summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--apps/SOURCES1
-rw-r--r--apps/codecs/adx.c119
-rw-r--r--apps/codecs/lib/SOURCES2
-rw-r--r--apps/codecs/lib/fixedpoint.h126
-rw-r--r--apps/codecs/spc.c1
-rw-r--r--apps/dsp.c1
-rw-r--r--apps/dsp.h80
-rw-r--r--apps/eq.c97
-rw-r--r--apps/eq.h1
-rw-r--r--apps/fixedpoint.c440
-rw-r--r--apps/fixedpoint.h197
-rw-r--r--apps/plugins/lib/SOURCES2
-rw-r--r--apps/plugins/lib/fixedpoint.c238
-rw-r--r--apps/replaygain.c181
14 files changed, 773 insertions, 713 deletions
diff --git a/apps/SOURCES b/apps/SOURCES
index 7475826015..f3acef1739 100644
--- a/apps/SOURCES
+++ b/apps/SOURCES
@@ -125,6 +125,7 @@ recorder/recording.c
#if INPUT_SRC_CAPS != 0
audio_path.c
#endif /* INPUT_SRC_CAPS != 0 */
+fixedpoint.c
pcmbuf.c
playback.c
codecs.c
diff --git a/apps/codecs/adx.c b/apps/codecs/adx.c
index cc36f6a908..e23b3d4f80 100644
--- a/apps/codecs/adx.c
+++ b/apps/codecs/adx.c
@@ -21,6 +21,7 @@
#include "codeclib.h"
#include "inttypes.h"
#include "math.h"
+#include "fixedpoint.h"
CODEC_HEADER
@@ -41,124 +42,6 @@ const long cutoff = 500;
static int16_t samples[WAV_CHUNK_SIZE] IBSS_ATTR;
-/* fixed point stuff from apps/plugins/lib/fixedpoint.c */
-
-/* Inverse gain of circular cordic rotation in s0.31 format. */
-static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
-
-/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
-static const unsigned long atan_table[] = {
- 0x1fffffff, /* +0.785398163 (or pi/4) */
- 0x12e4051d, /* +0.463647609 */
- 0x09fb385b, /* +0.244978663 */
- 0x051111d4, /* +0.124354995 */
- 0x028b0d43, /* +0.062418810 */
- 0x0145d7e1, /* +0.031239833 */
- 0x00a2f61e, /* +0.015623729 */
- 0x00517c55, /* +0.007812341 */
- 0x0028be53, /* +0.003906230 */
- 0x00145f2e, /* +0.001953123 */
- 0x000a2f98, /* +0.000976562 */
- 0x000517cc, /* +0.000488281 */
- 0x00028be6, /* +0.000244141 */
- 0x000145f3, /* +0.000122070 */
- 0x0000a2f9, /* +0.000061035 */
- 0x0000517c, /* +0.000030518 */
- 0x000028be, /* +0.000015259 */
- 0x0000145f, /* +0.000007629 */
- 0x00000a2f, /* +0.000003815 */
- 0x00000517, /* +0.000001907 */
- 0x0000028b, /* +0.000000954 */
- 0x00000145, /* +0.000000477 */
- 0x000000a2, /* +0.000000238 */
- 0x00000051, /* +0.000000119 */
- 0x00000028, /* +0.000000060 */
- 0x00000014, /* +0.000000030 */
- 0x0000000a, /* +0.000000015 */
- 0x00000005, /* +0.000000007 */
- 0x00000002, /* +0.000000004 */
- 0x00000001, /* +0.000000002 */
- 0x00000000, /* +0.000000001 */
- 0x00000000, /* +0.000000000 */
-};
-
-/**
- * Implements sin and cos using CORDIC rotation.
- *
- * @param phase has range from 0 to 0xffffffff, representing 0 and
- * 2*pi respectively.
- * @param cos return address for cos
- * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
- * representing -1 and 1 respectively.
- */
-static long fsincos(unsigned long phase, long *cos)
-{
- int32_t x, x1, y, y1;
- unsigned long z, z1;
- int i;
-
- /* Setup initial vector */
- x = cordic_circular_gain;
- y = 0;
- z = phase;
-
- /* The phase has to be somewhere between 0..pi for this to work right */
- if (z < 0xffffffff / 4) {
- /* z in first quadrant, z += pi/2 to correct */
- x = -x;
- z += 0xffffffff / 4;
- } else if (z < 3 * (0xffffffff / 4)) {
- /* z in third quadrant, z -= pi/2 to correct */
- z -= 0xffffffff / 4;
- } else {
- /* z in fourth quadrant, z -= 3pi/2 to correct */
- x = -x;
- z -= 3 * (0xffffffff / 4);
- }
-
- /* Each iteration adds roughly 1-bit of extra precision */
- for (i = 0; i < 31; i++) {
- x1 = x >> i;
- y1 = y >> i;
- z1 = atan_table[i];
-
- /* Decided which direction to rotate vector. Pivot point is pi/2 */
- if (z >= 0xffffffff / 4) {
- x -= y1;
- y += x1;
- z -= z1;
- } else {
- x += y1;
- y -= x1;
- z += z1;
- }
- }
-
- if (cos)
- *cos = x;
-
- return y;
-}
-
-/**
- * Fixed point square root via Newton-Raphson.
- * @param a square root argument.
- * @param fracbits specifies number of fractional bits in argument.
- * @return Square root of argument in same fixed point format as input.
- */
-static long fsqrt(long a, unsigned int fracbits)
-{
- long b = a/2 + (1 << fracbits); /* initial approximation */
- unsigned n;
- const unsigned iterations = 8; /* bumped up from 4 as it wasn't
- nearly enough for 28 fractional bits */
-
- for (n = 0; n < iterations; ++n)
- b = (b + (long)(((long long)(a) << fracbits)/b))/2;
-
- return b;
-}
-
/* this is the codec entry point */
enum codec_status codec_main(void)
{
diff --git a/apps/codecs/lib/SOURCES b/apps/codecs/lib/SOURCES
index cbb8e60372..a1730f656a 100644
--- a/apps/codecs/lib/SOURCES
+++ b/apps/codecs/lib/SOURCES
@@ -1,6 +1,6 @@
#if CONFIG_CODEC == SWCODEC /* software codec platforms */
codeclib.c
-
+../../fixedpoint.c
mdct2.c
#ifdef CPU_ARM
diff --git a/apps/codecs/lib/fixedpoint.h b/apps/codecs/lib/fixedpoint.h
new file mode 100644
index 0000000000..54ece27080
--- /dev/null
+++ b/apps/codecs/lib/fixedpoint.h
@@ -0,0 +1,126 @@
+/***************************************************************************
+ * __________ __ ___.
+ * Open \______ \ ____ ____ | | _\_ |__ _______ ___
+ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
+ * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
+ * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
+ * \/ \/ \/ \/ \/
+ * $Id: fixedpoint.h -1 $
+ *
+ * Copyright (C) 2006 Jens Arnold
+ *
+ * Fixed point library for plugins
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
+ * KIND, either express or implied.
