summaryrefslogtreecommitdiff
path: root/apps/plugins/lib/fixedpoint.c
blob: 7b9b68a1e8843ac3e5d9250f73046437ac505a56 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
/***************************************************************************
 *             __________               __   ___.
 *   Open      \______   \ ____   ____ |  | _\_ |__   _______  ___
 *   Source     |       _//  _ \_/ ___\|  |/ /| __ \ /  _ \  \/  /
 *   Jukebox    |    |   (  <_> )  \___|    < | \_\ (  <_> > <  <
 *   Firmware   |____|_  /\____/ \___  >__|_ \|___  /\____/__/\_ \
 *                     \/            \/     \/    \/            \/
 * $Id$
 *
 * Copyright (C) 2006 Jens Arnold
 *
 * Fixed point library for plugins
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
 * KIND, either express or implied.
 *
 ****************************************************************************/

#include <inttypes.h>
#include "fixedpoint.h"

/* Inverse gain of circular cordic rotation in s0.31 format. */
static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */

/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
static const unsigned long atan_table[] = {
    0x1fffffff, /* +0.785398163 (or pi/4) */
    0x12e4051d, /* +0.463647609 */
    0x09fb385b, /* +0.244978663 */
    0x051111d4, /* +0.124354995 */
    0x028b0d43, /* +0.062418810 */
    0x0145d7e1, /* +0.031239833 */
    0x00a2f61e, /* +0.015623729 */
    0x00517c55, /* +0.007812341 */
    0x0028be53, /* +0.003906230 */
    0x00145f2e, /* +0.001953123 */
    0x000a2f98, /* +0.000976562 */
    0x000517cc, /* +0.000488281 */
    0x00028be6, /* +0.000244141 */
    0x000145f3, /* +0.000122070 */
    0x0000a2f9, /* +0.000061035 */
    0x0000517c, /* +0.000030518 */
    0x000028be, /* +0.000015259 */
    0x0000145f, /* +0.000007629 */
    0x00000a2f, /* +0.000003815 */
    0x00000517, /* +0.000001907 */
    0x0000028b, /* +0.000000954 */
    0x00000145, /* +0.000000477 */
    0x000000a2, /* +0.000000238 */
    0x00000051, /* +0.000000119 */
    0x00000028, /* +0.000000060 */
    0x00000014, /* +0.000000030 */
    0x0000000a, /* +0.000000015 */
    0x00000005, /* +0.000000007 */
    0x00000002, /* +0.000000004 */
    0x00000001, /* +0.000000002 */
    0x00000000, /* +0.000000001 */
    0x00000000, /* +0.000000000 */
};

/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
static const short sin_table[91] =
{
        0,   285,   571,   857,  1142,  1427,  1712,  1996,  2280,  2563,
     2845,  3126,  3406,  3685,  3963,  4240,  4516,  4790,  5062,  5334,
     5603,  5871,  6137,  6401,  6663,  6924,  7182,  7438,  7691,  7943,
     8191,  8438,  8682,  8923,  9161,  9397,  9630,  9860, 10086, 10310,
    10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
    12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
    14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
    15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
    16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
    16384
};

/**
 * Implements sin and cos using CORDIC rotation.
 *
 * @param phase has range from 0 to 0xffffffff, representing 0 and
 *        2*pi respectively.
 * @param cos return address for cos
 * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
 *         representing -1 and 1 respectively. 
 */
long fsincos(unsigned long phase, long *cos) 
{
    int32_t x, x1, y, y1;
    unsigned long z, z1;
    int i;

    /* Setup initial vector */
    x = cordic_circular_gain;
    y = 0;
    z = phase;

    /* The phase has to be somewhere between 0..pi for this to work right */
    if (z < 0xffffffff / 4) {
        /* z in first quadrant, z += pi/2 to correct */
        x = -x;
        z += 0xffffffff / 4;
    } else if (z < 3 * (0xffffffff / 4)) {
        /* z in third quadrant, z -= pi/2 to correct */
        z -= 0xffffffff / 4;
    } else {
        /* z in fourth quadrant, z -= 3pi/2 to correct */
        x = -x;
        z -= 3 * (0xffffffff / 4);
    }

    /* Each iteration adds roughly 1-bit of extra precision */
    for (i = 0; i < 31; i++) {
        x1 = x >> i;
        y1 = y >> i;
        z1 = atan_table[i];

        /* Decided which direction to rotate vector. Pivot point is pi/2 */
        if (z >= 0xffffffff / 4) {
            x -= y1;
            y += x1;
            z -= z1;
        } else {
            x += y1;
            y -= x1;
            z += z1;
        }
    }

    if (cos)
        *cos = x;

    return y;
}

/**
 * Fixed point square root via Newton-Raphson.
 * @param a square root argument.
 * @param fracbits specifies number of fractional bits in argument.
 * @return Square root of argument in same fixed point format as input. 
 */
long fsqrt(long a, unsigned int fracbits)
{
    long b = a/2 + (1 << fracbits); /* initial approximation */
    unsigned n;
    const unsigned iterations = 4;
    
    for (n = 0; n < iterations; ++n)
        b = (b + (long)(((long long)(a) << fracbits)/b))/2;

    return b;
}

/**
 * Fixed point sinus using a lookup table
 * don't forget to divide the result by 16384 to get the actual sinus value
 * @param val sinus argument in degree
 * @return sin(val)*16384
 */
long sin_int(int val)
{
    val = (val+360)%360;
    if (val < 181)
    {
        if (val < 91)/* phase 0-90 degree */
            return (long)sin_table[val];
        else/* phase 91-180 degree */
            return (long)sin_table[180-val];
    }
    else
    {
        if (val < 271)/* phase 181-270 degree */
            return -(long)sin_table[val-180];
        else/* phase 270-359 degree */
            return -(long)sin_table[360-val];
    }
    return 0;
}

/**
 * Fixed point cosinus using a lookup table
 * don't forget to divide the result by 16384 to get the actual cosinus value
 * @param val sinus argument in degree
 * @return cos(val)*16384
 */
long cos_int(int val)
{
    val = (val+360)%360;
    if (val < 181)
    {
        if (val < 91)/* phase 0-90 degree */
            return (long)sin_table[90-val];
        else/* phase 91-180 degree */
            return -(long)sin_table[val-90];
    }
    else
    {
        if (val < 271)/* phase 181-270 degree */
            return -(long)sin_table[270-val];
        else/* phase 270-359 degree */
            return (long)sin_table[val-270];
    }
    return 0;
}

/**
 * Fixed-point natural log
 * taken from http://www.quinapalus.com/efunc.html
 *  "The code assumes integers are at least 32 bits long. The (positive)
 *   argument and the result of the function are both expressed as fixed-point
 *   values with 16 fractional bits, although intermediates are kept with 28
 *   bits of precision to avoid loss of accuracy during shifts."
 */

long flog(int x) {
    long t,y;

    y=0xa65af;
    if(x<0x00008000) x<<=16,              y-=0xb1721;
    if(x<0x00800000) x<<= 8,              y-=0x58b91;
    if(x<0x08000000) x<<= 4,              y-=0x2c5c8;
    if(x<0x20000000) x<<= 2,              y-=0x162e4;
    if(x<0x40000000) x<<= 1,              y-=0x0b172;
    t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd;
    t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920;
    t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27;
    t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85;
    t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1;
    t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8;
    t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe;
    x=0x80000000-x;
    y-=x>>15;
    return y;
}