1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
/* sudoku.c - sudoku game
*
* Writing a fun Su-Do-Ku game has turned out to be a difficult exercise.
* The biggest difficulty is keeping the game fun - and this means allowing
* the user to make mistakes. The game is not much fun if it prevents the
* user from making moves, or if it informs them of an incorrect move.
* With movement constraints, the 'game' is little more than an automated
* solver (and no fun at all).
*
* Another challenge is generating good puzzles that are entertaining to
* solve. It is certainly true that there is an art to creating good
* Su-Do-Ku puzzles, and that good hand generated puzzles are more
* entertaining than many computer generated puzzles - I just hope that
* the algorithm implemented here provides fun puzzles. It is an area
* that needs work. The puzzle classification is very simple, and could
* also do with work. Finally, understanding the automatically generated
* hints is sometimes more work than solving the puzzle - a better, and
* more human friendly, mechanism is needed.
*
* Comments, suggestions, and contributions are always welcome - send email
* to: mike 'at' laurasia.com.au. Note that this code assumes a single
* threaded process, makes extensive use of global variables, and has
* not been written to be reused in other applications. The code makes no
* use of dynamic memory allocation, and hence, requires no heap. It should
* also run with minimal stack space.
*
* This code and accompanying files have been placed into the public domain
* by Michael Kennett, July 2005. It is provided without any warranty
* whatsoever, and in no event shall Michael Kennett be liable for
* any damages of any kind, however caused, arising from this software.
*/
#include "plugin.h"
#include "sudoku.h"
#include "templates.h"
#include "generator.h"
#define assert(x)
/* Common state encoding in a 32-bit integer:
* bits 0-6 index
* 7-15 state [bit high signals digits not possible]
* 16-19 digit
* 20 fixed [set if digit initially fixed]
* 21 choice [set if solver chose this digit]
* 22 ignore [set if ignored by reapply()]
* 23 unused
* 24-26 hint
* 27-31 unused
*/
#define INDEX_MASK 0x0000007f
#define GET_INDEX(val) (INDEX_MASK&(val))
#define SET_INDEX(val) (val)
#define STATE_MASK 0x0000ff80
#define STATE_SHIFT (7-1) /* digits 1..9 */
#define DIGIT_STATE(digit) BIT_N(STATE_SHIFT+(digit))
#define DIGIT_MASK 0x000f0000
#define DIGIT_SHIFT 16
#define GET_DIGIT(val) (((val)&DIGIT_MASK)>>(DIGIT_SHIFT))
#define SET_DIGIT(val) ((val)<<(DIGIT_SHIFT))
#define FIXED 0x00100000
#define CHOICE 0x00200000
#define IGNORED 0x00400000
/* Hint codes (c.f. singles(), pairs(), findmoves()) */
#define HINT_ROW 0x01000000
#define HINT_COLUMN 0x02000000
#define HINT_BLOCK 0x04000000
/* For a general board it may be necessary to do backtracking (i.e. to
* rewind the board to an earlier state), and make choices during the
* solution process. This can be implemented naturally using recursion,
* but it is more efficient to maintain a single board.
*/
static int board[ 81 ];
/* Addressing board elements: linear array 0..80 */
#define ROW(idx) ((idx)/9)
#define COLUMN(idx) ((idx)%9)
#define BLOCK(idx) (3*(ROW(idx)/3)+(COLUMN(idx)/3))
#define INDEX(row,col) (9*(row)+(col))
/* Blocks indexed 0..9 */
#define IDX_BLOCK(row,col) (3*((row)/3)+((col)/3))
#define TOP_LEFT(block) (INDEX(block/3,block%3))
/* Board state */
#define STATE(idx) ((board[idx])&STATE_MASK)
#define DIGIT(idx) (GET_DIGIT(board[idx]))
#define HINT(idx) ((board[idx])&HINT_MASK)
#define IS_EMPTY(idx) (0 == DIGIT(idx))
#define DISALLOWED(idx,digit) ((board[idx])&DIGIT_STATE(digit))
#define IS_FIXED(idx) (board[idx]&FIXED)
/* Record move history, and maintain a counter for the current
* move number. Concessions are made for the user interface, and
* allow digit 0 to indicate clearing a square. The move history
* is used to support 'undo's for the user interface, and hence
* is larger than required - there is sufficient space to solve
* the puzzle, undo every move, and then redo the puzzle - and
* if the user requires more space, then the full history will be
* lost.