+ *
+ ****************************************************************************/
+
+#ifndef _FIXEDPOINT_H
+#define _FIXEDPOINT_H
+
+#include <inttypes.h>
+
+/** TAKEN FROM apps/dsp.h */
+/* A bunch of fixed point assembler helper macros */
+#if defined(CPU_COLDFIRE)
+/* These macros use the Coldfire EMAC extension and need the MACSR flags set
+ * to fractional mode with no rounding.
+ */
+
+/* Multiply two S.31 fractional integers and return the sign bit and the
+ * 31 most significant bits of the result.
+ */
+#define FRACMUL(x, y) \
+({ \
+ long t; \
+ asm ("mac.l %[a], %[b], %%acc0\n\t" \
+ "movclr.l %%acc0, %[t]\n\t" \
+ : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
+ t; \
+})
+
+/* Multiply two S.31 fractional integers, and return the 32 most significant
+ * bits after a shift left by the constant z. NOTE: Only works for shifts of
+ * 1 to 8 on Coldfire!
+ */
+#define FRACMUL_SHL(x, y, z) \
+({ \
+ long t, t2; \
+ asm ("mac.l %[a], %[b], %%acc0\n\t" \
+ "moveq.l %[d], %[t]\n\t" \
+ "move.l %%accext01, %[t2]\n\t" \
+ "and.l %[mask], %[t2]\n\t" \
+ "lsr.l %[t], %[t2]\n\t" \
+ "movclr.l %%acc0, %[t]\n\t" \
+ "asl.l %[c], %[t]\n\t" \
+ "or.l %[t2], %[t]\n\t" \
+ : [t] "=&d" (t), [t2] "=&d" (t2) \
+ : [a] "r" (x), [b] "r" (y), [mask] "d" (0xff), \
+ [c] "i" ((z)), [d] "i" (8 - (z))); \
+ t; \
+})
+
+#elif defined(CPU_ARM)
+
+/* Multiply two S.31 fractional integers and return the sign bit and the
+ * 31 most significant bits of the result.
+ */
+#define FRACMUL(x, y) \
+({ \
+ long t, t2; \
+ asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
+ "mov %[t2], %[t2], asl #1\n\t" \
+ "orr %[t], %[t2], %[t], lsr #31\n\t" \
+ : [t] "=&r" (t), [t2] "=&r" (t2) \
+ : [a] "r" (x), [b] "r" (y)); \
+ t; \
+})
+
+/* Multiply two S.31 fractional integers, and return the 32 most significant
+ * bits after a shift left by the constant z.
+ */
+#define FRACMUL_SHL(x, y, z) \
+({ \
+ long t, t2; \
+ asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
+ "mov %[t2], %[t2], asl %[c]\n\t" \
+ "orr %[t], %[t2], %[t], lsr %[d]\n\t" \
+ : [t] "=&r" (t), [t2] "=&r" (t2) \
+ : [a] "r" (x), [b] "r" (y), \
+ [c] "M" ((z) + 1), [d] "M" (31 - (z))); \
+ t; \
+})
+
+#else
+
+#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
+#define FRACMUL_SHL(x, y, z) \
+((long)(((((long long) (x)) * ((long long) (y))) >> (31 - (z)))))
+
+#endif
+
+#define DIV64(x, y, z) (long)(((long long)(x) << (z))/(y))
+
+
+/** TAKEN FROM ORIGINAL fixedpoint.h */
+/* fast unsigned multiplication (16x16bit->32bit or 32x32bit->32bit,
+ * whichever is faster for the architecture) */
+#ifdef CPU_ARM
+#define FMULU(a, b) ((uint32_t) (((uint32_t) (a)) * ((uint32_t) (b))))
+#else /* SH1, coldfire */
+#define FMULU(a, b) ((uint32_t) (((uint16_t) (a)) * ((uint16_t) (b))))
+#endif
+
+long fsincos(unsigned long phase, long *cos);
+long fsqrt(long a, unsigned int fracbits);
+long cos_int(int val);
+long sin_int(int val);
+long flog(int x);
+
+#endif
diff --git a/apps/codecs/spc.c b/apps/codecs/spc.c
index 6ceb704c7c..d5313bfa47 100644
--- a/apps/codecs/spc.c
+++ b/apps/codecs/spc.c
@@ -26,6 +26,7 @@
/* DSP Based on Brad Martin's OpenSPC DSP emulator */
/* tag reading from sexyspc by John Brawn (John_Brawn@yahoo.com) and others */
#include "codeclib.h"
+#include "fixedpoint.h"
#include "libspc/spc_codec.h"
#include "libspc/spc_profiler.h"
diff --git a/apps/dsp.c b/apps/dsp.c
index a760865afb..66469304b0 100644
--- a/apps/dsp.c
+++ b/apps/dsp.c
@@ -33,6 +33,7 @@
#include "misc.h"
#include "tdspeed.h"
#include "buffer.h"
+#include "fixedpoint.h"
/* 16-bit samples are scaled based on these constants. The shift should be
* no more than 15.
diff --git a/apps/dsp.h b/apps/dsp.h
index 8c23c3053d..3d24b24245 100644
--- a/apps/dsp.h
+++ b/apps/dsp.h
@@ -64,86 +64,6 @@ enum {
DSP_CALLBACK_SET_STEREO_WIDTH
};
-/* A bunch of fixed point assembler helper macros */
-#if defined(CPU_COLDFIRE)
-/* These macros use the Coldfire EMAC extension and need the MACSR flags set
- * to fractional mode with no rounding.
- */
-
-/* Multiply two S.31 fractional integers and return the sign bit and the
- * 31 most significant bits of the result.
- */
-#define FRACMUL(x, y) \
-({ \
- long t; \
- asm ("mac.l %[a], %[b], %%acc0\n\t" \
- "movclr.l %%acc0, %[t]\n\t" \
- : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
- t; \
-})
-
-/* Multiply two S.31 fractional integers, and return the 32 most significant
- * bits after a shift left by the constant z. NOTE: Only works for shifts of
- * 1 to 8 on Coldfire!
- */
-#define FRACMUL_SHL(x, y, z) \
-({ \
- long t, t2; \
- asm ("mac.l %[a], %[b], %%acc0\n\t" \
- "moveq.l %[d], %[t]\n\t" \
- "move.l %%accext01, %[t2]\n\t" \
- "and.l %[mask], %[t2]\n\t" \
- "lsr.l %[t], %[t2]\n\t" \
- "movclr.l %%acc0, %[t]\n\t" \
- "asl.l %[c], %[t]\n\t" \
- "or.l %[t2], %[t]\n\t" \
- : [t] "=&d" (t), [t2] "=&d" (t2) \
- : [a] "r" (x), [b] "r" (y), [mask] "d" (0xff), \
- [c] "i" ((z)), [d] "i" (8 - (z))); \
- t; \
-})
-
-#elif defined(CPU_ARM)
-
-/* Multiply two S.31 fractional integers and return the sign bit and the
- * 31 most significant bits of the result.
