1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
|
/*
demac - A Monkey's Audio decoder
$Id$
Copyright (C) Dave Chapman 2007
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
*/
/*
This example is intended to demonstrate how the decoder can be used in
embedded devices - there is no usage of dynamic memory (i.e. no
malloc/free) and small buffer sizes are chosen to minimise both the
memory usage and decoding latency.
This implementation requires the following memory and supports decoding of all APE files up to 24-bit Stereo.
32768 - data from the input stream to be presented to the decoder in one contiguous chunk.
18432 - decoding buffer (left channel)
18432 - decoding buffer (right channel)
17408+5120+2240 - buffers used for filter histories (compression levels 2000-5000)
In addition, this example uses a static 27648 byte buffer as temporary
storage for outputting the data to a WAV file but that could be
avoided by writing the decoded data one sample at a time.
*/
#include <stdio.h>
#include <inttypes.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include "demac.h"
#include "wavwrite.h"
#ifndef __WIN32__
#define O_BINARY 0
#endif
#define CALC_CRC 1
#define BLOCKS_PER_LOOP 4608
#define MAX_CHANNELS 2
#define MAX_BYTESPERSAMPLE 3
#define INPUT_CHUNKSIZE (32*1024)
#ifndef MIN
#define MIN(a,b) ((a) < (b) ? (a) : (b))
#endif
/* 4608*2*3 = 27648 bytes */
static unsigned char wavbuffer[BLOCKS_PER_LOOP*MAX_CHANNELS*MAX_BYTESPERSAMPLE];
/* 4608*4 = 18432 bytes per channel */
static int32_t decoded0[BLOCKS_PER_LOOP];
static int32_t decoded1[BLOCKS_PER_LOOP];
/* We assume that 32KB of compressed data is enough to extract up to
27648 bytes of decompressed data. */
static unsigned char inbuffer[INPUT_CHUNKSIZE];
int ape_decode(char* infile, char* outfile)
{
int fd;
int fdwav;
int currentframe;
int nblocks;
int bytesconsumed;
struct ape_ctx_t ape_ctx;
int i, n;
unsigned char* p;
int bytesinbuffer;
int blockstodecode;
int res;
int firstbyte;
int16_t sample16;
int32_t sample32;
uint32_t frame_crc;
int crc_errors = 0;
fd = open(infile,O_RDONLY|O_BINARY);
if (fd < 0) return -1;
/* Read the file headers to populate the ape_ctx struct */
if (ape_parseheader(fd,&ape_ctx) < 0) {
printf("Cannot read header\n");
close(fd);
return -1;
}
if ((ape_ctx.fileversion < APE_MIN_VERSION) || (ape_ctx.fileversion > APE_MAX_VERSION)) {
printf("Unsupported file version - %.2f\n", ape_ctx.fileversion/1000.0);
close(fd);
return -2;
}
//ape_dumpinfo(&ape_ctx);
printf("Decoding file - v%.2f, compression level %d\n",ape_ctx.fileversion/1000.0,ape_ctx.compressiontype);
/* Open the WAV file and write a canonical 44-byte WAV header
based on the audio format information in the ape_ctx struct.
NOTE: This example doesn't write the original WAV header and
tail data which are (optionally) stored in the APE file.
*/
fdwav = open_wav(&ape_ctx,outfile);
currentframe = 0;
/* Initialise the buffer */
lseek(fd, ape_ctx.firstframe, SEEK_SET);
bytesinbuffer = read(fd, inbuffer, INPUT_CHUNKSIZE);
firstbyte = 3; /* Take account of the little-endian 32-bit byte ordering */
/* The main decoding loop - we decode the frames a small chunk at a time */
while (currentframe < ape_ctx.totalframes)
{
/* Calculate how many blocks there are in this frame */
if (currentframe == (ape_ctx.totalframes - 1))
nblocks = ape_ctx.finalframeblocks;
else
nblocks = ape_ctx.blocksperframe;
ape_ctx.currentframeblocks = nblocks;
/* Initialise the frame decoder */
init_frame_decoder(&ape_ctx, inbuffer, &firstbyte, &bytesconsumed);
/* Update buffer */
memmove(inbuffer,inbuffer + bytesconsumed, bytesinbuffer - bytesconsumed);
bytesinbuffer -= bytesconsumed;
n = read(fd, inbuffer + bytesinbuffer, INPUT_CHUNKSIZE - bytesinbuffer);
bytesinbuffer += n;
#if CALC_CRC
frame_crc = ape_initcrc();
#endif
/* Decode the frame a chunk at a time */
while (nblocks > 0)
{
blockstodecode = MIN(BLOCKS_PER_LOOP, nblocks);
if ((res = decode_chunk(&ape_ctx, inbuffer, &firstbyte,
&bytesconsumed,
decoded0, decoded1,
blockstodecode)) < 0)
{
/* Frame decoding error, abort */
close(fd);
return res;
}
/* Convert the output samples to WAV format and write to output file */
p = wavbuffer;
if (ape_ctx.bps == 8) {
for (i = 0 ; i < blockstodecode ; i++)
{
/* 8 bit WAV uses unsigned samples */
*(p++) = (decoded0[i] + 0x80) & 0xff;
if (ape_ctx.channels == 2) {
*(p++) = (decoded1[i] + 0x80) & 0xff;
}
}
} else if (ape_ctx.bps == 16) {
for (i = 0 ; i < blockstodecode ; i++)
{
sample16 = decoded0[i];
*(p++) = sample16 & 0xff;
*(p++) = (sample16 >> 8) & 0xff;
if (ape_ctx.channels == 2) {
sample16 = decoded1[i];
*(p++) = sample16 & 0xff;
*(p++) = (sample16 >> 8) & 0xff;
}
}
} else if (ape_ctx.bps == 24) {
for (i = 0 ; i < blockstodecode ; i++)
{
sample32 = decoded0[i];
*(p++) = sample32 & 0xff;
*(p++) = (sample32 >> 8) & 0xff;
*(p++) = (sample32 >> 16) & 0xff;
if (ape_ctx.channels == 2) {
sample32 = decoded1[i];
*(p++) = sample32 & 0xff;
*(p++) = (sample32 >> 8) & 0xff;
*(p++) = (sample32 >> 16) & 0xff;
}
}
}
#if CALC_CRC
frame_crc = ape_updatecrc(wavbuffer, p - wavbuffer, frame_crc);
#endif
write(fdwav,wavbuffer,p - wavbuffer);
/* Update the buffer */
memmove(inbuffer,inbuffer + bytesconsumed, bytesinbuffer - bytesconsumed);
bytesinbuffer -= bytesconsumed;
n = read(fd, inbuffer + bytesinbuffer, INPUT_CHUNKSIZE - bytesinbuffer);
bytesinbuffer += n;
/* Decrement the block count */
nblocks -= blockstodecode;
}
#if CALC_CRC
frame_crc = ape_finishcrc(frame_crc);
if (ape_ctx.CRC != frame_crc)
{
fprintf(stderr,"CRC error in frame %d\n",currentframe);
crc_errors++;
}
#endif
currentframe++;
}
close(fd);
close(fdwav);
if (crc_errors > 0)
return -1;
else
return 0;
}
int main(int argc, char* argv[])
{
int res;
if (argc != 3) {
fprintf(stderr,"Usage: demac infile.ape outfile.wav\n");
return 0;
}
res = ape_decode(argv[1], argv[2]);
if (res < 0)
{
fprintf(stderr,"DECODING ERROR %d, ABORTING\n", res);
}
else
{
fprintf(stderr,"DECODED OK - NO CRC ERRORS.\n");
}
return 0;
}
|