summaryrefslogtreecommitdiff
path: root/firmware/target/arm/ata-nand-telechips.c
blob: 81dde339382595fcc09fc5b6268280b9e3e9a9d3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2008 Rob Purchase
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/
#include "nand.h"
#include "ata-nand-target.h"
#include "system.h"
#include <string.h>
#include "led.h"
#include "panic.h"
#include "nand_id.h"
#include "storage.h"
#include "buffer.h"

#define SECTOR_SIZE 512

/* ECC on read is implemented on the assumption that MLC-style 4-bit correction
   is always used regardless of NAND chip type. This assumption is true for at
   least D2 (MLC) and M200 (SLC). */
#define USE_ECC_CORRECTION

/* for compatibility */
int ata_spinup_time = 0;

long last_disk_activity = -1;

/** static, private data **/
static bool initialized = false;

static long next_yield = 0;
#define MIN_YIELD_PERIOD 1000

static struct mutex ata_mtx SHAREDBSS_ATTR;

#if defined(COWON_D2) || defined(IAUDIO_7)
#define FTL_V2
#define MAX_WRITE_CACHES    8
#else
#define FTL_V1
#define MAX_WRITE_CACHES    4
#endif

/* Sector type identifiers - main data area */

#define SECTYPE_MAIN_LPT           0x12
#define SECTYPE_MAIN_DATA          0x13
#define SECTYPE_MAIN_RANDOM_CACHE  0x15
#define SECTYPE_MAIN_INPLACE_CACHE 0x17

/* We don't touch the hidden area at all - these are for reference */
#define SECTYPE_HIDDEN_LPT           0x22
#define SECTYPE_HIDDEN_DATA          0x23
#define SECTYPE_HIDDEN_RANDOM_CACHE  0x25
#define SECTYPE_HIDDEN_INPLACE_CACHE 0x27

#ifdef FTL_V1
#define SECTYPE_FIRMWARE 0x40
#else
#define SECTYPE_FIRMWARE 0xE0
#endif

/* Offsets to data within sector's spare area */

#define OFF_CACHE_PAGE_LOBYTE 2
#define OFF_CACHE_PAGE_HIBYTE 3
#define OFF_SECTOR_TYPE       4

#ifdef FTL_V2
#define OFF_LOG_SEG_LOBYTE    7
#define OFF_LOG_SEG_HIBYTE    6
#else
#define OFF_LOG_SEG_LOBYTE    6
#define OFF_LOG_SEG_HIBYTE    7
#endif

/* Chip characteristics, initialised by nand_get_chip_info() */

static struct nand_info* nand_data = NULL;

static int total_banks         = 0;
static int pages_per_bank      = 0;
static int sectors_per_page    = 0;
static int bytes_per_segment   = 0;
static int sectors_per_segment = 0;
static int segments_per_bank   = 0;
static int pages_per_segment   = 0;

/* Maximum values for static buffers */

#define MAX_PAGE_SIZE          4096
#define MAX_SPARE_SIZE         128
#define MAX_BLOCKS_PER_BANK    8192
#define MAX_PAGES_PER_BLOCK    128
#define MAX_BANKS              4
#define MAX_BLOCKS_PER_SEGMENT 4

#define MAX_SEGMENTS (MAX_BLOCKS_PER_BANK * MAX_BANKS / MAX_BLOCKS_PER_SEGMENT)

/* Logical/Physical translation table */

struct lpt_entry
{
    short bank;
    short phys_segment;
};
#ifdef BOOTLOADER
static struct lpt_entry lpt_lookup[MAX_SEGMENTS];
#else
/* buffer_alloc'd in nand_init() when the correct size has been determined */
static struct lpt_entry* lpt_lookup = NULL;
#endif

/* Write Caches */

struct write_cache
{
    short log_segment;
    short inplace_bank;
    short inplace_phys_segment;
    short inplace_pages_used;
    short random_bank;
    short random_phys_segment;
    short page_map[MAX_PAGES_PER_BLOCK * MAX_BLOCKS_PER_SEGMENT];
};
static struct write_cache write_caches[MAX_WRITE_CACHES];

static int write_caches_in_use = 0;


