) - 1;
    clean_dcache();
    DMACOM3 = 4;
    while ((DMAALLST & DMAALLST_DMABUSY3))
        if (nand_timeout(timeout)) return 1;
    if (!direction) invalidate_dcache();
    if (nand_wait_addrdone()) return 1;
    if (!direction) FMCTRL1 = FMCTRL1_CLEARRFIFO | FMCTRL1_CLEARWFIFO;
    else FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return 0;
}

uint32_t ecc_decode(uint32_t size, void* databuffer, void* sparebuffer)
{
    mutex_lock(&ecc_mtx);
    long timeout = current_tick + HZ / 50;
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    ECC_UNK1 = size;
    ECC_DATA_PTR = (uint32_t)databuffer;
    ECC_SPARE_PTR = (uint32_t)sparebuffer;
    clean_dcache();
    ECC_CTRL = ECCCTRL_STARTDECODING;
    while (!(SRCPND & INTMSK_ECC))
        if (nand_timeout(timeout)) return ecc_unlock(1);
    invalidate_dcache();
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    return ecc_unlock(ECC_RESULT);
}

uint32_t ecc_encode(uint32_t size, void* databuffer, void* sparebuffer)
{
    mutex_lock(&ecc_mtx);
    long timeout = current_tick + HZ / 50;
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    ECC_UNK1 = size;
    ECC_DATA_PTR = (uint32_t)databuffer;
    ECC_SPARE_PTR = (uint32_t)sparebuffer;
    clean_dcache();
    ECC_CTRL = ECCCTRL_STARTENCODING;
    while (!(SRCPND & INTMSK_ECC))
        if (nand_timeout(timeout)) return ecc_unlock(1);
    invalidate_dcache();
    ECC_INT_CLR = 1;
    SRCPND = INTMSK_ECC;
    return ecc_unlock(0);
}

uint32_t nand_check_empty(uint8_t* buffer)
{
    uint32_t i, count;
    count = 0;
    for (i = 0; i < 0x40; i++) if (buffer[i] != 0xFF) count++;
    if (count < 2) return 1;
    return 0;
}

uint32_t nand_get_chip_type(uint32_t bank)
{
    mutex_lock(&nand_mtx);
    uint32_t result;
    if (nand_reset(bank)) return nand_unlock(0xFFFFFFFF);
    if (nand_send_cmd(0x90)) return nand_unlock(0xFFFFFFFF);
    FMANUM = 0;
    FMADDR0 = 0;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    if (nand_wait_cmddone()) return nand_unlock(0xFFFFFFFF);
    FMDNUM = 4;
    FMCTRL1 = FMCTRL1_DOREADDATA;
    if (nand_wait_addrdone()) return nand_unlock(0xFFFFFFFF);
    result = FMFIFO;
    FMCTRL1 = FMCTRL1_CLEARRFIFO;
    return nand_unlock(result);
}

void nand_set_active(void)
{
    nand_last_activity_value = current_tick;
}

long nand_last_activity(void)
{
    return nand_last_activity_value;
}

void nand_power_up(void)
{
    uint32_t i;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    PWRCONEXT &= ~0x40;
    PWRCON &= ~0x100000;
    PCON2 = 0x33333333;
    PDAT2 = 0;
    PCON3 = 0x11113333;
    PDAT3 = 0;
    PCON4 = 0x33333333;
    PDAT4 = 0;
    PCON5 = (PCON5 & ~0xF) | 3;
    PUNK5 = 1;
    pmu_ldo_set_voltage(4, 0x15);
    pmu_ldo_power_on(4);
    sleep(HZ / 20);
    nand_last_activity_value = current_tick;
    for (i = 0; i < 4; i++)
    {
        if(nand_type[i] != 0xFFFFFFFF)
        {
            if(nand_reset(i))
                panicf("nand_power_up: nand_reset(bank=%d) failed.",(unsigned int)i);
        }
    }
    nand_powered = 1;
    nand_last_activity_value = current_tick;
    mutex_unlock(&nand_mtx);
}