- */
-#define FRACMUL(x, y) \
-({ \
- long t, t2; \
- asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
- "mov %[t2], %[t2], asl #1\n\t" \
- "orr %[t], %[t2], %[t], lsr #31\n\t" \
- : [t] "=&r" (t), [t2] "=&r" (t2) \
- : [a] "r" (x), [b] "r" (y)); \
- t; \
-})
-
-/* Multiply two S.31 fractional integers, and return the 32 most significant
- * bits after a shift left by the constant z.
- */
-#define FRACMUL_SHL(x, y, z) \
-({ \
- long t, t2; \
- asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
- "mov %[t2], %[t2], asl %[c]\n\t" \
- "orr %[t], %[t2], %[t], lsr %[d]\n\t" \
- : [t] "=&r" (t), [t2] "=&r" (t2) \
- : [a] "r" (x), [b] "r" (y), \
- [c] "M" ((z) + 1), [d] "M" (31 - (z))); \
- t; \
-})
-
-#else
-
-#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
-#define FRACMUL_SHL(x, y, z) \
-((long)(((((long long) (x)) * ((long long) (y))) >> (31 - (z)))))
-
-#endif
-
-#define DIV64(x, y, z) (long)(((long long)(x) << (z))/(y))
-
struct dsp_config;
int dsp_process(struct dsp_config *dsp, char *dest,
diff --git a/apps/eq.c b/apps/eq.c
index 5977200c9c..7b7fba341d 100644
--- a/apps/eq.c
+++ b/apps/eq.c
@@ -21,105 +21,10 @@
#include <inttypes.h>
#include "config.h"
-#include "dsp.h"
+#include "fixedpoint.h"
#include "eq.h"
#include "replaygain.h"
-/* Inverse gain of circular cordic rotation in s0.31 format. */
-static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
-
-/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
-static const unsigned long atan_table[] = {
- 0x1fffffff, /* +0.785398163 (or pi/4) */
- 0x12e4051d, /* +0.463647609 */
- 0x09fb385b, /* +0.244978663 */
- 0x051111d4, /* +0.124354995 */
- 0x028b0d43, /* +0.062418810 */
- 0x0145d7e1, /* +0.031239833 */
- 0x00a2f61e, /* +0.015623729 */
- 0x00517c55, /* +0.007812341 */
- 0x0028be53, /* +0.003906230 */
- 0x00145f2e, /* +0.001953123 */
- 0x000a2f98, /* +0.000976562 */
- 0x000517cc, /* +0.000488281 */
- 0x00028be6, /* +0.000244141 */
- 0x000145f3, /* +0.000122070 */
- 0x0000a2f9, /* +0.000061035 */
- 0x0000517c, /* +0.000030518 */
- 0x000028be, /* +0.000015259 */
- 0x0000145f, /* +0.000007629 */
- 0x00000a2f, /* +0.000003815 */
- 0x00000517, /* +0.000001907 */
- 0x0000028b, /* +0.000000954 */
- 0x00000145, /* +0.000000477 */
- 0x000000a2, /* +0.000000238 */
- 0x00000051, /* +0.000000119 */
- 0x00000028, /* +0.000000060 */
- 0x00000014, /* +0.000000030 */
- 0x0000000a, /* +0.000000015 */
- 0x00000005, /* +0.000000007 */
- 0x00000002, /* +0.000000004 */
- 0x00000001, /* +0.000000002 */
- 0x00000000, /* +0.000000001 */
- 0x00000000, /* +0.000000000 */
-};
-
-/**
- * Implements sin and cos using CORDIC rotation.
- *
- * @param phase has range from 0 to 0xffffffff, representing 0 and
- * 2*pi respectively.
- * @param cos return address for cos
- * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
- * representing -1 and 1 respectively.
- */
-static long fsincos(unsigned long phase, long *cos) {
- int32_t x, x1, y, y1;
- unsigned long z, z1;
- int i;
-
- /* Setup initial vector */
- x = cordic_circular_gain;
- y = 0;
- z = phase;
-
- /* The phase has to be somewhere between 0..pi for this to work right */
- if (z < 0xffffffff / 4) {
- /* z in first quadrant, z += pi/2 to correct */
- x = -x;
- z += 0xffffffff / 4;
- } else if (z < 3 * (0xffffffff / 4)) {
- /* z in third quadrant, z -= pi/2 to correct */
- z -= 0xffffffff / 4;
- } else {
- /* z in fourth quadrant, z -= 3pi/2 to correct */
- x = -x;
- z -= 3 * (0xffffffff / 4);
- }
-
- /* Each iteration adds roughly 1-bit of extra precision */
- for (i = 0; i < 31; i++) {
- x1 = x >> i;
- y1 = y >> i;
- z1 = atan_table[i];
-
- /* Decided which direction to rotate vector. Pivot point is pi/2 */
- if (z >= 0xffffffff / 4) {
- x -= y1;
- y += x1;
- z -= z1;
- } else {
- x += y1;
- y -= x1;
- z += z1;
- }
- }
-
- *cos = x;
-
- return y;
-}
-
/**
* Calculate first order shelving filter. Filter is not directly usable by the
* eq_filter() function.
diff --git a/apps/eq.h b/apps/eq.h
index 1c3efe50e9..a44e9153ac 100644
--- a/apps/eq.h
+++ b/apps/eq.h
@@ -23,6 +23,7 @@
#define _EQ_H
#include <inttypes.h>
+#include <stdbool.h>
/* These depend on the fixed point formats used by the different filter types
and need to be changed when they change.
diff --git a/apps/fixedpoint.c b/apps/fixedpoint.c
new file mode 100644
index 0000000000..b65070e348
--- /dev/null
+++ b/apps/fixedpoint.c
@@ -0,0 +1,440 @@
+/***************************************************************************
+ * __________ __ ___.
+ * Open \______ \ ____ ____ | | _\_ |__ _______ ___
+ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
+ * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
+ * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
+ * \/ \/ \/ \/ \/
+ * $Id: fixedpoint.c -1 $
+ *
+ * Copyright (C) 2006 Jens Arnold
+ *
+ * Fixed point library for plugins
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
+ * KIND, either express or implied.