/* Conversion functions */

static int phys_segment_to_page_addr(int phys_segment, int page_in_seg)
{
    int page_addr = 0;

    switch (nand_data->planes)
    {
        case 1:
        {
            page_addr = (phys_segment * nand_data->pages_per_block);
            break;
        }

        case 2:
        case 4:
        {
            page_addr = phys_segment * nand_data->pages_per_block * 2;

            if (page_in_seg & 1)
            {
                /* Data is located in block+1 */
                page_addr += nand_data->pages_per_block;
            }

            if (nand_data->planes == 4 && page_in_seg & 2)
            {
                /* Data is located in 2nd half of bank */
                page_addr +=
                    (nand_data->blocks_per_bank/2) * nand_data->pages_per_block;
            }

            break;
        }
    }
    
    page_addr += (page_in_seg / nand_data->planes);

    return page_addr;
}


/* NAND physical access functions */

static void nand_chip_select(int bank)
{
    if (bank == -1)
    {
        /* Disable both chip selects */
        NAND_GPIO_CLEAR(CS_GPIO_BIT);
        NFC_CTRL |= NFC_CS0 | NFC_CS1;
    }
    else
    {
        /* NFC chip select */
        if (bank & 1)
        {
            NFC_CTRL &= ~NFC_CS0;
            NFC_CTRL |= NFC_CS1;
        }
        else
        {
            NFC_CTRL |= NFC_CS0;
            NFC_CTRL &= ~NFC_CS1;
        }

        /* Secondary chip select */
        if (bank & 2)
            NAND_GPIO_SET(CS_GPIO_BIT);
        else
            NAND_GPIO_CLEAR(CS_GPIO_BIT);
    }
}


static void nand_read_id(int bank, unsigned char* id_buf)
{
    int i;
    
    /* Enable NFC bus clock */
    BCLKCTR |= DEV_NAND;

    /* Reset NAND controller */
    NFC_RST = 0;

    /* Set slow cycle timings since the chip is as yet unidentified */
    NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x353;

    nand_chip_select(bank);

    /* Set write protect */
    NAND_GPIO_CLEAR(WE_GPIO_BIT);

    /* Reset command */
    NFC_CMD = 0xFF;

    /* Set 8-bit data width */
    NFC_CTRL &= ~NFC_16BIT;

    /* Read ID command, single address cycle */
    NFC_CMD   = 0x90;
    NFC_SADDR = 0x00;

    /* Read the 5 chip ID bytes */
    for (i = 0; i < 5; i++)
    {
        id_buf[i] = NFC_SDATA & 0xFF;
    }

    nand_chip_select(-1);

    /* Disable NFC bus clock */
    BCLKCTR &= ~DEV_NAND;
}


static void nand_read_uid(int bank, unsigned int* uid_buf)
{
    int i;

    /* Enable NFC bus clock */
    BCLKCTR |= DEV_NAND;

    /* Set cycle timing (stp = 1, pw = 3, hold = 1) */
    NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;

    nand_chip_select(bank);

    /* Set write protect */
    NAND_GPIO_CLEAR(WE_GPIO_BIT);

    /* Set 8-bit data width */
    NFC_CTRL &= ~NFC_16BIT;

    /* Undocumented (SAMSUNG specific?) commands set the chip into a
       special mode allowing a normally-hidden UID block to be read. */
    NFC_CMD = 0x30;
    NFC_CMD = 0x65;

    /* Read command */
    NFC_CMD = 0x00;

    /* Write row/column address */
    for (i = 0; i < nand_data->col_cycles; i++) NFC_SADDR = 0;
    for (i = 0; i < nand_data->row_cycles; i++) NFC_SADDR = 0;

    /* End of read */
    NFC_CMD = 0x30;

    /* Wait until complete */
    while (!(NFC_CTRL & NFC_READY)) {};

    /* Copy data to buffer (data repeats after 8 words) */
    for (i = 0; i < 8; i++)
    {
        uid_buf[i] = NFC_WDATA;
    }