*/
static int idx_history;
static int history[ 3 * 81 ];
/* Possible moves for a given board (c.f. fillmoves()).
* Also used by choice() when the deterministic solver has failed,
* and for calculating user hints. The number of hints is stored
* in num_hints, or -1 if no hints calculated. The number of hints
* requested by the user since their last move is stored in req_hints;
* if the user keeps requesting hints, start giving more information.
* Finally, record the last hint issued to the user; attempt to give
* different hints each time.
*/
static int idx_possible;
static int possible[ 81 ];
static int pass; /* count # passes of deterministic solver */
/* Support for template file */
static int tmplt[ 81 ]; /* Template indices */
static int len_tmplt; /* Number of template indices */
/* Reset global state */
static
void
reset( void )
{
rb->memset( board, 0x00, sizeof( board ) );
rb->memset( history, 0x00, sizeof( history ) );
idx_history = 0;
pass = 0;
}
/* Management of the move history - compression */
static
void
compress( int limit )
{
int i, j;
for( i = j = 0 ; i < idx_history && j < limit ; ++i )
if( !( history[ i ] & IGNORED ) )
history[ j++ ] = history[ i ];
for( ; i < idx_history ; ++i )
history[ j++ ] = history[ i ];
idx_history = j;
}
/* Management of the move history - adding a move */
static
void
add_move( int idx, int digit, int choice )
{
int i;
if( sizeof( history ) / sizeof( int ) == idx_history )
compress( 81 );
/* Never ignore the last move */
history[ idx_history++ ] = SET_INDEX( idx ) | SET_DIGIT( digit ) | choice;
/* Ignore all previous references to idx */
for( i = idx_history - 2 ; 0 <= i ; --i )
if( GET_INDEX( history[ i ] ) == idx )
{
history[ i ] |= IGNORED;
break;
}
}
/* Iteration over rows/columns/blocks handled by specialised code.
* Each function returns a block index - call must manage element/idx.
*/
static
int
idx_row( int el, int idx ) /* Index within a row */
{
return INDEX( el, idx );
}
static
int
idx_column( int el, int idx ) /* Index within a column */
{
return INDEX( idx, el );
}
static
int
idx_block( int el, int idx ) /* Index within a block */
{
return INDEX( 3 * ( el / 3 ) + idx / 3, 3 * ( el % 3 ) + idx % 3 );
}
/* Update board state after setting a digit (clearing not handled)
*/
static
void
update( int idx )
{
const int row = ROW( idx );
const int col = COLUMN( idx );
const int block = IDX_BLOCK( row, col );
const int mask = DIGIT_STATE( DIGIT( idx ) );
int i;
board[ idx ] |= STATE_MASK; /* filled - no choice possible */
/* Digit cannot appear in row, column or block */
for( i = 0 ; i < 9 ; ++i )
{
board[ idx_row( row, i ) ] |= mask;
board[ idx_column( col, i ) ] |= mask;
board[ idx_block( block, i ) ] |= mask;
}
}
/* Refresh board state, given move history. Note that this can yield
* an incorrect state if the user has made errors - return -1 if an
* incorrect state is generated; else return 0 for a correct state.
*/
static
int
reapply( void )
{
int digit, idx, j;
int allok = 0;
rb->memset( board, 0x00, sizeof( board ) );
for( j = 0 ; j < idx_history ; ++j )
if( !( history[ j ] & IGNORED ) && 0 != GET_DIGIT( history[ j ] ) )
{
idx = GET_INDEX( history[ j ] );
digit = GET_DIGIT( history[ j ] );
if( !IS_EMPTY( idx ) || DISALLOWED( idx, digit ) )
allok = -1;
board[ idx ] = SET_DIGIT( digit );
if( history[ j ] & FIXED )
board[ idx ] |= FIXED;
update( idx );
}
return allok;
}
/* Clear moves, leaving fixed squares
*/
static
void
clear_moves( void )
{
for( idx_history = 0 ; history[ idx_history ] & FIXED ; ++idx_history )
;
reapply( );
}
static int digits[ 9 ]; /* # digits expressed in element square */
static int counts[ 9 ]; /* Count of digits (c.f. count_set_digits()) */
/* Count # set bits (within STATE_MASK) */
static
int
numset( int mask )
{
int i, n = 0;
for( i = STATE_SHIFT + 1 ; i <= STATE_SHIFT + 9 ; ++i )
if( mask & BIT_N(i) )
++n;
else
++counts[ i - STATE_SHIFT - 1 ];
return n;
}
static
void
count_set_digits( int el, int (*idx_fn)( int, int ) )
{
int i;
rb->memset( counts, 0x00, sizeof( counts ) );
for( i = 0 ; i < 9 ; ++i )
digits[ i ] = numset( board[ (*idx_fn)( el, i ) ] );
}
/* Fill square with given digit, and update state.