+ *
+ ****************************************************************************/
+
+#include "fixedpoint.h"
+#include <stdlib.h>
+#include <stdbool.h>
+
+#ifndef BIT_N
+#define BIT_N(n) (1U << (n))
+#endif
+
+/** TAKEN FROM ORIGINAL fixedpoint.h */
+/* Inverse gain of circular cordic rotation in s0.31 format. */
+static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
+
+/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
+static const unsigned long atan_table[] = {
+ 0x1fffffff, /* +0.785398163 (or pi/4) */
+ 0x12e4051d, /* +0.463647609 */
+ 0x09fb385b, /* +0.244978663 */
+ 0x051111d4, /* +0.124354995 */
+ 0x028b0d43, /* +0.062418810 */
+ 0x0145d7e1, /* +0.031239833 */
+ 0x00a2f61e, /* +0.015623729 */
+ 0x00517c55, /* +0.007812341 */
+ 0x0028be53, /* +0.003906230 */
+ 0x00145f2e, /* +0.001953123 */
+ 0x000a2f98, /* +0.000976562 */
+ 0x000517cc, /* +0.000488281 */
+ 0x00028be6, /* +0.000244141 */
+ 0x000145f3, /* +0.000122070 */
+ 0x0000a2f9, /* +0.000061035 */
+ 0x0000517c, /* +0.000030518 */
+ 0x000028be, /* +0.000015259 */
+ 0x0000145f, /* +0.000007629 */
+ 0x00000a2f, /* +0.000003815 */
+ 0x00000517, /* +0.000001907 */
+ 0x0000028b, /* +0.000000954 */
+ 0x00000145, /* +0.000000477 */
+ 0x000000a2, /* +0.000000238 */
+ 0x00000051, /* +0.000000119 */
+ 0x00000028, /* +0.000000060 */
+ 0x00000014, /* +0.000000030 */
+ 0x0000000a, /* +0.000000015 */
+ 0x00000005, /* +0.000000007 */
+ 0x00000002, /* +0.000000004 */
+ 0x00000001, /* +0.000000002 */
+ 0x00000000, /* +0.000000001 */
+ 0x00000000, /* +0.000000000 */
+};
+
+/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
+static const short sin_table[91] =
+{
+ 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563,
+ 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334,
+ 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943,
+ 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310,
+ 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
+ 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
+ 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
+ 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
+ 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
+ 16384
+};
+
+/**
+ * Implements sin and cos using CORDIC rotation.
+ *
+ * @param phase has range from 0 to 0xffffffff, representing 0 and
+ * 2*pi respectively.
+ * @param cos return address for cos
+ * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
+ * representing -1 and 1 respectively.
+ */
+long fsincos(unsigned long phase, long *cos)
+{
+ int32_t x, x1, y, y1;
+ unsigned long z, z1;
+ int i;
+
+ /* Setup initial vector */
+ x = cordic_circular_gain;
+ y = 0;
+ z = phase;
+
+ /* The phase has to be somewhere between 0..pi for this to work right */
+ if (z < 0xffffffff / 4) {
+ /* z in first quadrant, z += pi/2 to correct */
+ x = -x;
+ z += 0xffffffff / 4;
+ } else if (z < 3 * (0xffffffff / 4)) {
+ /* z in third quadrant, z -= pi/2 to correct */
+ z -= 0xffffffff / 4;
+ } else {
+ /* z in fourth quadrant, z -= 3pi/2 to correct */
+ x = -x;
+ z -= 3 * (0xffffffff / 4);
+ }
+
+ /* Each iteration adds roughly 1-bit of extra precision */
+ for (i = 0; i < 31; i++) {
+ x1 = x >> i;
+ y1 = y >> i;
+ z1 = atan_table[i];
+
+ /* Decided which direction to rotate vector. Pivot point is pi/2 */
+ if (z >= 0xffffffff / 4) {
+ x -= y1;
+ y += x1;
+ z -= z1;
+ } else {
+ x += y1;
+ y -= x1;
+ z += z1;
+ }
+ }
+
+ if (cos)
+ *cos = x;
+
+ return y;
+}
+
+/**
+ * Fixed point square root via Newton-Raphson.
+ * @param x square root argument.
+ * @param fracbits specifies number of fractional bits in argument.
+ * @return Square root of argument in same fixed point format as input.
+ *
+ * This routine has been modified to run longer for greater precision,
+ * but cuts calculation short if the answer is reached sooner. In
+ * general, the closer x is to 1, the quicker the calculation.
+ */
+long fsqrt(long x, unsigned int fracbits)
+{
+ long b = x/2 + BIT_N(fracbits); /* initial approximation */
+ long c;
+ unsigned n;
+ const unsigned iterations = 8;
+
+ for (n = 0; n < iterations; ++n)
+ {
+ c = DIV64(x, b, fracbits);
+ if (c == b) break;
+ b = (b + c)/2;
+ }
+
+ return b;
+}
+
+/**
+ * Fixed point sinus using a lookup table
+ * don't forget to divide the result by 16384 to get the actual sinus value
+ * @param val sinus argument in degree
+ * @return sin(val)*16384
+ */
+long sin_int(int val)
+{
+ val = (val+360)%360;
+ if (val < 181)
+ {
+ if (val < 91)/* phase 0-90 degree */
+ return (long)sin_table[val];
+ else/* phase 91-180 degree */
+ return (long)sin_table[180-val];
+ }
+ else
+ {
+ if (val < 271)/* phase 181-270 degree */
+ return -(long)sin_table[val-180];
+ else/* phase 270-359 degree */
+ return -(long)sin_table[360-val];
+ }
+ return 0;
+}
+
+/**
+ * Fixed point cosinus using a lookup table
+ * don't forget to divide the result by 16384 to get the actual cosinus value
+ * @param val sinus argument in degree
+ * @return cos(val)*16384
+ */
+long cos_int(int val)
+{
+ val = (val+360)%360;
+ if (val < 181)
+ {
+ if (val < 91)/* phase 0-90 degree */
+ return (long)sin_table[90-val];
+ else/* phase 91-180 degree */
+ return -(long)sin_table[val-90];
+ }
+ else
+ {
+ if (val < 271)/* phase 181-270 degree */
+ return -(long)sin_table[270-val];
+ else/* phase 270-359 degree */
+ return (long)sin_table[val-270];
+ }
+ return 0;
+}
+
+/**
+ * Fixed-point natural log
+ * taken from http://www.quinapalus.com/efunc.html
+ * "The code assumes integers are at least 32 bits long. The (positive)
+ * argument and the result of the function are both expressed as fixed-point
+ * values with 16 fractional bits, although intermediates are kept with 28
+ * bits of precision to avoid loss of accuracy during shifts."
+ */
+
+long flog(int x) {
+ long t,y;
+
+ y=0xa65af;
+ if(x<0x00008000) x<<=16, y-=0xb1721;
+ if(x<0x00800000) x<<= 8, y-=0x58b91;
+ if(x<0x08000000) x<<= 4, y-=0x2c5c8;
+ if(x<0x20000000) x<<= 2, y-=0x162e4;
+ if(x<0x40000000) x<<= 1, y-=0x0b172;
+ t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd;
+ t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920;
+ t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27;
+ t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85;
+ t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1;
+ t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8;
+ t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe;
+ x=0x80000000-x;
+ y-=x>>15;
+ return y;
+}
+
+/** MODIFIED FROM replaygain.c */
+/* These math routines have 64-bit internal precision to avoid overflows.
+ * Arguments and return values are 32-bit (long) precision.
+ */
+
+#define FP_MUL64(x, y) (((x) * (y)) >> (fracbits))
+#define FP_DIV64(x, y) (((x) << (fracbits)) / (y))
+
+static long long fp_exp10(long long x, unsigned int fracbits);
+static long long fp_log10(long long n, unsigned int fracbits);
+
+/* constants in fixed point format, 28 fractional bits */
+#define FP28_LN2 (186065279LL) /* ln(2) */
+#define FP28_LN2_INV (387270501LL) /* 1/ln(2) */
+#define FP28_EXP_ZERO (44739243LL) /* 1/6 */
+#define FP28_EXP_ONE (-745654LL) /* -1/360 */
+#define FP28_EXP_TWO (12428LL) /* 1/21600 */
+#define FP28_LN10 (618095479LL) /* ln(10) */
+#define FP28_LOG10OF2 (80807124LL) /* log10(2) */
+
+#define TOL_BITS 2 /* log calculation tolerance */
+
+
+/* The fpexp10 fixed point math routine is based
+ * on oMathFP by Dan Carter (http://orbisstudios.com).