    /* Reset the chip back to normal mode */
    NFC_CMD = 0xFF;

    nand_chip_select(-1);

    /* Disable NFC bus clock */
    BCLKCTR &= ~DEV_NAND;
}


static void nand_setup_read(int bank, int row, int column)
{
    int i;

    /* Enable NFC bus clock */
    BCLKCTR |= DEV_NAND;

    /* Set cycle timing (stp = 1, pw = 3, hold = 1) */
    NFC_CTRL = (NFC_CTRL &~0xFFF) | 0x131;

    nand_chip_select(bank);

    /* Set write protect */
    NAND_GPIO_CLEAR(WE_GPIO_BIT);

    /* Set 8-bit data width */
    NFC_CTRL &= ~NFC_16BIT;

    /* Read command */
    NFC_CMD = 0x00;

    /* Write column address */
    for (i = 0; i < nand_data->col_cycles; i++)
    {
        NFC_SADDR = column & 0xFF;
        column = column >> 8;
    }

    /* Write row address */
    for (i = 0; i < nand_data->row_cycles; i++)
    {
        NFC_SADDR = row & 0xFF;
        row = row >> 8;
    }

    /* End of read command */
    NFC_CMD = 0x30;

    /* Wait until complete */
    while (!(NFC_CTRL & NFC_READY)) {};
}


static void nand_end_read(void)
{
    nand_chip_select(-1);
        
    /* Disable NFC bus clock */
    BCLKCTR &= ~DEV_NAND;
}


static void nand_read_raw(int bank, int row, int column, int size, void* buf)
{
    int i;
    
    nand_setup_read(bank, row, column);

    /* Read data into page buffer */
    if (((unsigned int)buf & 3) || (size & 3))
    {
        /* Use byte copy since either the buffer or size are not word-aligned */
        /* TODO: Byte copy only where necessary (use words for mid-section) */
        for (i = 0; i < size; i++)
        {
            ((unsigned char*)buf)[i] = NFC_SDATA;
        }
    }
    else
    {
        /* Use 4-byte copy as buffer and size are both word-aligned */
        for (i = 0; i < (size/4); i++)
        {
            ((unsigned int*)buf)[i] = NFC_WDATA;
        }
    }
    
    nand_end_read();
}


static void nand_get_chip_info(void)
{
    unsigned char manuf_id;
    unsigned char id_buf[8];

    /* Read chip id from bank 0 */
    nand_read_id(0, id_buf);

    manuf_id = id_buf[0];

    /* Identify the chip geometry */
    nand_data = nand_identify(id_buf);

    if (nand_data == NULL)
    {
        panicf("Unknown NAND: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x",
                id_buf[0],id_buf[1],id_buf[2],id_buf[3],id_buf[4]);
    }

    pages_per_bank = nand_data->blocks_per_bank * nand_data->pages_per_block;

    segments_per_bank = nand_data->blocks_per_bank / nand_data->planes;

    bytes_per_segment = nand_data->page_size * nand_data->pages_per_block
        * nand_data->planes;

    sectors_per_page = nand_data->page_size / SECTOR_SIZE;

    sectors_per_segment = bytes_per_segment / SECTOR_SIZE;
    
    pages_per_segment = sectors_per_segment / sectors_per_page;

    /* Establish how many banks are present */
    nand_read_id(1, id_buf);

    if (id_buf[0] == manuf_id)
    {
        /* Bank 1 is populated, now check if banks 2/3 are valid */
        nand_read_id(2, id_buf);

        if (id_buf[0] == manuf_id)
        {
            /* Bank 2 returned matching id - check if 2/3 are shadowing 0/1 */
            unsigned int uid_buf0[8];
            unsigned int uid_buf2[8];

            nand_read_uid(0, uid_buf0);
            nand_read_uid(2, uid_buf2);

            if (memcmp(uid_buf0, uid_buf2, 32) == 0)
            {
                /* UIDs match, assume banks 2/3 are shadowing 0/1 */
                total_banks = 2;
            }
            else
            {
                /* UIDs differ, assume banks 2/3 are valid */
                total_banks = 4;
            }
        }
        else
        {
            /* Bank 2 returned differing id - assume 2/3 are junk */
            total_banks = 2;
        }
    }
    else
    {
        /* Bank 1 returned differing id - assume it is junk */
        total_banks = 1;
    }

