1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2008 by Michael Sevakis
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "system.h"
#include "mc13783.h"
#include "adc-target.h"
#include "kernel.h"
/* Do this so we may read all channels in a single SPI message */
static const unsigned char reg_array[4] =
{
MC13783_ADC2,
MC13783_ADC2,
MC13783_ADC2,
MC13783_ADC2,
};
static uint32_t channels[2][4];
static struct wakeup adc_wake;
static struct mutex adc_mtx;
static long last_adc_read[2]; /* One for each input group */
/* Read 10-bit ADC channel */
unsigned short adc_read(int channel)
{
uint32_t data;
int input_select;
if ((unsigned)channel >= NUM_ADC_CHANNELS)
return ADC_READ_ERROR;
input_select = channel >> 3;
mutex_lock(&adc_mtx);
/* Limit the traffic through here */
if (current_tick != last_adc_read[input_select])
{
/* Keep enable, start conversion, increment from channel 0,
* increment from channel 4 */
uint32_t adc1 = MC13783_ADEN | MC13783_ASC | MC13783_ADA1w(0) |
MC13783_ADA2w(4);
if (input_select == 1)
adc1 |= MC13783_ADSEL; /* 2nd set of inputs */
/* Start conversion */
mc13783_write(MC13783_ADC1, adc1);
/* Wait for done signal */
wakeup_wait(&adc_wake, TIMEOUT_BLOCK);
/* Read all 8 channels that are converted - two channels in each
* word. */
mc13783_read_regset(reg_array, channels[input_select], 4);
last_adc_read[input_select] = current_tick;
}
data = channels[input_select][channel & 3];
mutex_unlock(&adc_mtx);
/* Channels 0-3/8-11 in ADD1, 4-7/12-15 in ADD2 */
return (channel & 4) ? MC13783_ADD2r(data) : MC13783_ADD1r(data);
}
/* Called by mc13783 interrupt thread when conversion is complete */
void adc_done(void)
{
wakeup_signal(&adc_wake);
}
void adc_init(void)
{
wakeup_init(&adc_wake);
mutex_init(&adc_mtx);
/* Init so first reads get data */
last_adc_read[0] = last_adc_read[1] = current_tick-1;
/* Enable increment-by-read, thermistor, charge current */
mc13783_write(MC13783_ADC0, MC13783_ADINC2 | MC13783_ADINC1 |
MC13783_RTHEN | MC13783_CHRGICON);
/* Enable ADC, set multi-channel mode */
mc13783_write(MC13783_ADC1, MC13783_ADEN);
/* Enable ADCDONE event */
mc13783_write(MC13783_INTERRUPT_STATUS0, MC13783_ADCDONEI);
mc13783_enable_event(MC13783_ADCDONE_EVENT);
}
|