1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2007 Matthias Wientapper
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
* This is an implementatino of Conway's Game of Life
*
* from http://en.wikipedia.org/wiki/Conway's_Game_of_Life:
*
* Rules
*
* The universe of the Game of Life is an infinite two-dimensional
* orthogonal grid of square cells, each of which is in one of two
* possible states, live or dead. Every cell interacts with its eight
* neighbours, which are the cells that are directly horizontally,
* vertically, or diagonally adjacent. At each step in time, the
* following transitions occur:
*
* 1. Any live cell with fewer than two live neighbours dies, as if by
* loneliness.
*
* 2. Any live cell with more than three live neighbours dies, as if
* by overcrowding.
*
* 3. Any live cell with two or three live neighbours lives,
* unchanged, to the next generation.
*
* 4. Any dead cell with exactly three live neighbours comes to life.
*
* The initial pattern constitutes the first generation of the
* system. The second generation is created by applying the above
* rules simultaneously to every cell in the first generation --
* births and deaths happen simultaneously, and the discrete moment at
* which this happens is sometimes called a tick. (In other words,
* each generation is based entirely on the one before.) The rules
* continue to be applied repeatedly to create further generations.
*
*
*
* TODO:
* - nicer colours for pixels with respect to age
* - editor for start patterns
* - probably tons of speed-up opportunities
*/
#include "plugin.h"
#include "lib/pluginlib_actions.h"
#include "lib/helper.h"
PLUGIN_HEADER
#define ROCKLIFE_PLAY_PAUSE PLA_FIRE
#define ROCKLIFE_INIT PLA_DOWN
#define ROCKLIFE_NEXT PLA_RIGHT
#define ROCKLIFE_NEXT_REP PLA_RIGHT_REPEAT
#define ROCKLIFE_QUIT PLA_QUIT
#define ROCKLIFE_STATUS PLA_LEFT
#define PATTERN_RANDOM 0
#define PATTERN_GROWTH_1 1
#define PATTERN_GROWTH_2 2
#define PATTERN_ACORN 3
#define PATTERN_GLIDER_GUN 4 /* not yet implemented */
const struct button_mapping *plugin_contexts[]
= {generic_directions, generic_actions};
#define GRID_W LCD_WIDTH
#define GRID_H LCD_HEIGHT
unsigned char grid_a[GRID_W][GRID_H];
unsigned char grid_b[GRID_W][GRID_H];
int generation = 0;
int population = 0;
int status_line = 0;
char buf[30];
static inline bool is_valid_cell(int x, int y) {
return (x >= 0 && x < GRID_W
&& y >= 0 && y < GRID_H);
}
static inline void set_cell_age(int x, int y, unsigned char age, char *pgrid) {
pgrid[x+y*GRID_W] = age;
}
static inline void set_cell(int x, int y, char *pgrid) {
set_cell_age(x, y, 1, pgrid);
}
static inline unsigned char get_cell(int x, int y, char *pgrid) {
if (x < 0)
x += GRID_W;
else if (x >= GRID_W)
x -= GRID_W;
if (y < 0)
y += GRID_H;
else if (y >= GRID_H)
y -= GRID_H;
return pgrid[x+y*GRID_W];
}
/* clear grid */
void init_grid(char *pgrid){
memset(pgrid, 0, GRID_W * GRID_H);
}
/*fill grid with pattern from file (viewer mode)*/
static bool load_cellfile(const char *file, char *pgrid){
int fd;