+ */
+
+/** FIXED POINT EXP10
+ * Return 10^x as FP integer. Argument is FP integer.
+ */
+static long long fp_exp10(long long x, unsigned int fracbits)
+{
+ long long k;
+ long long z;
+ long long R;
+ long long xp;
+
+ /* scale constants */
+ const long long fp_one = (1 << fracbits);
+ const long long fp_half = (1 << (fracbits - 1));
+ const long long fp_two = (2 << fracbits);
+ const long long fp_mask = (fp_one - 1);
+ const long long fp_ln2_inv = (FP28_LN2_INV >> (28 - fracbits));
+ const long long fp_ln2 = (FP28_LN2 >> (28 - fracbits));
+ const long long fp_ln10 = (FP28_LN10 >> (28 - fracbits));
+ const long long fp_exp_zero = (FP28_EXP_ZERO >> (28 - fracbits));
+ const long long fp_exp_one = (FP28_EXP_ONE >> (28 - fracbits));
+ const long long fp_exp_two = (FP28_EXP_TWO >> (28 - fracbits));
+
+ /* exp(0) = 1 */
+ if (x == 0)
+ {
+ return fp_one;
+ }
+
+ /* convert from base 10 to base e */
+ x = FP_MUL64(x, fp_ln10);
+
+ /* calculate exp(x) */
+ k = (FP_MUL64(abs(x), fp_ln2_inv) + fp_half) & ~fp_mask;
+
+ if (x < 0)
+ {
+ k = -k;
+ }
+
+ x -= FP_MUL64(k, fp_ln2);
+ z = FP_MUL64(x, x);
+ R = fp_two + FP_MUL64(z, fp_exp_zero + FP_MUL64(z, fp_exp_one
+ + FP_MUL64(z, fp_exp_two)));
+ xp = fp_one + FP_DIV64(FP_MUL64(fp_two, x), R - x);
+
+ if (k < 0)
+ {
+ k = fp_one >> (-k >> fracbits);
+ }
+ else
+ {
+ k = fp_one << (k >> fracbits);
+ }
+
+ return FP_MUL64(k, xp);
+}
+
+
+/** FIXED POINT LOG10
+ * Return log10(x) as FP integer. Argument is FP integer.
+ */
+static long long fp_log10(long long n, unsigned int fracbits)
+{
+ /* Calculate log2 of argument */
+
+ long long log2, frac;
+ const long long fp_one = (1 << fracbits);
+ const long long fp_two = (2 << fracbits);
+ const long tolerance = (1 << ((fracbits / 2) + 2));
+
+ if (n <=0) return FP_NEGINF;
+ log2 = 0;
+
+ /* integer part */
+ while (n < fp_one)
+ {
+ log2 -= fp_one;
+ n <<= 1;
+ }
+ while (n >= fp_two)
+ {
+ log2 += fp_one;
+ n >>= 1;
+ }
+
+ /* fractional part */
+ frac = fp_one;
+ while (frac > tolerance)
+ {
+ frac >>= 1;
+ n = FP_MUL64(n, n);
+ if (n >= fp_two)
+ {
+ n >>= 1;
+ log2 += frac;
+ }
+ }
+
+ /* convert log2 to log10 */
+ return FP_MUL64(log2, (FP28_LOG10OF2 >> (28 - fracbits)));
+}
+
+
+/** CONVERT FACTOR TO DECIBELS */
+long fp_decibels(unsigned long factor, unsigned int fracbits)
+{
+ long long decibels;
+ long long f = (long long)factor;
+ bool neg;
+
+ /* keep factor in signed long range */
+ if (f >= (1LL << 31))
+ f = (1LL << 31) - 1;
+
+ /* decibels = 20 * log10(factor) */
+ decibels = FP_MUL64((20LL << fracbits), fp_log10(f, fracbits));
+
+ /* keep result in signed long range */
+ if ((neg = (decibels < 0)))
+ decibels = -decibels;
+ if (decibels >= (1LL << 31))
+ return neg ? FP_NEGINF : FP_INF;
+
+ return neg ? (long)-decibels : (long)decibels;
+}
+
+
+/** CONVERT DECIBELS TO FACTOR */
+long fp_factor(long decibels, unsigned int fracbits)
+{
+ bool neg;
+ long long factor;
+ long long db = (long long)decibels;
+
+ /* if decibels is 0, factor is 1 */
+ if (db == 0)
+ return (1L << fracbits);
+
+ /* calculate for positive decibels only */
+ if ((neg = (db < 0)))
+ db = -db;
+
+ /* factor = 10 ^ (decibels / 20) */
+ factor = fp_exp10(FP_DIV64(db, (20LL << fracbits)), fracbits);
+
+ /* keep result in signed long range, return 0 if very small */
+ if (factor >= (1LL << 31))
+ {
+ if (neg)
+ return 0;
+ else
+ return FP_INF;
+ }
+
+ /* if negative argument, factor is 1 / result */
+ if (neg)
+ factor = FP_DIV64((1LL << fracbits), factor);
+
+ return (long)factor;
+}
diff --git a/apps/fixedpoint.h b/apps/fixedpoint.h
new file mode 100644
index 0000000000..a3ca6ee6ed
--- /dev/null
+++ b/apps/fixedpoint.h
@@ -0,0 +1,197 @@
+/***************************************************************************
+ * __________ __ ___.
+ * Open \______ \ ____ ____ | | _\_ |__ _______ ___
+ * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
+ * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
+ * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
+ * \/ \/ \/ \/ \/
+ * $Id: fixedpoint.h -1 $
+ *
+ * Copyright (C) 2006 Jens Arnold
+ *
+ * Fixed point library for plugins
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License
+ * as published by the Free Software Foundation; either version 2
+ * of the License, or (at your option) any later version.
+ *
+ * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
+ * KIND, either express or implied.
+ *
+ ****************************************************************************/
+
+/** FIXED POINT MATH ROUTINES - USAGE
+ *
+ * - x and y arguments are fixed point integers
+ * - fracbits is the number of fractional bits in the argument(s)
+ * - functions return long fixed point integers with the specified number
+ * of fractional bits unless otherwise specified
+ *
+ * Multiply two fixed point numbers:
+ * fp_mul(x, y, fracbits)
+ *
+ * Shortcut: Multiply two fixed point numbers with 31 fractional bits:
+ * fp31_mul(x, y)
+ *
+ * Shortcut: Multiply two fixed point numbers with 31 fractional bits,
+ * then shift left by z bits:
+ * fp31_mulshl(x, y, z)
+ * NOTE: z must be in the range 1-8 on Coldfire targets.