    /*
       Sanity checks:
       1. "BMP" tag at block 0, page 0, offset <page_size> [always present]
       2. On most D2s, <page_size>+3 is 'M' and <page_size>+4 is no. of banks.
          This is not present on some older players (formatted with early FW?)
     */

    nand_read_raw(0, 0,                 /* bank, page */
                  nand_data->page_size, /* offset */
                  8, id_buf);           /* length, dest */

    if (strncmp(id_buf, "BMP", 3)) panicf("BMP tag not present");

    if (id_buf[3] == 'M')
    {
        if (id_buf[4] != total_banks) panicf("BMPM total_banks mismatch");
    }
}


static bool nand_read_sector_of_phys_page(int bank, int page,
                                          int sector, void* buf)
{
    bool ret = true;
    int i;
    int page_offset = sector * (SECTOR_SIZE + 16);

#ifdef USE_ECC_CORRECTION
    unsigned long spare_buf[4];
    
    /* Set up the ECC controller to monitor reads from NFC_WDATA */
    BCLKCTR |= DEV_ECC;
    ECC_BASE = (unsigned long)&NFC_WDATA;
    ECC_CTRL |= ECC_M4EN;
    ECC_CTRL &= ~ECC_ENC;
    ECC_CTRL |= ECC_READY;
    ECC_CLR = 0;
#endif

    /* Read the sector data */
    nand_setup_read(bank, page, page_offset);

    /* Read data into page buffer */
    if ((unsigned int)buf & 3)
    {
        /* If unaligned, read into a temporary buffer and copy to destination.
           This way, reads are always done through NFC_WDATA - otherwise they
           would not be 'seen' by the ECC controller. */
        static char temp_buf[SECTOR_SIZE];
        
        unsigned int* ptr = (unsigned int*) temp_buf;
        
        for (i = 0; i < (SECTOR_SIZE/4); i++)
        {
            *ptr++ = NFC_WDATA;
        }
        
        memcpy(buf, temp_buf, SECTOR_SIZE);
    }
    else
    {
        /* Use straight word copy as buffer and size are both word-aligned */
        unsigned int* ptr = (unsigned int*) buf;
        
        for (i = 0; i < (SECTOR_SIZE/4); i++)
        {
            *ptr++ = NFC_WDATA;
        }
    }
    
#ifdef USE_ECC_CORRECTION
    /* Stop monitoring before we read the OOB data */
    ECC_CTRL &= ~ECC_M4EN;
    BCLKCTR &= ~DEV_ECC;

    /* Read a further 4 words (sector OOB data) */
    spare_buf[0] = NFC_WDATA;
    spare_buf[1] = NFC_WDATA;
    spare_buf[2] = NFC_WDATA;
    spare_buf[3] = NFC_WDATA;

    /* Calculate MLC4 ECC using bytes 0,1,8-15 */
    BCLKCTR |= DEV_ECC;
    ECC_CTRL |= ECC_M4EN;
    
    MLC_ECC0W = *(unsigned short*)spare_buf;
    MLC_ECC1W = spare_buf[2];
    MLC_ECC2W = spare_buf[3];
    
    while (!(ECC_CTRL & ECC_READY)) {};

    int errors = ECC_ERR_NUM & 7;
    
    switch (errors)
    {
        case 4:     /* nothing to correct */
            break;
            
        case 7:     /* fail, can't correct */
            ret = false;
            break;
            
        default:    /* between 1 and 4 errors */
        {
            int i;
            unsigned char* char_buf = (unsigned char*)buf;
            
            for (i = 0; i < errors + 1; i++)
            {
                int offset = 0x207 - ECC_ERRADDR(i);
                char_buf[offset] ^= ECC_ERRDATA(i);
            }
        }
    }