* Returns 0 on success, else -1 on error (i.e. invalid fill)
*/
static
int
fill( int idx, int digit )
{
assert( 0 != digit );
if( !IS_EMPTY( idx ) )
return ( DIGIT( idx ) == digit ) ? 0 : -1;
if( DISALLOWED( idx, digit ) )
return -1;
board[ idx ] = SET_DIGIT( digit );
update( idx );
add_move( idx, digit, 0 );
return 0;
}
/* Find all squares with a single digit allowed -- do not mutate board */
static
void
singles( int el, int (*idx_fn)( int, int ), int hintcode )
{
int i, j, idx;
count_set_digits( el, idx_fn );
for( i = 0 ; i < 9 ; ++i )
{
if( 1 == counts[ i ] )
{
/* Digit 'i+1' appears just once in the element */
for( j = 0 ; j < 9 ; ++j )
{
idx = (*idx_fn)( el, j );
if( !DISALLOWED( idx, i + 1 ) && idx_possible < 81 )
possible[ idx_possible++ ] = SET_INDEX( idx )
| SET_DIGIT( i + 1 )
| hintcode;
}
}
if( 8 == digits[ i ] )
{
/* 8 digits are masked at this position - just one remaining */
idx = (*idx_fn)( el, i );
for( j = 1 ; j <= 9 ; ++j )
if( 0 == ( STATE( idx ) & DIGIT_STATE( j ) ) && idx_possible < 81 )
possible[ idx_possible++ ] = SET_INDEX( idx )
| SET_DIGIT( j )
| hintcode;
}
}
}
/* Given the board state, find all possible 'moves' (i.e. squares with just
* a single digit).
*
* Returns the number of (deterministic) moves (and fills the moves array),
* or 0 if no moves are possible. This function does not mutate the board
* state, and hence, can return the same move multiple times (with
* different hints).
*/
static
int
findmoves( void )
{
int i;
rb->yield();
idx_possible = 0;
for( i = 0 ; i < 9 ; ++i )
{
singles( i, idx_row, HINT_ROW );
singles( i, idx_column, HINT_COLUMN );
singles( i, idx_block, HINT_BLOCK );
}
return idx_possible;
}
/* Strategies for refining the board state
* - 'pairs' if there are two unfilled squares in a given row/column/
* block with the same state, and just two possibilities,
* then all other unfilled squares in the row/column/block
* CANNOT be either of these digits.
* - 'block' if the unknown squares in a block all appear in the same
* row or column, then all unknown squares outside the block
* and in the same row/column cannot be any of the unknown
* squares in the block.
* - 'common' if all possible locations for a digit in a block appear
* in a row or column, then that digit cannot appear outside
* the block in the same row or column.
* - 'position2' if the positions of 2 unknown digits in a block match
* identically in precisely 2 positions, then those 2 positions
* can only contain the 2 unknown digits.
*
* Recall that each state bit uses a 1 to prevent a digit from
* filling that square.
