1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2002 by Linus Nielsen Feltzing
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#include "config.h"
#include "cpu.h"
#include "system.h"
#include "kernel.h"
#include "thread.h"
#include "string.h"
#include "adc.h"
#include "pcf50606.h"
#if CONFIG_CPU == SH7034
/**************************************************************************
** The A/D conversion is done every tick, in three steps:
**
** 1) On the tick interrupt, the conversion of channels 0-3 is started, and
** the A/D interrupt is enabled.
**
** 2) After the conversion is done (approx. 256*4 cycles later), an interrupt
** is generated at level 1, which is the same level as the tick interrupt
** itself. This interrupt will be pending until the tick interrupt is
** finished.
** When the A/D interrupt is finally served, it will read the results
** from the first conversion and start the conversion of channels 4-7.
**
** 3) When the conversion of channels 4-7 is finished, the interrupt is
** triggered again, and the results are read. This time, no new
** conversion is started, it will be done in the next tick interrupt.
**
** Thus, each channel will be updated HZ times per second.
**
*************************************************************************/
static int current_channel;
static unsigned short adcdata[NUM_ADC_CHANNELS];
static void adc_tick(void)
{
/* Start a conversion of channel group 0. This will trigger an interrupt,
and the interrupt handler will take care of group 1. */
current_channel = 0;
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 3;
}
void ADITI(void) __attribute__((interrupt_handler));
void ADITI(void)
{
if(ADCSR & ADCSR_ADF)
{
ADCSR = 0;
if(current_channel == 0)
{
adcdata[0] = ADDRA >> 6;
adcdata[1] = ADDRB >> 6;
adcdata[2] = ADDRC >> 6;
adcdata[3] = ADDRD >> 6;
current_channel = 4;
/* Convert the next group */
ADCSR = ADCSR_ADST | ADCSR_ADIE | ADCSR_SCAN | 7;
}
else
{
adcdata[4] = ADDRA >> 6;
adcdata[5] = ADDRB >> 6;
adcdata[6] = ADDRC >> 6;
adcdata[7] = ADDRD >> 6;
}
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
ADCR = 0x7f; /* No external trigger; other bits should be 1 according
to the manual... */
ADCSR = 0;
current_channel = 0;
/* Enable the A/D IRQ on level 1 */
IPRE = (IPRE & 0xf0ff) | 0x0100;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif CONFIG_CPU == TCC730
/**************************************************************************
**
** Each channel will be updated HZ/CHANNEL_ORDER_SIZE times per second.
**
*************************************************************************/
static int current_channel;
static int current_channel_idx;
static unsigned short adcdata[NUM_ADC_CHANNELS];
#define CHANNEL_ORDER_SIZE 2
static int channel_order[CHANNEL_ORDER_SIZE] = {6,7};
static void adc_tick(void)
{
if (ADCON & (1 << 3)) {
/* previous conversion finished? */
adcdata[current_channel] = ADDATA >> 6;
if (++current_channel_idx >= CHANNEL_ORDER_SIZE)
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
int adcon = (current_channel << 4) | 1;
ADCON = adcon;
}
}
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
void adc_init(void)
{
current_channel_idx = 0;
current_channel = channel_order[current_channel_idx];
ADCON = (current_channel << 4) | 1;
tick_add_task(adc_tick);
sleep(2); /* Ensure valid readings when adc_init returns */
}
#elif CONFIG_CPU == PNX0101
static unsigned short adcdata[NUM_ADC_CHANNELS];
unsigned short adc_read(int channel)
{
return adcdata[channel];
}
static void adc_tick(void)
{
if (ADCST & 0x10) {
adcdata[0] = ADCCH0 & 0x3ff;
adcdata[1] = ADCCH1 & 0x3ff;
adcdata[2] = ADCCH2 & 0x3ff;
adcdata[3] = ADCCH3 & 0x3ff;
adcdata[4] = ADCCH4 & 0x3ff;
ADCST = 0xa;
}
}
void adc_init(void)
{
ADCR24 = 0xaaaaa;
ADCR28 = 0;
ADCST = 2;
ADCST = 0xa;
while (!(ADCST & 0x10));
adc_tick();
tick_add_task(adc_tick);
}
#endif
|