void nand_power_down(void)
{
    if (!nand_powered) return;
    mutex_lock(&nand_mtx);
    pmu_ldo_power_off(4);
    PCON2 = 0x11111111;
    PDAT2 = 0;
    PCON3 = 0x11111111;
    PDAT3 = 0;
    PCON4 = 0x11111111;
    PDAT4 = 0;
    PCON5 = (PCON5 & ~0xF) | 1;
    PUNK5 = 1;
    PWRCONEXT |= 0x40;
    PWRCON |= 0x100000;
    nand_powered = 0;
    mutex_unlock(&nand_mtx);
}

uint32_t nand_read_page(uint32_t bank, uint32_t page, void* databuffer,
                        void* sparebuffer, uint32_t doecc,
                        uint32_t checkempty)
{
    uint8_t* data = nand_data;
    uint8_t* spare = nand_spare;
    if (databuffer && !((uint32_t)databuffer & 0xf))
        data = (uint8_t*)databuffer;
    if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
        spare = (uint8_t*)sparebuffer;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    uint32_t rc, eccresult;
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    if (nand_send_cmd(NAND_CMD_READ)) return nand_unlock(1);
    if (nand_send_address(page, databuffer ? 0 : 0x800))
        return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_READ2)) return nand_unlock(1);
    if (nand_wait_status_ready(bank)) return nand_unlock(1);
    if (databuffer)
        if (nand_transfer_data(bank, 0, data, 0x800))
            return nand_unlock(1);
    rc = 0;
    if (!doecc)
    {
        if (databuffer && data != databuffer) memcpy(databuffer, data, 0x800);
        if (sparebuffer)
        {
            if (nand_transfer_data(bank, 0, spare, 0x40))
                return nand_unlock(1);
            if (sparebuffer && spare != sparebuffer) 
                memcpy(sparebuffer, spare, 0x800);
            if (checkempty)
                rc = nand_check_empty((uint8_t*)sparebuffer) << 1;
        }
        return nand_unlock(rc);
    }
    if (nand_transfer_data(bank, 0, spare, 0x40)) return nand_unlock(1);
    if (databuffer)
    {
        memcpy(nand_ecc, &spare[0xC], 0x28);
        rc |= (ecc_decode(3, data, nand_ecc) & 0xF) << 4;
        if (data != databuffer) memcpy(databuffer, data, 0x800);
    }
    memset(nand_ctrl, 0xFF, 0x200);
    memcpy(nand_ctrl, spare, 0xC);
    memcpy(nand_ecc, &spare[0x34], 0xC);
    eccresult = ecc_decode(0, nand_ctrl, nand_ecc);
    rc |= (eccresult & 0xF) << 8;
    if (sparebuffer)
    {
        if (spare != sparebuffer) memcpy(sparebuffer, spare, 0x40);
        if (eccresult & 1) memset(sparebuffer, 0xFF, 0xC);
        else memcpy(sparebuffer, nand_ctrl, 0xC);
    }
    if (checkempty) rc |= nand_check_empty(spare) << 1;