+ *
+ * Divide two fixed point numbers:
+ * fp_div(x, y, fracbits)
+ *
+ * Take square root of a fixed point number:
+ * fp_sqrt(x, fracbits)
+ *
+ * Calculate sin and cos of an angle:
+ * fp_sincos(phase, *cos)
+ * where phase is a 32 bit unsigned integer with 0 representing 0
+ * and 0xFFFFFFFF representing 2*pi, and *cos is the address to
+ * a long signed integer. Value returned is a long signed integer
+ * from LONG_MIN to LONG_MAX, representing -1 to 1 respectively.
+ * That is, value is a fixed point integer with 31 fractional bits.
+ *
+ * Calculate sin or cos of an angle (very fast, from a table):
+ * fp14_sin(angle)
+ * fp14_cos(angle)
+ * where angle is a non-fixed point integer in degrees. Value
+ * returned is a fixed point integer with 14 fractional bits.
+ *
+ * Calculate decibel equivalent of a gain factor:
+ * fp_decibels(factor, fracbits)
+ * where fracbits is in the range 12 to 22 (higher is better),
+ * and factor is a positive fixed point integer.
+ *
+ * Calculate factor equivalent of a decibel value:
+ * fp_factor(decibels, fracbits)
+ * where fracbits is in the range 12 to 22 (lower is better),
+ * and decibels is a fixed point integer.
+ */
+
+#ifndef _FIXEDPOINT_H
+#define _FIXEDPOINT_H
+
+#include <inttypes.h>
+
+/* Redefine function names, making sure legacy code is usable */
+#define fp31_mul(x, y) FRACMUL(x, y)
+#define fp31_mulshl(x, y, z) FRACMUL_SHL(x, y, z)
+#define fp_div(x, y, z) DIV64(x, y, z)
+#define fp_sqrt(x, y) fsqrt(x, y)
+#define fp_sincos(x, y) fsincos(x, y)
+#define fp14_sin(x) sin_int(x)
+#define fp14_cos(x) cos_int(x)
+#define fp16_log(x) flog(x)
+
+
+#define fp_mul(x, y, z) (long)((((long long)(x)) * ((long long)(y))) >> (z))
+#define DIV64(x, y, z) (long)((((long long)(x)) << (z)) / ((long long)(y)))
+
+/** TAKEN FROM apps/dsp.h */
+/* A bunch of fixed point assembler helper macros */
+#if defined(CPU_COLDFIRE)
+/* These macros use the Coldfire EMAC extension and need the MACSR flags set
+ * to fractional mode with no rounding.
+ */
+
+/* Multiply two S.31 fractional integers and return the sign bit and the
+ * 31 most significant bits of the result.
+ */
+#define FRACMUL(x, y) \
+({ \
+ long t; \
+ asm ("mac.l %[a], %[b], %%acc0\n\t" \
+ "movclr.l %%acc0, %[t]\n\t" \
+ : [t] "=r" (t) : [a] "r" (x), [b] "r" (y)); \
+ t; \
+})
+
+/* Multiply two S.31 fractional integers, and return the 32 most significant
+ * bits after a shift left by the constant z. NOTE: Only works for shifts of
+ * 1 to 8 on Coldfire!
+ */
+#define FRACMUL_SHL(x, y, z) \
+({ \
+ long t, t2; \
+ asm ("mac.l %[a], %[b], %%acc0\n\t" \
+ "moveq.l %[d], %[t]\n\t" \
+ "move.l %%accext01, %[t2]\n\t" \
+ "and.l %[mask], %[t2]\n\t" \
+ "lsr.l %[t], %[t2]\n\t" \
+ "movclr.l %%acc0, %[t]\n\t" \
+ "asl.l %[c], %[t]\n\t" \
+ "or.l %[t2], %[t]\n\t" \
+ : [t] "=&d" (t), [t2] "=&d" (t2) \
+ : [a] "r" (x), [b] "r" (y), [mask] "d" (0xff), \
+ [c] "i" ((z)), [d] "i" (8 - (z))); \
+ t; \
+})
+
+#elif defined(CPU_ARM)
+
+/* Multiply two S.31 fractional integers and return the sign bit and the
+ * 31 most significant bits of the result.
+ */
+#define FRACMUL(x, y) \
+({ \
+ long t, t2; \
+ asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
+ "mov %[t2], %[t2], asl #1\n\t" \
+ "orr %[t], %[t2], %[t], lsr #31\n\t" \
+ : [t] "=&r" (t), [t2] "=&r" (t2) \
+ : [a] "r" (x), [b] "r" (y)); \
+ t; \
+})
+
+/* Multiply two S.31 fractional integers, and return the 32 most significant
+ * bits after a shift left by the constant z.
+ */
+#define FRACMUL_SHL(x, y, z) \
+({ \
+ long t, t2; \
+ asm ("smull %[t], %[t2], %[a], %[b]\n\t" \
+ "mov %[t2], %[t2], asl %[c]\n\t" \
+ "orr %[t], %[t2], %[t], lsr %[d]\n\t" \
+ : [t] "=&r" (t), [t2] "=&r" (t2) \
+ : [a] "r" (x), [b] "r" (y), \
+ [c] "M" ((z) + 1), [d] "M" (31 - (z))); \
+ t; \
+})
+
+#else
+
+#define FRACMUL(x, y) (long) (((((long long) (x)) * ((long long) (y))) >> 31))
+#define FRACMUL_SHL(x, y, z) \
+((long)(((((long long) (x)) * ((long long) (y))) >> (31 - (z)))))
+
+#endif
+
+/** TAKEN FROM ORIGINAL fixedpoint.h */
+/* fast unsigned multiplication (16x16bit->32bit or 32x32bit->32bit,
+ * whichever is faster for the architecture) */
+#ifdef CPU_ARM
+#define FMULU(a, b) ((uint32_t) (((uint32_t) (a)) * ((uint32_t) (b))))
+#else /* SH1, coldfire */
+#define FMULU(a, b) ((uint32_t) (((uint16_t) (a)) * ((uint16_t) (b))))
+#endif
+
+long fsincos(unsigned long phase, long *cos);
+long fsqrt(long x, unsigned int fracbits);
+long sin_int(int val);
+long cos_int(int val);
+long flog(int x);
+
+
+/** MODIFIED FROM replaygain.c */
+#define FP_INF (0x7fffffff)
+#define FP_NEGINF -(0x7fffffff)
+
+/* fracbits in range 12 - 22 work well. Higher is better for
+ * calculating dB, lower is better for calculating ratio.
+ */
+long fp_decibels(unsigned long factor, unsigned int fracbits);
+long fp_factor(long decibels, unsigned int fracbits);
+
+#endif
diff --git a/apps/plugins/lib/SOURCES b/apps/plugins/lib/SOURCES
index 02adb7089c..bcce3f2969 100644
--- a/apps/plugins/lib/SOURCES
+++ b/apps/plugins/lib/SOURCES
@@ -1,7 +1,7 @@
gcc-support.c
jhash.c
configfile.c
-fixedpoint.c
+../../fixedpoint.c
playback_control.c
rgb_hsv.c
buflib.c
diff --git a/apps/plugins/lib/fixedpoint.c b/apps/plugins/lib/fixedpoint.c
index 0ae2cded69..e69de29bb2 100644
--- a/apps/plugins/lib/fixedpoint.c
+++ b/apps/plugins/lib/fixedpoint.c
@@ -1,238 +0,0 @@
-/***************************************************************************
- * __________ __ ___.