*/
static
void
pairs( int el, int (*idx_fn)( int, int ) )
{
int i, j, k, mask, idx;
rb->yield();
for( i = 0 ; i < 8 ; ++i )
if( 7 == digits[ i ] ) /* 2 digits unknown */
for( j = i + 1 ; j < 9 ; ++j )
{
idx = (*idx_fn)( el, i );
if( STATE( idx ) == STATE( (*idx_fn)( el, j ) ) )
{
/* Found a row/column pair - mask other entries */
mask = STATE_MASK ^ (STATE_MASK & board[ idx ] );
for( k = 0 ; k < i ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
for( k = i + 1 ; k < j ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
for( k = j + 1 ; k < 9 ; ++k )
board[ (*idx_fn)( el, k ) ] |= mask;
digits[ j ] = -1; /* now processed */
}
}
}
/* Worker: mask elements outside block */
static
void
exmask( int mask, int block, int el, int (*idx_fn)( int, int ) )
{
int i, idx;
rb->yield();
for( i = 0 ; i < 9 ; ++i )
{
idx = (*idx_fn)( el, i );
if( block != BLOCK( idx ) && IS_EMPTY( idx ) )
board[ idx ] |= mask;
}
}
/* Worker for block() */
static
void
exblock( int block, int el, int (*idx_fn)( int, int ) )
{
int i, idx, mask;
rb->yield();
/* By assumption, all unknown squares in the block appear in the
* same row/column, so to construct a mask for these squares, it
* is sufficient to invert the mask for the known squares in the
* block.
*/
mask = 0;
for( i = 0 ; i < 9 ; ++i )
{
idx = idx_block( block, i );
if( !IS_EMPTY( idx ) )
mask |= DIGIT_STATE( DIGIT( idx ) );
}
exmask( mask ^ STATE_MASK, block, el, idx_fn );
}
static
void
block( int el )
{
int i, idx = 0, row, col;
rb->yield();
/* Find first unknown square */
for( i = 0 ; i < 9 && !IS_EMPTY( idx = idx_block( el, i ) ) ; ++i )
;
if( i < 9 )
{
assert( IS_EMPTY( idx ) );
row = ROW( idx );
col = COLUMN( idx );
for( ++i ; i < 9 ; ++i )
{
idx = idx_block( el, i );
if( IS_EMPTY( idx ) )
{
if( ROW( idx ) != row )
row = -1;
if( COLUMN( idx ) != col )
col = -1;
}
}
if( 0 <= row )
exblock( el, row, idx_row );
if( 0 <= col )
exblock( el, col, idx_column );
}
}
static
void
common( int el )
{
int i, idx, row, col, digit, mask;
rb->yield();
for( digit = 1 ; digit <= 9 ; ++digit )
{
mask = DIGIT_STATE( digit );
row = col = -1; /* Value '9' indicates invalid */
for( i = 0 ; i < 9 ; ++i )
{
/* Digit possible? */
idx = idx_block( el, i );
if( IS_EMPTY( idx ) && 0 == ( board[ idx ] & mask ) )
{
if( row < 0 )
row = ROW( idx );
else
if( row != ROW( idx ) )
row = 9; /* Digit appears in multiple rows */
if( col < 0 )
col = COLUMN( idx );
else
if( col != COLUMN( idx ) )
col = 9; /* Digit appears in multiple columns */
}
}
if( -1 != row && row < 9 )
exmask( mask, el, row, idx_row );
if( -1 != col && col < 9 )
exmask( mask, el, col, idx_column );
}
}
/* Encoding of positions of a digit (c.f. position2()) - abuse DIGIT_STATE */
static int posn_digit[ 10 ];
static
void
position2( int el )
{
int digit, digit2, i, mask, mask2, posn, count, idx;
rb->yield();
/* Calculate positions of each digit within block */
for( digit = 1 ; digit <= 9 ; ++digit )
{
mask = DIGIT_STATE( digit );
posn_digit[ digit ] = count = posn = 0;
for( i = 0 ; i < 9 ; ++i )
if( 0 == ( mask & board[ idx_block( el, i ) ] ) )
{
++count;
posn |= DIGIT_STATE( i );
}
if( 2 == count )
posn_digit[ digit ] = posn;
}
/* Find pairs of matching positions, and mask */
for( digit = 1 ; digit < 9 ; ++digit )
if( 0 != posn_digit[ digit ] )
for( digit2 = digit + 1 ; digit2 <= 9 ; ++digit2 )
if( posn_digit[ digit ] == posn_digit[ digit2 ] )
{
mask = STATE_MASK
^ ( DIGIT_STATE( digit ) | DIGIT_STATE( digit2 ) );
mask2 = DIGIT_STATE( digit );
for( i = 0 ; i < 9 ; ++i )
{
idx = idx_block( el, i );
if( 0 == ( mask2 & board[ idx ] ) )
{
assert( 0 == (DIGIT_STATE(digit2) & board[idx]) );
board[ idx ] |= mask;
}
}
posn_digit[ digit ] = posn_digit[ digit2 ] = 0;
break;
}
}
/* Find some moves for the board; starts with a simple approach (finding
* singles), and if no moves found, starts using more involved strategies
* until a move is found. The more advanced strategies can mask states
* in the board, making this an efficient mechanism, but difficult for
* a human to understand.
