1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Copyright (C) 2006 Bob Jenkins
* http://burtleburtle.net/bob/c/lookup3.c
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
/*
lookup3.c, by Bob Jenkins, May 2006, Public Domain.
These are functions for producing 32-bit hashes for hash table lookup.
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
are externally useful functions. Routines to test the hash are included
if SELF_TEST is defined. You can use this free for any purpose. It's in
the public domain. It has no warranty.
You probably want to use hashlittle(). hashlittle() and hashbig()
hash byte arrays. hashlittle() is is faster than hashbig() on
little-endian machines. Intel and AMD are little-endian machines.
On second thought, you probably want hashlittle2(), which is identical to
hashlittle() except it returns two 32-bit hashes for the price of one.
You could implement hashbig2() if you wanted but I haven't bothered here.
If you want to find a hash of, say, exactly 7 integers, do
a = i1; b = i2; c = i3;
mix(a,b,c);
a += i4; b += i5; c += i6;
mix(a,b,c);
a += i7;
final(a,b,c);
then use c as the hash value. If you have a variable length array of
4-byte integers to hash, use hashword(). If you have a byte array (like
a character string), use hashlittle(). If you have several byte arrays, or
a mix of things, see the comments above hashlittle().
Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
then mix those integers. This is fast (you can do a lot more thorough
mixing with 12*3 instructions on 3 integers than you can with 3 instructions
on 1 byte), but shoehorning those bytes into integers efficiently is messy.
*/
#include "jhash.h"
/*
* My best guess at if you are big-endian or little-endian. This may
* need adjustment.
*/
#if defined(ROCKBOX_LITTLE_ENDIAN)
# define HASH_LITTLE_ENDIAN 1
# define HASH_BIG_ENDIAN 0
#elif defined(ROCKBOX_BIG_ENDIAN)
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 1
#else
# define HASH_LITTLE_ENDIAN 0
# define HASH_BIG_ENDIAN 0
#endif
#define hashsize(n) ((uint32_t)1<<(n))
#define hashmask(n) (hashsize(n)-1)
#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
/*
mix -- mix 3 32-bit values reversibly.
This is reversible, so any information in (a,b,c) before mix() is
still in (a,b,c) after mix().
If four pairs of (a,b,c) inputs are run through mix(), or through
mix() in reverse, there are at least 32 bits of the output that
are sometimes the same for one pair and different for another pair.
This was tested for:
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
satisfy this are
4 6 8 16 19 4
9 15 3 18 27 15
14 9 3 7 17 3
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
for "differ" defined as + with a one-bit base and a two-bit delta. I
used http://burtleburtle.net/bob/hash/avalanche.html to choose
the operations, constants, and arrangements of the variables.
This does not achieve avalanche. There are input bits of (a,b,c)
that fail to affect some output bits of (a,b,c), especially of a. The
most thoroughly mixed value is c, but it doesn't really even achieve
avalanche in c.
This allows some parallelism. Read-after-writes are good at doubling
the number of bits affected, so the goal of mixing pulls in the opposite
direction as the goal of parallelism. I did what I could. Rotates
seem to cost as much as shifts on every machine I could lay my hands
on, and rotates are much kinder to the top and bottom bits, so I used
rotates.
*/
#define mix(a,b,c) \
{ \
a -= c; a ^= rot(c, 4); c += b; \
b -= a; b ^= rot(a, 6); a += c; \
c -= b; c ^= rot(b, 8); b += a; \
a -= c; a ^= rot(c,16); c += b; \
b -= a; b ^= rot(a,19); a += c; \
c -= b; c ^= rot(b, 4); b += a; \
}
/*
final -- final mixing of 3 32-bit values (a,b,c) into c
Pairs of (a,b,c) values differing in only a few bits will usually
produce values of c that look totally different. This was tested for
* pairs that differed by one bit, by two bits, in any combination
of top bits of (a,b,c), or in any combination of bottom bits of
(a,b,c).
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
is commonly produced by subtraction) look like a single 1-bit
difference.
* the base values were pseudorandom, all zero but one bit set, or
all zero plus a counter that starts at zero.
These constants passed:
14 11 25 16 4 14 24
12 14 25 16 4 14 24
and these came close:
4 8 15 26 3 22 24
10 8 15 26 3 22 24
11 8 15 26 3 22 24
*/
#define final(a,b,c) \
{ \
c ^= b; c -= rot(b,14); \
a ^= c; a -= rot(c,11); \
b ^= a; b -= rot(a,25); \
c ^= b; c -= rot(b,16); \
a ^= c; a -= rot(c,4); \
b ^= a; b -= rot(a,14); \
c ^= b; c -= rot(b,24); \
}
/*
k: pointer to the key, an array of uint32_t
length: number of elements in the key
initval: an initialization value
returns the 32-bit hash
*/
uint32_t hashw(const uint32_t *k, size_t length, uint32_t initval)
{
uint32_t a, b, c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + (((uint32_t)length)<<2) + initval;
/* handle most of the key */
while (length > 3)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 3;
k += 3;
}
/* handle the last 3 uint32_t's */
switch(length) /* all the case statements fall through */
{
case 3:
c+=k[2];
case 2:
b+=k[1];
case 1:
a+=k[0];
final(a,b,c);
case 0: /* case 0: nothing left to add */
break;
}
/* report the result */
return c;
}
/*
hashw2() -- same as hashw(), but take two seeds and return two
32-bit values. pc and pb must both be nonnull, and *pc and *pb must
both be initialized with seeds. If you pass in (*pb)==0, the output
(*pc) will be the same as the return value from hashword().
k: pointer to the key, an array of uint32_t
length: number of elements in the key
pc, pb: pointers to primary and secondary initial values, also used to store
the hash results.