    /* Disable ECC block */
    ECC_CTRL &= ~ECC_M4EN;
    BCLKCTR &= ~DEV_ECC;
#endif
    
    nand_end_read();

    return ret;
}


static bool nand_read_sector_of_phys_segment(int bank, int phys_segment,
                                             int page_in_seg, int sector,
                                             void* buf)
{
    int page_addr = phys_segment_to_page_addr(phys_segment,
                                              page_in_seg);

    return nand_read_sector_of_phys_page(bank, page_addr, sector, buf);
}


static bool nand_read_sector_of_logical_segment(int log_segment, int sector,
                                                void* buf)
{
    int page_in_segment = sector / sectors_per_page;
    int sector_in_page  = sector % sectors_per_page;

    int bank = lpt_lookup[log_segment].bank;
    int phys_segment = lpt_lookup[log_segment].phys_segment;

    /* Check if any of the write caches refer to this segment/page.
       If present we need to read the cached page instead. */

    int cache_num = 0;
    bool found = false;
    
    while (!found && cache_num < write_caches_in_use)
    {
        if (write_caches[cache_num].log_segment == log_segment)
        {
            if (write_caches[cache_num].page_map[page_in_segment] != -1)
            {
                /* data is located in random pages cache */
                found = true;
                
                bank = write_caches[cache_num].random_bank;
                phys_segment = write_caches[cache_num].random_phys_segment;
                
                page_in_segment =
                    write_caches[cache_num].page_map[page_in_segment];
            }
            else if (write_caches[cache_num].inplace_pages_used != -1 &&
                     write_caches[cache_num].inplace_pages_used > page_in_segment)
            {
                /* data is located in in-place pages cache */
                found = true;
                
                bank = write_caches[cache_num].inplace_bank;
                phys_segment = write_caches[cache_num].inplace_phys_segment;
            }
        }
        cache_num++;
    }

    return nand_read_sector_of_phys_segment(bank, phys_segment,
                                            page_in_segment,
                                            sector_in_page, buf);
}


/* Miscellaneous helper functions */

static inline unsigned char get_sector_type(char* spare_buf)
{
    return spare_buf[OFF_SECTOR_TYPE];
}

static inline unsigned short get_log_segment_id(int phys_seg, char* spare_buf)
{
    (void)phys_seg;
    
    return ((spare_buf[OFF_LOG_SEG_HIBYTE] << 8) |
             spare_buf[OFF_LOG_SEG_LOBYTE])
#if defined(FTL_V1)
            + 984 * (phys_seg / 1024)
#endif
            ;
}

static inline unsigned short get_cached_page_id(char* spare_buf)
{
    return (spare_buf[OFF_CACHE_PAGE_HIBYTE] << 8) |
            spare_buf[OFF_CACHE_PAGE_LOBYTE];
}

static int find_write_cache(int log_segment)
{
    int i;

    for (i = 0; i < write_caches_in_use; i++)
        if (write_caches[i].log_segment == log_segment)
            return i;

    return -1;
}


static void read_random_writes_cache(int bank, int phys_segment)
{
    int page = 0;
    short log_segment;
    unsigned char spare_buf[16];

    nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
                  SECTOR_SIZE, /* offset to first sector's spare */
                  16, spare_buf);

    log_segment = get_log_segment_id(phys_segment, spare_buf);
    
    if (log_segment == -1)
        return;

    /* Find which cache this is related to */
    int cache_no = find_write_cache(log_segment);

    if (cache_no == -1)
    {
        if (write_caches_in_use < MAX_WRITE_CACHES)
        {
            cache_no = write_caches_in_use;
            write_caches_in_use++;
        }
        else
        {
            panicf("Max NAND write caches reached");
        }
    }

    write_caches[cache_no].log_segment = log_segment;
    write_caches[cache_no].random_bank = bank;
    write_caches[cache_no].random_phys_segment = phys_segment;