*/
static
int
allmoves( void )
{
int i, n;
rb->yield();
n = findmoves( );
if( 0 < n )
return n;
for( i = 0 ; i < 9 ; ++i )
{
count_set_digits( i, idx_row );
pairs( i, idx_row );
count_set_digits( i, idx_column );
pairs( i, idx_column );
count_set_digits( i, idx_block );
pairs( i, idx_block );
}
n = findmoves( );
if( 0 < n )
return n;
for( i = 0 ; i < 9 ; ++i )
{
block( i );
common( i );
position2( i );
}
return findmoves( );
}
/* Helper: sort based on index */
#if 0 /* unused function */
static
int
cmpindex( const void * a, const void * b )
{
return GET_INDEX( *((const int *)b) ) - GET_INDEX( *((const int *)a) );
}
/* Return number of hints. The hints mechanism should attempt to find
* 'easy' moves first, and if none are possible, then try for more
* cryptic moves.
*/
static int
findhints( void )
{
int i, n, mutated = 0;
rb->yield();
n = findmoves( );
if( n < 2 )
{
/* Each call to pairs() can mutate the board state, making the
* hints very, very cryptic... so later undo the mutations.
*/
for( i = 0 ; i < 9 ; ++i )
{
count_set_digits( i, idx_row );
pairs( i, idx_row );
count_set_digits( i, idx_column );
pairs( i, idx_column );
count_set_digits( i, idx_block );
pairs( i, idx_block );
}
mutated = 1;
n = findmoves( );
}
if( n < 2 )
{
for( i = 0 ; i < 9 ; ++i )
{
block( i );
common( i );
}
mutated = 1;
n = findmoves( );
}
/* Sort the possible moves, and allow just one hint per square */
if( 0 < n )
{
int i, j;
rb->qsort( possible, n, sizeof( int ), cmpindex );
for( i = 0, j = 1 ; j < n ; ++j )
{
if( GET_INDEX( possible[ i ] ) == GET_INDEX( possible[ j ] ) )
{
/* Let the user make mistakes - do not assume the
* board is in a consistent state.
*/
if( GET_DIGIT( possible[i] ) == GET_DIGIT( possible[j] ) )
possible[ i ] |= possible[ j ];
}
else
i = j;
}
n = i + 1;
}
/* Undo any mutations of the board state */
if( mutated )
reapply( );
return n;
}
#endif /* unused function */
/* Deterministic solver; return 0 on success, else -1 on error.
*/
static
int
deterministic( void )
{
int i, n;
rb->yield();
n = allmoves( );
while( 0 < n )
{
++pass;
for( i = 0 ; i < n ; ++i )
if( -1 == fill( GET_INDEX( possible[ i ] ),
GET_DIGIT( possible[ i ] ) ) )
return -1;
n = allmoves( );
}
return 0;
}
/* Return index of square for choice.
*
* If no choice is possible (i.e. board solved or inconsistent),
* return -1.
*
* The current implementation finds a square with the minimum
* number of unknown digits (i.e. maximum # masked digits).
*/
static
int
cmp( const void * e1, const void * e2 )
{
return GET_DIGIT( *(const int *)e2 ) - GET_DIGIT( *(const int *)e1 );
}
static
int
choice( void )
{
int i, n;
rb->yield();
for( n = i = 0 ; i < 81 ; ++i )
if( IS_EMPTY( i ) )
{
possible[ n ] = SET_INDEX( i ) | SET_DIGIT( numset( board[ i ] ) );
/* Inconsistency if square unknown, but nothing possible */
if( 9 == GET_DIGIT( possible[ n ] ) )
return -2;
++n;
}
if( 0 == n )
return -1; /* All squares known */
rb->qsort( possible, n, sizeof( possible[ 0 ] ), cmp );
return GET_INDEX( possible[ 0 ] );
}
/* Choose a digit for the given square.
* The starting digit is passed as a parameter.
* Returns -1 if no choice possible.