*/
void hashw2 (const uint32_t *k, size_t length, uint32_t *pc, uint32_t *pb)
{
uint32_t a,b,c;
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)(length<<2)) + *pc;
c += *pb;
/* handle most of the key */
while (length > 3)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 3;
k += 3;
}
/* handle the last 3 uint32_t's */
switch(length) /* all the case statements fall through */
{
case 3:
c+=k[2];
case 2:
b+=k[1];
case 1:
a+=k[0];
final(a,b,c);
case 0: /* case 0: nothing left to add */
break;
}
/* report the result */
*pc=c; *pb=b;
}
/*
hashs() -- hash a variable-length key into a 32-bit value
k: pointer to the key, an array of bytes
length: number of elements in the key
initval: an initialization value
returns the 32-bit hash
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Two keys differing by one or two bits will have
totally different hash values.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
*/
uint32_t hashs( const void *key, size_t length, uint32_t initval)
{
uint32_t a,b,c; /* internal state */
union { const void *ptr; size_t i; } u;/* needed for Mac Powerbook G4 */
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval;
u.ptr = key;
#if HASH_LITTLE_ENDIAN
if ((u.i & 0x3) == 0) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
/* all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/* handle the last (probably partial) block */
switch(length)
{
case 12:
c += k[2];
b += k[1];
a += k[0];
break;
case 11:
c += k[2] & 0xffffff;
b += k[1];
a += k[0];
break;
case 10:
c += k[2] & 0xffff;
b += k[1];
a += k[0];
break;
case 9:
c += k[2] & 0xff;
b += k[1];
a += k[0];
break;
case 8:
b += k[1];
a += k[0];
break;
case 7:
b += k[1] & 0xffffff;
a += k[0];
break;
case 6:
b += k[1] & 0xffff;
a += k[0];
break;
case 5:
b += k[1] & 0xff;
a += k[0];
break;
case 4:
a += k[0];
break;
case 3:
a += k[0] & 0xffffff;
break;
case 2 :
a += k[0] & 0xffff;
break;
case 1:
a += k[0] & 0xff;
break;
case 0:
return c; /* zero length strings require no mixing */
}
} else if ((u.i & 0x1) == 0) {
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
const uint8_t *k8;
/* all but last block: aligned reads and different mixing */
while (length > 12)
{
a += k[0] + (((uint32_t)k[1])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
c += k[4] + (((uint32_t)k[5])<<16);
mix(a,b,c);
length -= 12;
k += 6;
}
/* handle the last (probably partial) block */
k8 = (const uint8_t *)k;
switch(length)
{
case 12:
c += k[4] + (((uint32_t)k[5])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 11:
c += ((uint32_t)k8[10])<<16; /* fall through */
case 10:
c += k[4];
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 9:
c += k8[8]; /* fall through */
case 8:
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 7:
b += ((uint32_t)k8[6])<<16; /* fall through */
case 6:
b += k[2];
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 5:
b += k8[4]; /* fall through */
case 4:
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 3:
a += ((uint32_t)k8[2])<<16; /* fall through */
case 2:
a += k[0];
break;
case 1:
a += k8[0];
break;
case 0:
return c; /* zero length requires no mixing */
}
} else
#endif
{ /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
/* all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
a += ((uint32_t)k[1])<<8;
a += ((uint32_t)k[2])<<16;
a += ((uint32_t)k[3])<<24;
b += k[4];
b += ((uint32_t)k[5])<<8;
b += ((uint32_t)k[6])<<16;
b += ((uint32_t)k[7])<<24;
c += k[8];
c += ((uint32_t)k[9])<<8;
c += ((uint32_t)k[10])<<16;
c += ((uint32_t)k[11])<<24;
mix(a,b,c);
length -= 12;
k += 12;
}
/* last block: affect all 32 bits of (c) */
switch(length) /* all the case statements fall through */
{
case 12:
c += ((uint32_t)k[11])<<24;
case 11:
c += ((uint32_t)k[10])<<16;
case 10:
c += ((uint32_t)k[9])<<8;
case 9:
c += k[8];
case 8:
b += ((uint32_t)k[7])<<24;
case 7:
b += ((uint32_t)k[6])<<16;
case 6:
b += ((uint32_t)k[5])<<8;
case 5:
b += k[4];
case 4:
a += ((uint32_t)k[3])<<24;
case 3:
a += ((uint32_t)k[2])<<16;
case 2:
a += ((uint32_t)k[1])<<8;
case 1:
a +=k [0];
break;
case 0:
return c;
}
}
final(a,b,c);
return c;
}
/*
hashs2: return 2 32-bit hash values
k: pointer to the key, an array of bytes
length: number of elements in the key
pc, pb: pointers to primary and secondary initial values, also used to store
the hash results.
