1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
|
/* Copyright (C) 2005 Jean-Marc Valin */
/**
@file pseudofloat.h
@brief Pseudo-floating point
* This header file provides a lightweight floating point type for
* use on fixed-point platforms when a large dynamic range is
* required. The new type is not compatible with the 32-bit IEEE format,
* it is not even remotely as accurate as 32-bit floats, and is not
* even guaranteed to produce even remotely correct results for code
* other than Speex. It makes all kinds of shortcuts that are acceptable
* for Speex, but may not be acceptable for your application. You're
* quite welcome to reuse this code and improve it, but don't assume
* it works out of the box. Most likely, it doesn't.
*/
/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
- Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
- Neither the name of the Xiph.org Foundation nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef PSEUDOFLOAT_H
#define PSEUDOFLOAT_H
#include "misc.h"
#include "math_approx.h"
#include <math.h>
#ifdef FIXED_POINT
typedef struct {
spx_int16_t m;
spx_int16_t e;
} spx_float_t;
static const spx_float_t FLOAT_ZERO = {0,0};
static const spx_float_t FLOAT_ONE = {16384,-14};
static const spx_float_t FLOAT_HALF = {16384,-15};
#define MIN(a,b) ((a)<(b)?(a):(b))
static inline spx_float_t PSEUDOFLOAT(spx_int32_t x)
{
int e=0;
int sign=0;
if (x<0)
{
sign = 1;
x = -x;
}
if (x==0)
{
spx_float_t r = {0,0};
return r;
}
e = spx_ilog2(ABS32(x))-14;
x = VSHR32(x, e);
if (sign)
{
spx_float_t r;
r.m = -x;
r.e = e;
return r;
}
else
{
spx_float_t r;
r.m = x;
r.e = e;
return r;
}
}
static inline spx_float_t FLOAT_ADD(spx_float_t a, spx_float_t b)
{
spx_float_t r;
if (a.m==0)
return b;
else if (b.m==0)
return a;
if ((a).e > (b).e)
{
r.m = ((a).m>>1) + ((b).m>>MIN(15,(a).e-(b).e+1));
r.e = (a).e+1;
}
else
{
r.m = ((b).m>>1) + ((a).m>>MIN(15,(b).e-(a).e+1));
r.e = (b).e+1;
}
if (r.m>0)
{
if (r.m<16384)
{
r.m<<=1;
r.e-=1;
}
} else {
if (r.m>-16384)
{
r.m<<=1;
r.e-=1;
}
}
/*printf ("%f + %f = %f\n", REALFLOAT(a), REALFLOAT(b), REALFLOAT(r));*/
return r;
}
static inline spx_float_t FLOAT_SUB(spx_float_t a, spx_float_t b)
{
spx_float_t r;
if (a.m==0)
return b;
else if (b.m==0)
return a;
if ((a).e > (b).e)
{
r.m = ((a).m>>1) - ((b).m>>MIN(15,(a).e-(b).e+1));
r.e = (a).e+1;
}
else
{
r.m = ((a).m>>MIN(15,(b).e-(a).e+1)) - ((b).m>>1);
r.e = (b).e+1;
}
if (r.m>0)
{
if (r.m<16384)
{
r.m<<=1;
r.e-=1;
}
} else {
if (r.m>-16384)
{
r.m<<=1;
r.e-=1;
}
}
/*printf ("%f + %f = %f\n", REALFLOAT(a), REALFLOAT(b), REALFLOAT(r));*/
return r;
}
static inline int FLOAT_LT(spx_float_t a, spx_float_t b)
{
if (a.m==0)
return b.m>0;
else if (b.m==0)
return a.m<0;
if ((a).e > (b).e)
return ((a).m>>1) < ((b).m>>MIN(15,(a).e-(b).e+1));
else
return ((b).m>>1) > ((a).m>>MIN(15,(b).e-(a).e+1));
}
static inline int FLOAT_GT(spx_float_t a, spx_float_t b)
{
return FLOAT_LT(b,a);
}
static inline spx_float_t FLOAT_MULT(spx_float_t a, spx_float_t b)
{
spx_float_t r;
r.m = (spx_int16_t)((spx_int32_t)(a).m*(b).m>>15);
r.e = (a).e+(b).e+15;
if (r.m>0)
{
if (r.m<16384)
{
r.m<<=1;
r.e-=1;
}
} else {
if (r.m>-16384)
{
r.m<<=1;