*/
static
int
choose( int idx, int digit )
{
rb->yield();
for( ; digit <= 9 ; ++digit )
if( !DISALLOWED( idx, digit ) )
{
board[ idx ] = SET_DIGIT( digit );
update( idx );
add_move( idx, digit, CHOICE );
return digit;
}
return -1;
}
/* Backtrack to a previous choice point, and attempt to reseed
* the search. Return -1 if no further choice possible, or
* the index of the changed square.
*
* Assumes that the move history and board are valid.
*/
static
int
backtrack( void )
{
int digit, idx;
rb->yield();
for( ; 0 <= --idx_history ; )
if( history[ idx_history ] & CHOICE )
{
/* Remember the last choice, and advance */
idx = GET_INDEX( history[ idx_history ] );
digit = GET_DIGIT( history[ idx_history ] ) + 1;
reapply( );
if( -1 != choose( idx, digit ) )
return idx;
}
return -1;
}
/* Attempt to solve 'board'; return 0 on success else -1 on error.
*
* The solution process attempts to fill-in deterministically as
* much of the board as possible. Once that is no longer possible,
* need to choose a square to fill in.
*/
static
int
solve( void )
{
int idx;
rb->yield();
while( 1 )
{
if( 0 == deterministic( ) )
{
/* Solved, make a new choice, or rewind a previous choice */
idx = choice( );
if( -1 == idx )
return 0;
else
if( ( idx < 0 || -1 == choose( idx, 1 ) ) && -1 == backtrack( ) )
return -1;
}
else /* rewind to a previous choice */
if( -1 == backtrack( ) )
return -1;
}
return -1;
}
static
int
init_template( int template )
{
int i, row, col;
int mask;
reset( );
len_tmplt = 0;
/* Consume grid - allow leading spaces and comments at end */
for( row = 0 ; row < 9 ; ++row )
{
mask=0x100;
for( col = 0 ; col < 9 ; ++col )
{
if (templates[template][row] & mask)
tmplt[ len_tmplt++ ] = INDEX( row, col );
mask /= 2;
}
}
/* Construct move history for a template */
idx_history = 0;
for( i = 0 ; i < 81 ; ++i )
if( 0 != DIGIT( i ) )
history[ idx_history++ ] = i | (DIGIT( i )<<8);
/* Finally, markup all of these moves as 'fixed' */
for( i = 0 ; i < idx_history ; ++i )
history[ i ] |= FIXED;
return 0;
}
/* Classify a SuDoKu, given its solution.
*
* The classification is based on the average number of possible moves
* for each pass of the deterministic solver - it is a rather simplistic
* measure, but gives reasonable results. Note also that the classification
* is based on the first solution found (but does handle the pathological
* case of multiple solutions). Note that the average moves per pass
* depends just on the number of squares initially set... this simplifies
* the statistics collection immensely, requiring just the number of passes
* to be counted.
*
* Return 0 on error, else a string classification.
*/
static
char *
classify( void )
{
int i, score;
rb->yield();
pass = 0;
clear_moves( );
if( -1 == solve( ) )
return 0;
score = 81;
for( i = 0 ; i < 81 ; ++i )
if( IS_FIXED( i ) )
--score;
assert( 81 == idx_history );
for( i = 0 ; i < 81 ; ++i )
if( history[ i ] & CHOICE )
score -= 5;
if( 15 * pass < score )
return "very easy";
else
if( 11 * pass < score )
return "easy";
else
if( 7 * pass < score )
return "medium";
else
if( 4 * pass < score )
return "hard";
else
return "fiendish";
}
/* exchange disjoint, identical length blocks of data */
static
void
exchange( int * a, int * b, int len )
{
int i, tmp;
for( i = 0 ; i < len ; ++i )
{
tmp = a[ i ];
a[ i ] = b[ i ];
b[ i ] = tmp;
}
}
/* rotate left */
static
void
rotate1_left( int * a, int len )
{
int i, tmp;
tmp = a[ 0 ];
for( i = 1 ; i < len ; ++i )
a[ i - 1 ] = a[ i ];
a[ len - 1 ] = tmp;
}
/* rotate right */
static
void
rotate1_right( int * a, int len )
{
int i, tmp;
tmp = a[ len - 1 ];
for( i = len - 1 ; 0 < i ; --i )
a[ i ] = a[ i - 1 ];
a[ 0 ] = tmp;
}
/* Generalised left rotation - there is a naturally recursive
* solution that is best implementation using iteration.