#ifndef FTL_V1
    /* Loop over each page in the phys segment (from page 1 onwards).
       Read spare for 1st sector, store location of page in array. */
    for (page = 1;
         page < (nand_data->pages_per_block * nand_data->planes);
         page++)
    {
        unsigned short cached_page;
        
        nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
                      SECTOR_SIZE, /* offset to first sector's spare */
                      16, spare_buf);

        cached_page = get_cached_page_id(spare_buf);
        
        if (cached_page != 0xFFFF)
            write_caches[cache_no].page_map[cached_page] = page;
    }
#endif /* !FTL_V1 */
}


static void read_inplace_writes_cache(int bank, int phys_segment)
{
    int page = 0;
    short log_segment;
    unsigned char spare_buf[16];

    nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
                  SECTOR_SIZE, /* offset to first sector's spare */
                  16, spare_buf);

    log_segment = get_log_segment_id(phys_segment, spare_buf);
    
    if (log_segment == -1)
        return;
    
    /* Find which cache this is related to */
    int cache_no = find_write_cache(log_segment);

    if (cache_no == -1)
    {
        if (write_caches_in_use < MAX_WRITE_CACHES)
        {
            cache_no = write_caches_in_use;
            write_caches_in_use++;
        }
        else
        {
            panicf("Max NAND write caches reached");
        }
    }

    write_caches[cache_no].log_segment = log_segment;
    
    /* Find how many pages have been written to the new segment */
    while (log_segment != -1 &&
           page < (nand_data->pages_per_block * nand_data->planes) - 1)
    {
        page++;
        nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, page),
                      SECTOR_SIZE, 16, spare_buf);

        log_segment = get_log_segment_id(phys_segment, spare_buf);
    }
    
    if (page != 0)
    {
        write_caches[cache_no].inplace_bank = bank;
        write_caches[cache_no].inplace_phys_segment = phys_segment;
        write_caches[cache_no].inplace_pages_used = page;
    }
}


int nand_read_sectors(IF_MD2(int drive,) unsigned long start, int incount,
                     void* inbuf)
{
#ifdef HAVE_MULTIDRIVE
    (void)drive; /* unused for now */
#endif

    int ret = 0;
    
    mutex_lock(&ata_mtx);
    
    led(true);

    while (incount > 0)
    {
        int done = 0;
        int segment = start / sectors_per_segment;
        int secmod = start % sectors_per_segment;

        while (incount > 0 && secmod < sectors_per_segment)
        {
            if (!nand_read_sector_of_logical_segment(segment, secmod, inbuf))
            {
                ret = -1;
                goto nand_read_error;
            }

            if (TIME_AFTER(USEC_TIMER, next_yield))
            {
                next_yield = USEC_TIMER + MIN_YIELD_PERIOD;
                yield();
            }

            inbuf += SECTOR_SIZE;
            incount--;
            secmod++;
            done++;
        }
    
        if (done < 0)
        {
            ret = -1;
            goto nand_read_error;
        }
        start += done;
    }

nand_read_error:

    mutex_unlock(&ata_mtx);
    led(false);
    
    return ret;
}

int nand_write_sectors(IF_MD2(int drive,) unsigned long start, int count,
                      const void* outbuf)
{
#ifdef HAVE_MULTIDRIVE
    (void)drive; /* unused for now */
#endif

    /* TODO: Learn more about TNFTL and implement this one day... */
    (void)start;
    (void)count;
    (void)outbuf;
    return -1;
}

#ifdef HAVE_STORAGE_FLUSH
int nand_flush(void)
{
    return 0;
}
#endif

#ifdef STORAGE_GET_INFO
void nand_get_info(IF_MD2(int drive,) struct storage_info *info)
{
#ifdef HAVE_MULTIDRIVE
    (void)drive; /* unused for now */
#endif

    /* firmware version */
    info->revision="0.00";

    info->vendor="Rockbox";
    info->product="Internal Storage";

    /* blocks count */
    info->num_sectors = sectors_per_segment * segments_per_bank * total_banks;
    info->sector_size = SECTOR_SIZE;
}
#endif


int nand_init(void)
{
    int bank, phys_segment, lptbuf_size;
    unsigned char spare_buf[16];

    if (initialized) return 0;
    
    mutex_init(&ata_mtx);