- * Open \______ \ ____ ____ | | _\_ |__ _______ ___
- * Source | _// _ \_/ ___\| |/ /| __ \ / _ \ \/ /
- * Jukebox | | ( <_> ) \___| < | \_\ ( <_> > < <
- * Firmware |____|_ /\____/ \___ >__|_ \|___ /\____/__/\_ \
- * \/ \/ \/ \/ \/
- * $Id$
- *
- * Copyright (C) 2006 Jens Arnold
- *
- * Fixed point library for plugins
- *
- * This program is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public License
- * as published by the Free Software Foundation; either version 2
- * of the License, or (at your option) any later version.
- *
- * This software is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY
- * KIND, either express or implied.
- *
- ****************************************************************************/
-
-#include <inttypes.h>
-#include "plugin.h"
-#include "fixedpoint.h"
-
-/* Inverse gain of circular cordic rotation in s0.31 format. */
-static const long cordic_circular_gain = 0xb2458939; /* 0.607252929 */
-
-/* Table of values of atan(2^-i) in 0.32 format fractions of pi where pi = 0xffffffff / 2 */
-static const unsigned long atan_table[] = {
- 0x1fffffff, /* +0.785398163 (or pi/4) */
- 0x12e4051d, /* +0.463647609 */
- 0x09fb385b, /* +0.244978663 */
- 0x051111d4, /* +0.124354995 */
- 0x028b0d43, /* +0.062418810 */
- 0x0145d7e1, /* +0.031239833 */
- 0x00a2f61e, /* +0.015623729 */
- 0x00517c55, /* +0.007812341 */
- 0x0028be53, /* +0.003906230 */
- 0x00145f2e, /* +0.001953123 */
- 0x000a2f98, /* +0.000976562 */
- 0x000517cc, /* +0.000488281 */
- 0x00028be6, /* +0.000244141 */
- 0x000145f3, /* +0.000122070 */
- 0x0000a2f9, /* +0.000061035 */
- 0x0000517c, /* +0.000030518 */
- 0x000028be, /* +0.000015259 */
- 0x0000145f, /* +0.000007629 */
- 0x00000a2f, /* +0.000003815 */
- 0x00000517, /* +0.000001907 */
- 0x0000028b, /* +0.000000954 */
- 0x00000145, /* +0.000000477 */
- 0x000000a2, /* +0.000000238 */
- 0x00000051, /* +0.000000119 */
- 0x00000028, /* +0.000000060 */
- 0x00000014, /* +0.000000030 */
- 0x0000000a, /* +0.000000015 */
- 0x00000005, /* +0.000000007 */
- 0x00000002, /* +0.000000004 */
- 0x00000001, /* +0.000000002 */
- 0x00000000, /* +0.000000001 */
- 0x00000000, /* +0.000000000 */
-};
-
-/* Precalculated sine and cosine * 16384 (2^14) (fixed point 18.14) */
-static const short sin_table[91] =
-{
- 0, 285, 571, 857, 1142, 1427, 1712, 1996, 2280, 2563,
- 2845, 3126, 3406, 3685, 3963, 4240, 4516, 4790, 5062, 5334,
- 5603, 5871, 6137, 6401, 6663, 6924, 7182, 7438, 7691, 7943,
- 8191, 8438, 8682, 8923, 9161, 9397, 9630, 9860, 10086, 10310,
- 10531, 10748, 10963, 11173, 11381, 11585, 11785, 11982, 12175, 12365,
- 12550, 12732, 12910, 13084, 13254, 13420, 13582, 13740, 13894, 14043,
- 14188, 14329, 14466, 14598, 14725, 14848, 14967, 15081, 15190, 15295,
- 15395, 15491, 15582, 15668, 15749, 15825, 15897, 15964, 16025, 16082,
- 16135, 16182, 16224, 16261, 16294, 16321, 16344, 16361, 16374, 16381,
- 16384
-};
-
-/**
- * Implements sin and cos using CORDIC rotation.
- *
- * @param phase has range from 0 to 0xffffffff, representing 0 and
- * 2*pi respectively.
- * @param cos return address for cos
- * @return sin of phase, value is a signed value from LONG_MIN to LONG_MAX,
- * representing -1 and 1 respectively.
- */
-long fsincos(unsigned long phase, long *cos)
-{
- int32_t x, x1, y, y1;
- unsigned long z, z1;
- int i;
-
- /* Setup initial vector */
- x = cordic_circular_gain;
- y = 0;
- z = phase;
-
- /* The phase has to be somewhere between 0..pi for this to work right */
- if (z < 0xffffffff / 4) {
- /* z in first quadrant, z += pi/2 to correct */
- x = -x;
- z += 0xffffffff / 4;
- } else if (z < 3 * (0xffffffff / 4)) {
- /* z in third quadrant, z -= pi/2 to correct */
- z -= 0xffffffff / 4;
- } else {
- /* z in fourth quadrant, z -= 3pi/2 to correct */
- x = -x;
- z -= 3 * (0xffffffff / 4);
- }
-
- /* Each iteration adds roughly 1-bit of extra precision */
- for (i = 0; i < 31; i++) {
- x1 = x >> i;
- y1 = y >> i;
- z1 = atan_table[i];
-
- /* Decided which direction to rotate vector. Pivot point is pi/2 */
- if (z >= 0xffffffff / 4) {
- x -= y1;
- y += x1;
- z -= z1;
- } else {
- x += y1;
- y -= x1;
- z += z1;
- }
- }
-
- if (cos)
- *cos = x;
-
- return y;
-}
-
-/**
- * Fixed point square root via Newton-Raphson.
- * @param a square root argument.
- * @param fracbits specifies number of fractional bits in argument.
- * @return Square root of argument in same fixed point format as input.
- */
-long fsqrt(long a, unsigned int fracbits)
-{
- long b = a/2 + BIT_N(fracbits); /* initial approximation */
- unsigned n;
- const unsigned iterations = 4;
-
- for (n = 0; n < iterations; ++n)
- b = (b + (long)(((long long)(a) << fracbits)/b))/2;
-
- return b;
-}
-
-/**
- * Fixed point sinus using a lookup table
- * don't forget to divide the result by 16384 to get the actual sinus value
- * @param val sinus argument in degree
- * @return sin(val)*16384
- */
-long sin_int(int val)
-{
- val = (val+360)%360;
- if (val < 181)
- {
- if (val < 91)/* phase 0-90 degree */
- return (long)sin_table[val];
- else/* phase 91-180 degree */
- return (long)sin_table[180-val];
- }
- else
- {
- if (val < 271)/* phase 181-270 degree */
- return -(long)sin_table[val-180];
- else/* phase 270-359 degree */
- return -(long)sin_table[360-val];
- }
- return 0;
-}
-
-/**
- * Fixed point cosinus using a lookup table
- * don't forget to divide the result by 16384 to get the actual cosinus value
- * @param val sinus argument in degree
- * @return cos(val)*16384
- */
-long cos_int(int val)
-{
- val = (val+360)%360;
- if (val < 181)
- {
- if (val < 91)/* phase 0-90 degree */
- return (long)sin_table[90-val];
- else/* phase 91-180 degree */
- return -(long)sin_table[val-90];
- }
- else
- {
- if (val < 271)/* phase 181-270 degree */
- return -(long)sin_table[270-val];
- else/* phase 270-359 degree */
- return (long)sin_table[val-270];
- }
- return 0;
-}
-
-/**
- * Fixed-point natural log
- * taken from http://www.quinapalus.com/efunc.html
- * "The code assumes integers are at least 32 bits long. The (positive)
- * argument and the result of the function are both expressed as fixed-point
- * values with 16 fractional bits, although intermediates are kept with 28
- * bits of precision to avoid loss of accuracy during shifts."