* Note that it is not necessary to do repeated unit rotations.
*
* This function is analogous to 'cutting' a 'pack of cards'.
*
* On entry: 0 < idx < len
*/
static
void
rotate( int * a, int len, int idx )
{
int xdi = len - idx;
int delta = idx - xdi;
while( 0 != delta && 0 != idx )
{
if( delta < 0 )
{
if( 1 == idx )
{
rotate1_left( a, len );
idx = 0;
}
else
{
exchange( a, a + xdi, idx );
len = xdi;
}
}
else /* 0 < delta */
{
if( 1 == xdi )
{
rotate1_right( a, len );
idx = 0;
}
else
{
exchange( a, a + idx, xdi );
a += xdi;
len = idx;
idx -= xdi;
}
}
xdi = len - idx;
delta = idx - xdi;
}
if( 0 < idx )
exchange( a, a + idx, idx );
}
/* Shuffle an array of integers */
static
void
shuffle( int * a, int len )
{
int i, j, tmp;
i = len;
while( 1 <= i )
{
j = rb->rand( ) % i;
tmp = a[ --i ];
a[ i ] = a[ j ];
a[ j ] = tmp;
}
}
/* Generate a SuDoKu puzzle
*
* The generation process selects a random template, and then attempts
* to fill in the exposed squares to generate a board. The order of the
* digits and of filling in the exposed squares are random.
*/
/* Select random template; sets tmplt, len_tmplt */
static
void
select_template( void )
{
int i = rb->rand( ) % NUM_TEMPLATES;
init_template( i );
}
static bool check_buttons(void)
{
int button = rb->button_get(false);
return (button && (!(button & BUTTON_REL)) && (!(button & BUTTON_REPEAT)));
}
static
bool
generate( void )
{
static int digits[ 9 ];
int i;
start:
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
for( i = 0 ; i < 9 ; ++i )
digits[ i ] = i + 1;
rotate( digits, 9, 1 + rb->rand( ) % 8 );
shuffle( digits, 9 );
select_template( );
rotate( tmplt, len_tmplt, 1 + rb->rand( ) % ( len_tmplt - 1 ) );
shuffle( tmplt, len_tmplt );
reset( ); /* construct a new board */
for( i = 0 ; i < len_tmplt ; ++i )
fill( tmplt[ i ], digits[ i % 9 ] );
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
rb->yield();
if( 0 != solve( ) || idx_history < 81 )
goto start;
/* Allow the user to abort generation by pressing any button */
if (check_buttons())
return false;
rb->yield();
for( i = 0 ; i < len_tmplt ; ++i )
board[ tmplt[ i ] ] |= FIXED;
/* Construct fixed squares */
for( idx_history = i = 0 ; i < 81 ; ++i )
if( IS_FIXED( i ) )
history[ idx_history++ ] = SET_INDEX( i )
| SET_DIGIT( DIGIT( i ) )
| FIXED;
clear_moves( );
if( 0 != solve( ) || idx_history < 81 )
goto start;
if( -1 != backtrack( ) && 0 == solve( ) )
goto start;
clear_moves( );
return true;
}
bool sudoku_generate_board(struct sudoku_state_t* state, char** difficulty)
{
int r,c,i;
rb->srand(*rb->current_tick);
rb->button_clear_queue();
if (!generate()) {
/* User has aborted with a button press */
return false;
}
i=0;
for (r=0;r<9;r++) {
for (c=0;c<9;c++) {
if( IS_EMPTY( i ) )
state->startboard[r][c]='0';
else
state->startboard[r][c]='0'+GET_DIGIT( board[ i ] );
state->currentboard[r][c]=state->startboard[r][c];
i++;
}
}
*difficulty = classify( );
return true;
}
bool sudoku_solve_board(struct sudoku_state_t* state)
{
bool ret;
int r,c,i;
reset( );
i=0;
for (r=0;r<9;r++) {
for (c=0;c<9;c++) {
if( state->startboard[r][c]!='0' )
{
fill( i, state->startboard[r][c] - '0' );
}
i++;
}
}
ret = ( 0 == solve( ) && 81 == idx_history );
if (ret) {
i=0;
for (r=0;r<9;r++) {
for (c=0;c<9;c++) {
state->currentboard[r][c]='0'+GET_DIGIT( board[ i ] );
i++;
}
}
}
return ret;
}
|