    return nand_unlock(rc);
}

uint32_t nand_write_page(uint32_t bank, uint32_t page, void* databuffer,
                         void* sparebuffer, uint32_t doecc)
{
    uint8_t* data = nand_data;
    uint8_t* spare = nand_spare;
    if (databuffer && !((uint32_t)databuffer & 0xf))
        data = (uint8_t*)databuffer;
    if (sparebuffer && !((uint32_t)sparebuffer & 0xf))
        spare = (uint8_t*)sparebuffer;
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    if (sparebuffer)
    {
        if (spare != sparebuffer) memcpy(spare, sparebuffer, 0x40);
    }
    else memset(spare, 0xFF, 0x40);
    if (doecc)
    {
        if (databuffer && data != databuffer) memcpy(data, databuffer, 0x800);
        if (ecc_encode(3, data, nand_ecc)) return nand_unlock(1);
        memcpy(&spare[0xC], nand_ecc, 0x28);
        memset(nand_ctrl, 0xFF, 0x200);
        memcpy(nand_ctrl, spare, 0xC);
        if (ecc_encode(0, nand_ctrl, nand_ecc)) return nand_unlock(1);
        memcpy(&spare[0x34], nand_ecc, 0xC);
    }
    nand_set_fmctrl0(bank, FMCTRL0_ENABLEDMA);
    if (nand_send_cmd(NAND_CMD_PROGRAM)) return nand_unlock(1);
    if (nand_send_address(page, databuffer ? 0 : 0x800))
        return nand_unlock(1);
    if (databuffer)
        if (nand_transfer_data(bank, 1, data, 0x800))
            return nand_unlock(1);
    if (sparebuffer || doecc)
        if (nand_transfer_data(bank, 1, spare, 0x40))
            return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_PROGCNFRM)) return nand_unlock(1);
    return nand_unlock(nand_wait_status_ready(bank));
}

uint32_t nand_block_erase(uint32_t bank, uint32_t page)
{
    mutex_lock(&nand_mtx);
    nand_last_activity_value = current_tick;
    led(true);
    if (!nand_powered) nand_power_up();
    nand_set_fmctrl0(bank, 0);
    if (nand_send_cmd(NAND_CMD_BLOCKERASE)) return nand_unlock(1);
    FMANUM = 2;
    FMADDR0 = page;
    FMCTRL1 = FMCTRL1_DOTRANSADDR;
    if (nand_wait_cmddone()) return nand_unlock(1);
    if (nand_send_cmd(NAND_CMD_ERASECNFRM)) return nand_unlock(1);
    if (nand_wait_status_ready(bank)) return nand_unlock(1);
    return nand_unlock(0);
}

const struct nand_device_info_type* nand_get_device_type(uint32_t bank)
{
    if (nand_type[bank] == 0xFFFFFFFF)
        return (struct nand_device_info_type*)0;
    return &nand_deviceinfotable[nand_type[bank]];
}

static void nand_thread(void)
{
    while (1)
    {
        if (TIME_AFTER(current_tick, nand_last_activity_value + HZ / 5)
         && nand_powered)
            nand_power_down();
        sleep(HZ / 10);
    }
}

uint32_t nand_device_init(void)
{
    mutex_init(&nand_mtx);
    wakeup_init(&nand_wakeup);
    mutex_init(&ecc_mtx);
    wakeup_init(&ecc_wakeup);

    uint32_t type;
    uint32_t i, j;

    /* Assume there are 0 banks, to prevent
       nand_power_up from talking with them yet. */
    for(i = 0; i < 4; i++) nand_type[i] = 0xFFFFFFFF;
    nand_power_up();

    /* Now that the flash is powered on, detect how
       many banks we really have and initialize them. */
    for (i = 0; i < 4; i++)
    {
        nand_tunk1[i] = 7;
        nand_twp[i] = 7;
        nand_tunk2[i] = 7;
        nand_tunk3[i] = 7;
        type = nand_get_chip_type(i);
        if (type == 0xFFFFFFFF) continue;
        for (j = 0; ; j++)
        {
            if (j == ARRAYLEN(nand_deviceinfotable)) break;
            else if (nand_deviceinfotable[j].id == type)
            {
                nand_type[i] = j;
                break;
            }
        }
        nand_tunk1[i] = nand_deviceinfotable[nand_type[i]].tunk1;
        nand_twp[i] = nand_deviceinfotable[nand_type[i]].twp;
        nand_tunk2[i] = nand_deviceinfotable[nand_type[i]].tunk2;
        nand_tunk3[i] = nand_deviceinfotable[nand_type[i]].tunk3;
    }
    if (nand_type[0] == 0xFFFFFFFF) return 1;

    nand_last_activity_value = current_tick;
    create_thread(nand_thread, nand_stack,
                  sizeof(nand_stack), 0, "nand"
                  IF_PRIO(, PRIORITY_USER_INTERFACE)
                  IF_COP(, CPU));

    return 0;
}