fd = rb->open(file, O_RDONLY);
if (fd==-1)
return false;
init_grid(pgrid);
char c;
int nc, x, y, xmid, ymid;
bool comment;
x=0;
y=0;
xmid = (GRID_W>>1) - 2;
ymid = (GRID_H>>1) - 2;
comment = false;
while (true) {
nc = read(fd, &c, 1);
if (nc <= 0)
break;
switch(c) {
case '!':
comment = true;
case '.':
if (!comment)
x++;
break;
case 'O':
if (!comment) {
if (is_valid_cell(xmid + x, ymid + y))
set_cell(xmid + x, ymid + y, pgrid);
x++;
}
break;
case '\n':
y++;
x=0;
comment = false;
break;
default:
break;
}
}
rb->close(fd);
return true;
}
/* fill grid with initial pattern */
static void setup_grid(char *pgrid, int pattern){
int n, max;
int xmid, ymid;
max = GRID_W * GRID_H;
switch(pattern){
case PATTERN_RANDOM:
rb->splash(HZ, "Random");
#if 0 /* two oscilators, debug pattern */
set_cell( 0, 1 , pgrid);
set_cell( 1, 1 , pgrid);
set_cell( 2, 1 , pgrid);
set_cell( 6, 7 , pgrid);
set_cell( 7, 7 , pgrid);
set_cell( 8, 7 , pgrid);
#endif
/* fill screen randomly */
for(n=0; n<(max>>2); n++)
pgrid[rb->rand()%max] = 1;
break;
case PATTERN_GROWTH_1:
rb->splash(HZ, "Growth");
xmid = (GRID_W>>1) - 2;
ymid = (GRID_H>>1) - 2;
set_cell(xmid + 6, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 1 , pgrid);
set_cell(xmid + 6, ymid + 1 , pgrid);
set_cell(xmid + 7, ymid + 1 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 0, ymid + 5 , pgrid);
set_cell(xmid + 2, ymid + 5 , pgrid);
break;
case PATTERN_ACORN:
rb->splash(HZ, "Acorn");
xmid = (GRID_W>>1) - 3;
ymid = (GRID_H>>1) - 1;
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 3, ymid + 1 , pgrid);
set_cell(xmid + 0, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 5, ymid + 2 , pgrid);
set_cell(xmid + 6, ymid + 2 , pgrid);
break;
case PATTERN_GROWTH_2:
rb->splash(HZ, "Growth 2");
xmid = (GRID_W>>1) - 4;
ymid = (GRID_H>>1) - 1;
set_cell(xmid + 0, ymid + 0 , pgrid);
set_cell(xmid + 1, ymid + 0 , pgrid);
set_cell(xmid + 2, ymid + 0 , pgrid);
set_cell(xmid + 4, ymid + 0 , pgrid);
set_cell(xmid + 0, ymid + 1 , pgrid);
set_cell(xmid + 3, ymid + 2 , pgrid);
set_cell(xmid + 4, ymid + 2 , pgrid);
set_cell(xmid + 1, ymid + 3 , pgrid);
set_cell(xmid + 2, ymid + 3 , pgrid);
set_cell(xmid + 4, ymid + 3 , pgrid);
set_cell(xmid + 0, ymid + 4 , pgrid);
set_cell(xmid + 2, ymid + 4 , pgrid);
set_cell(xmid + 4, ymid + 4 , pgrid);
break;
case PATTERN_GLIDER_GUN:
rb->splash(HZ, "Glider Gun");
set_cell( 24, 0, pgrid);
set_cell( 22, 1, pgrid);
set_cell( 24, 1, pgrid);
set_cell( 12, 2, pgrid);
set_cell( 13, 2, pgrid);
set_cell( 20, 2, pgrid);
set_cell( 21, 2, pgrid);
set_cell( 34, 2, pgrid);
set_cell( 35, 2, pgrid);
set_cell( 11, 3, pgrid);
set_cell( 15, 3, pgrid);
set_cell( 20, 3, pgrid);
set_cell( 21, 3, pgrid);
set_cell( 34, 3, pgrid);
set_cell( 35, 3, pgrid);
set_cell( 0, 4, pgrid);
set_cell( 1, 4, pgrid);
set_cell( 10, 4, pgrid);
set_cell( 16, 4, pgrid);
set_cell( 20, 4, pgrid);
set_cell( 21, 4, pgrid);
set_cell( 0, 5, pgrid);
set_cell( 1, 5, pgrid);
set_cell( 10, 5, pgrid);
set_cell( 14, 5, pgrid);
set_cell( 16, 5, pgrid);
set_cell( 17, 5, pgrid);