#ifdef CPU_TCC77X
    CSCFG2 = 0x018a8010 | tcc77x_cscfg_bw(TCC77X_CSCFG_BW8);

    GPIOC_FUNC &= ~(CS_GPIO_BIT | WE_GPIO_BIT);
    GPIOC_FUNC |= 0x1;
#endif
    
    /* Set GPIO direction for chip select & write protect */
    NAND_GPIO_OUT_EN(CS_GPIO_BIT | WE_GPIO_BIT);

    /* Get chip characteristics and number of banks */
    nand_get_chip_info();

#ifndef BOOTLOADER
    /* Use chip info to allocate the correct size LPT buffer */
    lptbuf_size = sizeof(struct lpt_entry) * segments_per_bank * total_banks;
    lpt_lookup = buffer_alloc(lptbuf_size);
#else
    /* Use a static array in the bootloader */
    lptbuf_size = sizeof(lpt_lookup);
#endif

    memset(lpt_lookup, 0xff, lptbuf_size);
    memset(write_caches, 0xff, sizeof(write_caches));
    
    write_caches_in_use = 0;

    /* Scan banks to build up block translation table */
    for (bank = 0; bank < total_banks; bank++)
    {
        for (phys_segment = 0; phys_segment < segments_per_bank; phys_segment++)
        {
            /* Read spare bytes from first sector of each segment */
            nand_read_raw(bank, phys_segment_to_page_addr(phys_segment, 0),
                          SECTOR_SIZE, /* offset */
                          16, spare_buf);
            
            int type = get_sector_type(spare_buf);

#ifdef FTL_V2
            if (type == SECTYPE_MAIN_INPLACE_CACHE)
            {
                /* Since this type of segment is written to sequentially, its
                   job is complete if the final page has been written. In this
                   case we need to treat it as a normal data segment. */
                nand_read_raw(bank, phys_segment_to_page_addr
                                (phys_segment, pages_per_segment - 1),
                              SECTOR_SIZE, 16, spare_buf);
                
                if (get_sector_type(spare_buf) != 0xff)
                {
                    type = SECTYPE_MAIN_DATA;
                }
            }
#endif

            switch (type)
            {
                case SECTYPE_MAIN_DATA:
                {
                    /* Main data area segment */
                    unsigned short log_segment =
                        get_log_segment_id(phys_segment, spare_buf);

                    if (log_segment < segments_per_bank * total_banks)
                    {
                        if (lpt_lookup[log_segment].bank == -1 ||
                            lpt_lookup[log_segment].phys_segment == -1)
                        {
                            lpt_lookup[log_segment].bank = bank;
                            lpt_lookup[log_segment].phys_segment = phys_segment;
                        }
                        else
                        {
                            //panicf("duplicate data segment 0x%x!", log_segment);
                        }
                    }
                    break;
                }
                
                case SECTYPE_MAIN_RANDOM_CACHE:
                {
                    /* Newly-written random page data (Main data area) */
                    read_random_writes_cache(bank, phys_segment);
                    break;
                }
                
                case SECTYPE_MAIN_INPLACE_CACHE:
                {
                    /* Newly-written sequential page data (Main data area) */
                    read_inplace_writes_cache(bank, phys_segment);
                    break;
                }
            }
        }
    }
    
    initialized = true;

    return 0;
}

long nand_last_disk_activity(void)
{
    return last_disk_activity;
}

void nand_sleep(void)
{
}

void nand_spin(void)
{
}

void nand_spindown(int seconds)
{
    (void)seconds;
}

#ifdef CONFIG_STORAGE_MULTI

int nand_num_drives(int first_drive)
{
    /* We don't care which logical drive number we have been assigned */
    (void)first_drive;
    
    return 1;
}

void nand_sleepnow(void)
{
}

bool nand_disk_is_active(void)
{
    return false;
}

int nand_soft_reset(void)
{
    return 0;
}

int nand_spinup_time(void)
{
    return 0;
}

void nand_enable(bool onoff)
{
    (void)onoff;
}

#endif /* CONFIG_STORAGE_MULTI */