r.e-=1;
}
}
/*printf ("%f * %f = %f\n", REALFLOAT(a), REALFLOAT(b), REALFLOAT(r));*/
return r;
}
static inline spx_float_t FLOAT_AMULT(spx_float_t a, spx_float_t b)
{
spx_float_t r;
r.m = (spx_int16_t)((spx_int32_t)(a).m*(b).m>>15);
r.e = (a).e+(b).e+15;
return r;
}
static inline spx_float_t FLOAT_SHL(spx_float_t a, int b)
{
spx_float_t r;
r.m = a.m;
r.e = a.e+b;
return r;
}
static inline spx_int16_t FLOAT_EXTRACT16(spx_float_t a)
{
if (a.e<0)
return EXTRACT16((EXTEND32(a.m)+(EXTEND32(1)<<(-a.e-1)))>>-a.e);
else
return a.m<<a.e;
}
static inline spx_int32_t FLOAT_EXTRACT32(spx_float_t a)
{
if (a.e<0)
return (EXTEND32(a.m)+(EXTEND32(1)<<(-a.e-1)))>>-a.e;
else
return EXTEND32(a.m)<<a.e;
}
static inline spx_int32_t FLOAT_MUL32(spx_float_t a, spx_word32_t b)
{
return VSHR32(MULT16_32_Q15(a.m, b),-a.e-15);
}
static inline spx_float_t FLOAT_MUL32U(spx_word32_t a, spx_word32_t b)
{
int e1, e2;
spx_float_t r;
if (a==0 || b==0)
{
return FLOAT_ZERO;
}
e1 = spx_ilog2(ABS32(a));
a = VSHR32(a, e1-14);
e2 = spx_ilog2(ABS32(b));
b = VSHR32(b, e2-14);
r.m = MULT16_16_Q15(a,b);
r.e = e1+e2-13;
return r;
}
/* Do NOT attempt to divide by a negative number */
static inline spx_float_t FLOAT_DIV32_FLOAT(spx_word32_t a, spx_float_t b)
{
int e=0;
spx_float_t r;
if (a==0)
{
return FLOAT_ZERO;
}
e = spx_ilog2(ABS32(a))-spx_ilog2(b.m-1)-15;
a = VSHR32(a, e);
if (ABS32(a)>=SHL32(EXTEND32(b.m-1),15))
{
a >>= 1;
e++;
}
r.m = DIV32_16(a,b.m);
r.e = e-b.e;
return r;
}
/* Do NOT attempt to divide by a negative number */
static inline spx_float_t FLOAT_DIV32(spx_word32_t a, spx_word32_t b)
{
int e0=0,e=0;
spx_float_t r;
if (a==0)
{
return FLOAT_ZERO;
}
if (b>32767)
{
e0 = spx_ilog2(b)-14;
b = VSHR32(b, e0);
e0 = -e0;
}
e = spx_ilog2(ABS32(a))-spx_ilog2(b-1)-15;
a = VSHR32(a, e);
if (ABS32(a)>=SHL32(EXTEND32(b-1),15))
{
a >>= 1;
e++;
}
e += e0;
r.m = DIV32_16(a,b);
r.e = e;
return r;
}
/* Do NOT attempt to divide by a negative number */
static inline spx_float_t FLOAT_DIVU(spx_float_t a, spx_float_t b)
{
int e=0;
spx_int32_t num;
spx_float_t r;
if (b.m<=0)
{
speex_warning_int("Attempted to divide by", b.m);
return FLOAT_ONE;
}
num = a.m;
a.m = ABS16(a.m);
while (a.m >= b.m)
{
e++;
a.m >>= 1;
}
num = num << (15-e);
r.m = DIV32_16(num,b.m);
r.e = a.e-b.e-15+e;
return r;
}
static inline spx_float_t FLOAT_SQRT(spx_float_t a)
{
spx_float_t r;
spx_int32_t m;
m = SHL32(EXTEND32(a.m), 14);
r.e = a.e - 14;
if (r.e & 1)
{
r.e -= 1;
m <<= 1;
}
r.e >>= 1;
r.m = spx_sqrt(m);
return r;
}
#else
#define spx_float_t float
#define FLOAT_ZERO 0.f
#define FLOAT_ONE 1.f
#define FLOAT_HALF 0.5f
#define PSEUDOFLOAT(x) (x)
#define FLOAT_MULT(a,b) ((a)*(b))
#define FLOAT_AMULT(a,b) ((a)*(b))
#define FLOAT_MUL32(a,b) ((a)*(b))
#define FLOAT_DIV32(a,b) ((a)/(b))
#define FLOAT_EXTRACT16(a) (a)
#define FLOAT_EXTRACT32(a) (a)
#define FLOAT_ADD(a,b) ((a)+(b))
#define FLOAT_SUB(a,b) ((a)-(b))
#define REALFLOAT(x) (x)
#define FLOAT_DIV32_FLOAT(a,b) ((a)/(b))
#define FLOAT_MUL32U(a,b) ((a)*(b))
#define FLOAT_SHL(a,b) (a)
#define FLOAT_LT(a,b) ((a)<(b))
#define FLOAT_GT(a,b) ((a)>(b))
#define FLOAT_DIVU(a,b) ((a)/(b))
#define FLOAT_SQRT(a) (spx_sqrt(a))
#endif
#endif
|