- */
-
-long flog(int x) {
- long t,y;
-
- y=0xa65af;
- if(x<0x00008000) x<<=16, y-=0xb1721;
- if(x<0x00800000) x<<= 8, y-=0x58b91;
- if(x<0x08000000) x<<= 4, y-=0x2c5c8;
- if(x<0x20000000) x<<= 2, y-=0x162e4;
- if(x<0x40000000) x<<= 1, y-=0x0b172;
- t=x+(x>>1); if((t&0x80000000)==0) x=t,y-=0x067cd;
- t=x+(x>>2); if((t&0x80000000)==0) x=t,y-=0x03920;
- t=x+(x>>3); if((t&0x80000000)==0) x=t,y-=0x01e27;
- t=x+(x>>4); if((t&0x80000000)==0) x=t,y-=0x00f85;
- t=x+(x>>5); if((t&0x80000000)==0) x=t,y-=0x007e1;
- t=x+(x>>6); if((t&0x80000000)==0) x=t,y-=0x003f8;
- t=x+(x>>7); if((t&0x80000000)==0) x=t,y-=0x001fe;
- x=0x80000000-x;
- y-=x>>15;
- return y;
-}
diff --git a/apps/replaygain.c b/apps/replaygain.c
index 90944f91d0..b398afc294 100644
--- a/apps/replaygain.c
+++ b/apps/replaygain.c
@@ -30,188 +30,11 @@
#include "metadata.h"
#include "debug.h"
#include "replaygain.h"
-
-/* The fixed point math routines (with the exception of fp_atof) are based
- * on oMathFP by Dan Carter (http://orbisstudios.com).
- */
-
-/* 12 bits of precision gives fairly accurate result, but still allows a
- * compact implementation. The math code supports up to 13...
- */
+#include "fixedpoint.h"
#define FP_BITS (12)
-#define FP_MASK ((1 << FP_BITS) - 1)
#define FP_ONE (1 << FP_BITS)
-#define FP_TWO (2 << FP_BITS)
-#define FP_HALF (1 << (FP_BITS - 1))
-#define FP_LN2 ( 45426 >> (16 - FP_BITS))
-#define FP_LN2_INV ( 94548 >> (16 - FP_BITS))
-#define FP_EXP_ZERO ( 10922 >> (16 - FP_BITS))
-#define FP_EXP_ONE ( -182 >> (16 - FP_BITS))
-#define FP_EXP_TWO ( 4 >> (16 - FP_BITS))
-#define FP_INF (0x7fffffff)
-#define FP_LN10 (150902 >> (16 - FP_BITS))
-
-#define FP_MAX_DIGITS (4)
-#define FP_MAX_DIGITS_INT (10000)
-
-#define FP_FAST_MUL_DIV
-
-#ifdef FP_FAST_MUL_DIV
-
-/* These macros can easily overflow, but they are good enough for our uses,
- * and saves some code.
- */
-#define fp_mul(x, y) (((x) * (y)) >> FP_BITS)
-#define fp_div(x, y) (((x) << FP_BITS) / (y))
-
-#else
-
-static long fp_mul(long x, long y)
-{
- long x_neg = 0;
- long y_neg = 0;
- long rc;
-
- if ((x == 0) || (y == 0))
- {
- return 0;
- }
-
- if (x < 0)
- {
- x_neg = 1;
- x = -x;
- }
-
- if (y < 0)
- {
- y_neg = 1;
- y = -y;
- }
-
- rc = (((x >> FP_BITS) * (y >> FP_BITS)) << FP_BITS)
- + (((x & FP_MASK) * (y & FP_MASK)) >> FP_BITS)
- + ((x & FP_MASK) * (y >> FP_BITS))
- + ((x >> FP_BITS) * (y & FP_MASK));
-
- if ((x_neg ^ y_neg) == 1)
- {
- rc = -rc;
- }
-
- return rc;
-}
-
-static long fp_div(long x, long y)
-{
- long x_neg = 0;
- long y_neg = 0;
- long shifty;
- long rc;
- int msb = 0;
- int lsb = 0;
-
- if (x == 0)
- {
- return 0;
- }
-
- if (y == 0)
- {
- return (x < 0) ? -FP_INF : FP_INF;
- }
-
- if (x < 0)
- {
- x_neg = 1;
- x = -x;
- }
-
- if (y < 0)
- {
- y_neg = 1;
- y = -y;
- }
-
- while ((x & BIT_N(30 - msb)) == 0)
- {
- msb++;
- }
-
- while ((y & BIT_N(lsb)) == 0)
- {
- lsb++;
- }
-
- shifty = FP_BITS - (msb + lsb);
- rc = ((x << msb) / (y >> lsb));
- if (shifty > 0)
- {
- rc <<= shifty;
- }
- else
- {
- rc >>= -shifty;
- }
-
- if ((x_neg ^ y_neg) == 1)
- {
- rc = -rc;
- }
-
- return rc;
-}
-
-#endif /* FP_FAST_MUL_DIV */
-
-static long fp_exp(long x)
-{
- long k;
- long z;
- long R;
- long xp;
-
- if (x == 0)
- {
- return FP_ONE;
- }
-
- k = (fp_mul(abs(x), FP_LN2_INV) + FP_HALF) & ~FP_MASK;
-
- if (x < 0)
- {
- k = -k;
- }
-
- x -= fp_mul(k, FP_LN2);
- z = fp_mul(x, x);
- R = FP_TWO + fp_mul(z, FP_EXP_ZERO + fp_mul(z, FP_EXP_ONE
- + fp_mul(z, FP_EXP_TWO)));
- xp = FP_ONE + fp_div(fp_mul(FP_TWO, x), R - x);
-
- if (k < 0)
- {
- k = FP_ONE >> (-k >> FP_BITS);
- }
- else
- {
- k = FP_ONE << (k >> FP_BITS);
- }
-
- return fp_mul(k, xp);
-}
-
-static long fp_exp10(long x)
-{
- if (x == 0)
- {
- return FP_ONE;
- }
-
- return fp_exp(fp_mul(FP_LN10, x));
-}
static long fp_atof(const char* s, int precision)
{
@@ -300,7 +123,7 @@ static long convert_gain(long gain)
gain = 17 * FP_ONE;
}
- gain = fp_exp10(gain / 20) << (24 - FP_BITS);
+ gain = fp_factor(gain, FP_BITS) << (24 - FP_BITS);
return gain;
}