set_cell( 22, 5, pgrid);
set_cell( 24, 5, pgrid);
set_cell( 10, 6, pgrid);
set_cell( 16, 6, pgrid);
set_cell( 24, 6, pgrid);
set_cell( 11, 7, pgrid);
set_cell( 15, 7, pgrid);
set_cell( 12, 8, pgrid);
set_cell( 13, 8, pgrid);
break;
}
}
/* display grid */
static void show_grid(char *pgrid){
int x, y;
unsigned char age;
rb->lcd_clear_display();
for(y=0; y<GRID_H; y++){
for(x=0; x<GRID_W; x++){
age = get_cell(x, y, pgrid);
if(age){
#if LCD_DEPTH >= 16
rb->lcd_set_foreground( LCD_RGBPACK( age, age, age ));
#elif LCD_DEPTH == 2
rb->lcd_set_foreground(age>>7);
#endif
rb->lcd_drawpixel(x, y);
}
}
}
if(status_line){
rb->snprintf(buf, sizeof(buf), "g:%d p:%d", generation, population);
#if LCD_DEPTH > 1
rb->lcd_set_foreground( LCD_BLACK );
#endif
rb->lcd_puts(0, 0, buf);
}
rb->lcd_update();
}
/* Calculates whether the cell will be alive in the next generation.
n is the array with 9 elements that represent the cell itself and its
neighborhood like this (the cell itself is n[4]):
0 1 2
3 4 5
6 7 8
*/
static inline bool check_cell(unsigned char *n)
{
int empty_cells = 0;
int alive_cells;
bool result;
/* count empty neighbour cells */
if(n[0]==0) empty_cells++;
if(n[1]==0) empty_cells++;
if(n[2]==0) empty_cells++;
if(n[3]==0) empty_cells++;
if(n[5]==0) empty_cells++;
if(n[6]==0) empty_cells++;
if(n[7]==0) empty_cells++;
if(n[8]==0) empty_cells++;
/* now we build the number of non-zero neighbours :-P */
alive_cells = 8 - empty_cells;
if (n[4]) {
/* If the cell is alive, it stays alive iff it has 2 or 3 alive neighbours */
result = (alive_cells==2 || alive_cells==3);
}
else {
/* If the cell is dead, it gets alive iff it has 3 alive neighbours */
result = (alive_cells==3);
}
return result;
}
/* Calculate the next generation of cells
*
* The borders of the grid are connected to their opposite sides.
*
* To avoid multiplications while accessing data in the 2-d grid
* (pgrid) we try to re-use previously accessed neighbourhood
* information which is stored in an 3x3 array.
*/
static void next_generation(char *pgrid, char *pnext_grid){
int x, y;
bool cell;
unsigned char age;
unsigned char n[9];
rb->memset(n, 0, sizeof(n));
/*
* cell is (4) with 8 neighbours
*
* 0|1|2
* -----
* 3|4|5
* -----
* 6|7|8
*/
population = 0;
/* go through the grid */
for(y=0; y<GRID_H; y++){
for(x=0; x<GRID_W; x++){
if(y==0 && x==0){
/* first cell in first row, we have to load all neighbours */
n[0] = get_cell(x-1, y-1, pgrid);
n[1] = get_cell(x, y-1, pgrid);
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = get_cell(x-1, y, pgrid);
n[4] = get_cell(x, y, pgrid);
n[5] = get_cell(x+1, y, pgrid);
n[6] = get_cell(x-1, y+1, pgrid);
n[7] = get_cell(x, y+1, pgrid);
n[8] = get_cell(x+1, y+1, pgrid);
} else {
if(x==0){
/* beginning of a row, copy what we know about our predecessor,
0, 1, 3, 4 are known, 2, 5, 6, 7, 8 have to be loaded
*/
n[0] = n[4];
n[1] = n[5];
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = n[7];
n[4] = n[8];
n[5] = get_cell(x+1, y, pgrid);
n[6] = get_cell(x-1, y+1, pgrid);
n[7] = get_cell(x, y+1, pgrid);
