1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
/***************************************************************************
* __________ __ ___.
* Open \______ \ ____ ____ | | _\_ |__ _______ ___
* Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
* Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
* Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
* \/ \/ \/ \/ \/
* $Id$
*
* Grayscale framework
* Low level pixel drawing functions
*
* This is a generic framework to use grayscale display within Rockbox
* plugins. It obviously does not work for the player.
*
* Copyright (C) 2004 Jens Arnold
*
* All files in this archive are subject to the GNU General Public License.
* See the file COPYING in the source tree root for full license agreement.
*
* This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
* KIND, either express or implied.
*
****************************************************************************/
#ifndef SIMULATOR /* not for simulator by now */
#include "plugin.h"
#if CONFIG_LCD == LCD_SSD1815 /* only for Recorder/Ondio */
#include "gray.h"
/* Prototypes */
static void _writepixel(int x, int y, unsigned long pattern);
static void _invertpixel(int x, int y, unsigned long pattern);
/* function pointer array */
void (* const _gray_pixelfuncs[4])(int x, int y, unsigned long pattern) = {
_invertpixel, _writepixel, _writepixel, _writepixel
};
/* Set a pixel to a specific bit pattern (low level routine) */
static void _writepixel(int x, int y, unsigned long pattern)
{
register unsigned mask, random;
register unsigned char *address;
/* Some (pseudo-)random function must be used here to shift the bit
* pattern randomly, otherwise you would get flicker and/or moire.
* Since rand() is relatively slow, I've implemented a simple, but very
* fast pseudo-random generator based on linear congruency in assembler.
* It delivers max. 16 pseudo-random bits in each iteration. */
/* simple but fast pseudo-random generator */
asm (
"mov #75,r1 \n"
"mulu %1,r1 \n" /* multiply by 75 */
"sts macl,%1 \n" /* get result */
"add #74,%1 \n" /* add another 74 */
/* Since the lower bits are not very random: */
"swap.b %1,%0 \n" /* get bits 8..15 (need max. 5) */
"and %2,%0 \n" /* mask out unneeded bits */
: /* outputs */
/* %0 */ "=&r"(random),
/* %1, in & out */ "+r"(_gray_random_buffer)
: /* inputs */
/* %2 */ "r"(_graybuf->randmask)
: /* clobbers */
"r1", "macl"
);
/* precalculate mask and byte address in first bitplane */
asm (
"mov %3,%0 \n" /* take y as base for address offset */
"shlr2 %0 \n" /* shift right by 3 (= divide by 8) */
"shlr %0 \n"
"mulu %0,%2 \n" /* multiply with width */
"and #7,%3 \n" /* get lower 3 bits of y */
"sts macl,%0 \n" /* get mulu result */
"add %4,%0 \n" /* add base + x to get final address */
"mov %3,%1 \n" /* move lower 3 bits of y out of r0 */
"mova .wp_masktable,%3\n" /* get address of mask table in r0 */
"bra .wp_predone \n" /* skip the table */
"mov.b @(%3,%1),%1 \n" /* get entry from mask table */
".align 2 \n"
".wp_masktable: \n" /* mask table */
".byte 0x01 \n"
".byte 0x02 \n"
".byte 0x04 \n"
".byte 0x08 \n"
".byte 0x10 \n"
".byte 0x20 \n"
".byte 0x40 \n"
".byte 0x80 \n"
".wp_predone: \n"
: /* outputs */
/* %0 */ "=&r"(address),
/* %1 */ "=&r"(mask)
: /* inputs */
/* %2 */ "r"(_graybuf->width),
/* %3 = r0 */ "z"(y),
/* %4 */ "r"(_graybuf->data + x)
: /* clobbers */
"macl"
);
/* the hard part: set bits in all bitplanes according to pattern */
asm volatile (
"cmp/hs %1,%5 \n" /* random >= depth ? */
"bf .wp_ntrim \n"
"sub %1,%5 \n" /* yes: random -= depth */
/* it's sufficient to do this once, since the mask guarantees
