1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
* Physical interface of the Philips TEA5767 in iriver H10 series
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "logf.h"
#include "system.h"
/* cute little functions, atomic read-modify-write */
#define SDA_OUTINIT GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x08)
#define SDA_HI_IN GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x08)
#define SDA_LO_OUT GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x08)
#define SDA (GPIOD_INPUT_VAL & 0x08)
#define SCL_INPUT GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_EN, 0x10)
#define SCL_OUTPUT GPIO_SET_BITWISE(GPIOD_OUTPUT_EN, 0x10)
#define SCL_LO GPIO_CLEAR_BITWISE(GPIOD_OUTPUT_VAL, 0x10)
#define SCL_HI GPIO_SET_BITWISE(GPIOD_OUTPUT_VAL,0x10)
#define SCL (GPIOD_INPUT_VAL & 0x10)
#define DELAY udelay(2)
static void fmradio_i2c_start(void)
{
SCL_HI;
SCL_OUTPUT;
SDA_HI_IN;
SDA_OUTINIT;
DELAY;
SDA_LO_OUT;
DELAY;
SCL_LO;
}
static void fmradio_i2c_stop(void)
{
SDA_LO_OUT;
DELAY;
SCL_HI;
DELAY;
SDA_HI_IN;
}
/* Generate ACK or NACK */
static void fmradio_i2c_ack(bool nack)
{
/* Here's the deal. The slave is slow, and sometimes needs to wait
before it can receive the acknowledge. Therefore it forces the clock
low until it is ready. We need to poll the clock line until it goes
high before we release the ack.
In their infinite wisdom, iriver didn't pull up the SCL line, so
we have to drive the SCL high repeatedly to simulate a pullup. */
if (nack)
SDA_HI_IN;
else
SDA_LO_OUT;
DELAY;
SCL_HI;
do
{
SCL_OUTPUT; /* Set the clock to output */
SCL_INPUT; /* Set the clock to input */
DELAY;
}
while(!SCL); /* and wait for the slave to release it */
SCL_OUTPUT;
SCL_LO;
}
static int fmradio_i2c_getack(void)
{
int ret = 1;
/* Here's the deal. The slave is slow, and sometimes needs to wait
before it can send the acknowledge. Therefore it forces the clock
low until it is ready. We need to poll the clock line until it goes
high before we read the ack.
In their infinite wisdom, iriver didn't pull up the SCL line, so
we have to drive the SCL high repeatedly to simulate a pullup. */
SDA_HI_IN;
DELAY;
SCL_HI; /* set clock to high */
do
{
SCL_OUTPUT; /* Set the clock to output */
SCL_INPUT; /* Set the clock to input */
DELAY;
}
while(!SCL); /* and wait for the slave to release it */
if (SDA)
ret = 0; /* ack failed */
SCL_OUTPUT;
SCL_LO;
return ret;
}
static void fmradio_i2c_outb(unsigned char byte)
{
int i;
/* clock out each bit, MSB first */
for ( i=0x80; i; i>>=1 ) {
if ( i & byte )
SDA_HI_IN;
else
SDA_LO_OUT;
DELAY;
SCL_HI;
DELAY;
SCL_LO;
DELAY;
}
}
static unsigned char fmradio_i2c_inb(void)
{
int i;
unsigned char byte = 0;
SDA_HI_IN;
/* clock in each bit, MSB first */
for ( i=0x80; i; i>>=1 ) {
DELAY;
SCL_HI;
DELAY;
if ( SDA )
byte |= i;
SCL_LO;
}
return byte;
}
int fmradio_i2c_write(int address, const unsigned char* buf, int count)
{
int i,x=0;
fmradio_i2c_start();
fmradio_i2c_outb(address & 0xfe);
if (fmradio_i2c_getack())
{
for (i=0; i<count; i++)
{
fmradio_i2c_outb(buf[i]);
if (!fmradio_i2c_getack())
{
x=-2;
break;
}
}
}
else
{
logf("fmradio_i2c_write() - no ack\n");
x=-1;
}
fmradio_i2c_stop();
return x;
}
int fmradio_i2c_read(int address, unsigned char* buf, int count)
{
int i,x=0;
fmradio_i2c_start();
fmradio_i2c_outb(address | 1);
if (fmradio_i2c_getack())
{
for (i=count; i>0; i--)
{
*buf++ = fmradio_i2c_inb();
fmradio_i2c_ack(i == 1);
}
}
else
x=-1;
fmradio_i2c_stop();
return x;
}
|