* This is identical to hashlittle(), except it returns two 32-bit hash
* values instead of just one. This is good enough for hash table
* lookup with 2^^64 buckets, or if you want a second hash if you're not
* happy with the first, or if you want a probably-unique 64-bit ID for
* the key. *pc is better mixed than *pb, so use *pc first. If you want
* a 64-bit value do something like "*pc + (((uint64_t)*pb)<<32)".
*/
void hashs2(const void *key, size_t length, uint32_t *pc, uint32_t *pb)
{
uint32_t a, b, c; /* internal state */
union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
/* Set up the internal state */
a = b = c = 0xdeadbeef + ((uint32_t)length) + *pc;
c += *pb;
u.ptr = key;
#if HASH_LITTLE_ENDIAN
if (((u.i & 0x3) == 0)) {
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
/* all but last block: aligned reads and affect 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
b += k[1];
c += k[2];
mix(a,b,c);
length -= 12;
k += 3;
}
/* handle the last (probably partial) block */
switch(length)
{
case 12:
c += k[2];
b += k[1];
a += k[0];
break;
case 11:
c += k[2] & 0xffffff;
b += k[1];
a += k[0];
break;
case 10:
c += k[2] & 0xffff;
b += k[1];
a += k[0];
break;
case 9:
c += k[2] & 0xff;
b += k[1];
a += k[0];
break;
case 8:
b += k[1];
a += k[0];
break;
case 7:
b += k[1] & 0xffffff;
a += k[0];
break;
case 6:
b += k[1] & 0xffff;
a += k[0];
break;
case 5:
b += k[1] & 0xff;
a += k[0];
break;
case 4:
a += k[0];
break;
case 3:
a += k[0] & 0xffffff;
break;
case 2:
a += k[0] & 0xffff;
break;
case 1:
a += k[0] & 0xff;
break;
case 0:
*pc=c;
*pb=b;
return; /* zero length strings require no mixing */
}
} else if (((u.i & 0x1) == 0)) {
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
const uint8_t *k8;
/* all but last block: aligned reads and different mixing */
while (length > 12)
{
a += k[0] + (((uint32_t)k[1])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
c += k[4] + (((uint32_t)k[5])<<16);
mix(a,b,c);
length -= 12;
k += 6;
}
/* handle the last (probably partial) block */
k8 = (const uint8_t *)k;
switch(length)
{
case 12:
c += k[4] + (((uint32_t)k[5])<<16);
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 11:
c += ((uint32_t)k8[10])<<16; /* fall through */
case 10:
c += k[4];
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 9:
c += k8[8]; /* fall through */
case 8:
b += k[2] + (((uint32_t)k[3])<<16);
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 7:
b += ((uint32_t)k8[6])<<16; /* fall through */
case 6:
b += k[2];
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 5:
b += k8[4]; /* fall through */
case 4:
a += k[0] + (((uint32_t)k[1])<<16);
break;
case 3:
a += ((uint32_t)k8[2])<<16; /* fall through */
case 2:
a += k[0];
break;
case 1:
a += k8[0];
break;
case 0:
*pc=c;
*pb=b;
return; /* zero length strings require no mixing */
}
} else
#endif
{ /* need to read the key one byte at a time */
const uint8_t *k = (const uint8_t *)key;
/* all but the last block: affect some 32 bits of (a,b,c) */
while (length > 12)
{
a += k[0];
a += ((uint32_t)k[1])<<8;
a += ((uint32_t)k[2])<<16;
a += ((uint32_t)k[3])<<24;
b += k[4];
b += ((uint32_t)k[5])<<8;
b += ((uint32_t)k[6])<<16;
b += ((uint32_t)k[7])<<24;
c += k[8];
c += ((uint32_t)k[9])<<8;
c += ((uint32_t)k[10])<<16;
c += ((uint32_t)k[11])<<24;
mix(a,b,c);
length -= 12;
k += 12;
}
/* last block: affect all 32 bits of (c) */
switch(length) /* all the case statements fall through */
{
case 12:
c += ((uint32_t)k[11]) << 24;
case 11:
c += ((uint32_t)k[10]) << 16;
case 10:
c += ((uint32_t)k[9]) << 8;
case 9:
c += k[8];
case 8:
b += ((uint32_t)k[7]) << 24;
case 7:
b += ((uint32_t)k[6]) << 16;
case 6:
b += ((uint32_t)k[5]) << 8;
case 5:
b += k[4];
case 4:
a += ((uint32_t)k[3]) << 24;
case 3:
a += ((uint32_t)k[2]) << 16;
case 2:
a += ((uint32_t)k[1]) << 8;
case 1:
a += k[0];
break;
case 0:
*pc=c;
*pb=b;
return; /* zero length strings require no mixing */
}
}
final(a,b,c);
*pc=c;
*pb=b;
}
|