* random < 2 * depth */
".wp_ntrim: \n"
/* calculate some addresses */
"mulu %4,%1 \n" /* end address offset */
"not %3,r1 \n" /* get inverse mask (for "and") */
"sts macl,%1 \n" /* result of mulu */
"mulu %4,%5 \n" /* address offset of <random>'th plane */
"add %2,%1 \n" /* end offset -> end address */
"sts macl,%5 \n" /* result of mulu */
"add %2,%5 \n" /* address of <random>'th plane */
"bra .wp_start1 \n"
"mov %5,r2 \n" /* copy address */
/* first loop: set bits from <random>'th bitplane to last */
".wp_loop1: \n"
"mov.b @r2,r3 \n" /* get data byte */
"shlr %0 \n" /* shift bit mask, sets t bit */
"and r1,r3 \n" /* reset bit (-> "white") */
"bf .wp_white1 \n" /* t=0? -> "white" bit */
"or %3,r3 \n" /* set bit ("black" bit) */
".wp_white1: \n"
"mov.b r3,@r2 \n" /* store data byte */
"add %4,r2 \n" /* advance address to next bitplane */
".wp_start1: \n"
"cmp/hi r2,%1 \n" /* address < end address ? */
"bt .wp_loop1 \n"
"bra .wp_start2 \n"
"nop \n"
/* second loop: set bits from first to <random-1>'th bitplane
* Bit setting works the other way round here to equalize average
* execution times for bright and dark pixels */
".wp_loop2: \n"
"mov.b @%2,r3 \n" /* get data byte */
"shlr %0 \n" /* shift bit mask, sets t bit */
"or %3,r3 \n" /* set bit (-> "black") */
"bt .wp_black2 \n" /* t=1? -> "black" bit */
"and r1,r3 \n" /* reset bit ("white" bit) */
".wp_black2: \n"
"mov.b r3,@%2 \n" /* store data byte */
"add %4,%2 \n" /* advance address to next bitplane */
".wp_start2: \n"
"cmp/hi %2,%5 \n" /* address < <random>'th address ? */
"bt .wp_loop2 \n"
: /* outputs */
: /* inputs */
/* %0 */ "r"(pattern),
/* %1 */ "r"(_graybuf->depth),
/* %2 */ "r"(address),
/* %3 */ "r"(mask),
/* %4 */ "r"(_graybuf->plane_size),
/* %5 */ "r"(random)
: /* clobbers */
"r1", "r2", "r3", "macl"
);
}
/* invert all bits for one pixel (low level routine) */
static void _invertpixel(int x, int y, unsigned long pattern)
{
register unsigned mask;
register unsigned char *address;
(void) pattern; /* not used for invert */
/* precalculate mask and byte address in first bitplane */
asm (
"mov %3,%0 \n" /* take y as base for address offset */
"shlr2 %0 \n" /* shift right by 3 (= divide by 8) */
"shlr %0 \n"
"mulu %0,%2 \n" /* multiply with width */
"and #7,%3 \n" /* get lower 3 bits of y */
"sts macl,%0 \n" /* get mulu result */
"add %4,%0 \n" /* add base + x to get final address */
"mov %3,%1 \n" /* move lower 3 bits of y out of r0 */
"mova .ip_masktable,%3\n" /* get address of mask table in r0 */
"bra .ip_predone \n" /* skip the table */
"mov.b @(%3,%1),%1 \n" /* get entry from mask table */
".align 2 \n"
".ip_masktable: \n" /* mask table */
".byte 0x01 \n"
".byte 0x02 \n"
".byte 0x04 \n"
".byte 0x08 \n"
".byte 0x10 \n"
".byte 0x20 \n"
".byte 0x40 \n"
".byte 0x80 \n"
".ip_predone: \n"
: /* outputs */
/* %0 */ "=&r"(address),
/* %1 */ "=&r"(mask)
: /* inputs */
/* %2 */ "r"(_graybuf->width),
/* %3 = r0 */ "z"(y),
/* %4 */ "r"(_graybuf->data + x)
: /* clobbers */
"macl"
);
/* invert bits in all bitplanes */
asm volatile (
"mov #0,r1 \n" /* current_plane = 0 */
".ip_loop: \n"
"mov.b @%1,r2 \n" /* get data byte */
"add #1,r1 \n" /* current_plane++; */
"xor %2,r2 \n" /* invert bits */
"mov.b r2,@%1 \n" /* store data byte */
"add %3,%1 \n" /* advance address to next bitplane */
"cmp/hi r1,%0 \n" /* current_plane < depth ? */
"bt .ip_loop \n"
: /* outputs */
: /* inputs */
/* %0 */ "r"(_graybuf->depth),
/* %1 */ "r"(address),
/* %2 */ "r"(mask),
/* %3 */ "r"(_graybuf->plane_size)
: /* clobbers */
"r1", "r2"
);
}
#endif // #ifdef HAVE_LCD_BITMAP
#endif // #ifndef SIMULATOR
|