n[8] = get_cell(x+1, y+1, pgrid);
} else {
/* we are moving right in a row,
* copy what we know about the neighbours on our left side,
* 2, 5, 8 have to be loaded
*/
n[0] = n[1];
n[1] = n[2];
n[2] = get_cell(x+1, y-1, pgrid);
n[3] = n[4];
n[4] = n[5];
n[5] = get_cell(x+1, y, pgrid);
n[6] = n[7];
n[7] = n[8];
n[8] = get_cell(x+1, y+1, pgrid);
}
}
/* how old is our cell? */
age = n[4];
/* calculate the cell based on given neighbour information */
cell = check_cell(n);
/* is the actual cell alive? */
if(cell){
population++;
/* prevent overflow */
if(age<252)
age++;
set_cell_age(x, y, age, pnext_grid);
}
else
set_cell_age(x, y, 0, pnext_grid);
#if 0
DEBUGF("x=%d,y=%d\n", x, y);
DEBUGF("cell: %d\n", cell);
DEBUGF("%d %d %d\n", n[0],n[1],n[2]);
DEBUGF("%d %d %d\n", n[3],n[4],n[5]);
DEBUGF("%d %d %d\n", n[6],n[7],n[8]);
DEBUGF("----------------\n");
#endif
}
}
generation++;
}
/**********************************/
/* this is the plugin entry point */
/**********************************/
enum plugin_status plugin_start(const void* parameter)
{
int button = 0;
int quit = 0;
int stop = 0;
int pattern = 0;
char *pgrid;
char *pnext_grid;
char *ptemp;
(void)(parameter);
backlight_force_on(); /* backlight control in lib/helper.c */
#if LCD_DEPTH > 1
rb->lcd_set_backdrop(NULL);
#ifdef HAVE_LCD_COLOR
rb->lcd_set_background(LCD_RGBPACK(182, 198, 229)); /* rockbox blue */
#else
rb->lcd_set_background(LCD_DEFAULT_BG);
#endif /* HAVE_LCD_COLOR */
#endif /* LCD_DEPTH > 1 */
/* link pointers to grids */
pgrid = (char *)grid_a;
pnext_grid = (char *)grid_b;
init_grid(pgrid);
if( parameter == NULL )
{
setup_grid(pgrid, pattern++);
}
else
{
if( load_cellfile(parameter, pgrid) )
{
rb->splashf( 1*HZ, "Cells loaded (%s)", (char *)parameter );
}
else
{
rb->splash( 1*HZ, "File Open Error");
setup_grid(pgrid, pattern++); /* fall back to stored patterns */
}
}
show_grid(pgrid);
while(!quit) {
button = pluginlib_getaction(TIMEOUT_BLOCK, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_NEXT:
case ROCKLIFE_NEXT_REP:
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
show_grid(pgrid);
break;
case ROCKLIFE_PLAY_PAUSE:
stop = 0;
while(!stop){
/* calculate next generation */
next_generation(pgrid, pnext_grid);
/* swap buffers, grid is the new generation */
ptemp = pgrid;
pgrid = pnext_grid;
pnext_grid = ptemp;
/* show new generation */
rb->yield();
show_grid(pgrid);
button = pluginlib_getaction(0, plugin_contexts, 2);
switch(button) {
case ROCKLIFE_PLAY_PAUSE:
case ROCKLIFE_QUIT:
stop = 1;
break;
default:
break;
}
rb->yield();
}
break;
case ROCKLIFE_INIT:
init_grid(pgrid);
setup_grid(pgrid, pattern);
show_grid(pgrid);
pattern++;
pattern%=5;
break;
case ROCKLIFE_STATUS:
status_line = !status_line;
show_grid(pgrid);
break;
case ROCKLIFE_QUIT:
/* quit plugin */
quit=true;
return PLUGIN_OK;
break;
default:
if (rb->default_event_handler(button) == SYS_USB_CONNECTED) {
return PLUGIN_USB_CONNECTED;
}
break;
}
rb->yield();
}
backlight_use_settings(); /* backlight control in lib/helper.c */
return PLUGIN_OK;
}
|