summaryrefslogtreecommitdiff
path: root/apps/codecs/demac
diff options
context:
space:
mode:
authorDave Chapman <dave@dchapman.com>2007-06-10 08:55:16 +0000
committerDave Chapman <dave@dchapman.com>2007-06-10 08:55:16 +0000
commit601ede7f9cc88cc40e074cc9d9cfdc2c0ba46d4c (patch)
treec0366c2ce8ff0932db0873e3e27ac00e91cc50a4 /apps/codecs/demac
parent57440d52920f5ad76063089edd73c09f35951a87 (diff)
C optimisations to the predictor decoding - create a single function for decoding stereo streams, and reorganise to minimise the number of variables used. My -c1000 test track now decodes at 93% realtime on PortalPlayer (was 78%), 187% on Coldfire (was 170%) and 447% on Gigabeat (was 408%).
git-svn-id: svn://svn.rockbox.org/rockbox/trunk@13608 a1c6a512-1295-4272-9138-f99709370657
Diffstat (limited to 'apps/codecs/demac')
-rw-r--r--apps/codecs/demac/libdemac/decoder.c6
-rw-r--r--apps/codecs/demac/libdemac/parser.h31
-rw-r--r--apps/codecs/demac/libdemac/predictor.c288
-rw-r--r--apps/codecs/demac/libdemac/predictor.h8
4 files changed, 203 insertions, 130 deletions
diff --git a/apps/codecs/demac/libdemac/decoder.c b/apps/codecs/demac/libdemac/decoder.c
index ba8c393a67..4f4a583d00 100644
--- a/apps/codecs/demac/libdemac/decoder.c
+++ b/apps/codecs/demac/libdemac/decoder.c
@@ -47,7 +47,7 @@ void init_frame_decoder(struct ape_ctx_t* ape_ctx,
//printf("CRC=0x%08x\n",ape_ctx->CRC);
//printf("Flags=0x%08x\n",ape_ctx->frameflags);
- init_predictor_decoder(ape_ctx);
+ init_predictor_decoder(&ape_ctx->predictor);
switch (ape_ctx->compressiontype)
{
@@ -117,7 +117,7 @@ int decode_chunk(struct ape_ctx_t* ape_ctx,
}
/* Now apply the predictor decoding */
- predictor_decode_mono(ape_ctx,decoded0,count);
+ predictor_decode_mono(&ape_ctx->predictor,decoded0,count);
if (ape_ctx->channels==2) {
/* Pseudo-stereo - just copy left channel to right channel */
@@ -163,7 +163,7 @@ int decode_chunk(struct ape_ctx_t* ape_ctx,
}
/* Now apply the predictor decoding */
- predictor_decode_stereo(ape_ctx,decoded0,decoded1,count);
+ predictor_decode_stereo(&ape_ctx->predictor,decoded0,decoded1,count);
if (ape_ctx->bps == 8) {
/* TODO: Handle 8-bit streams */
diff --git a/apps/codecs/demac/libdemac/parser.h b/apps/codecs/demac/libdemac/parser.h
index 0e35425315..301cf4a5e1 100644
--- a/apps/codecs/demac/libdemac/parser.h
+++ b/apps/codecs/demac/libdemac/parser.h
@@ -68,24 +68,28 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
#define HISTORY_SIZE 512
#define PREDICTOR_ORDER 8
+/* Total size of all predictor histories - 50 * sizeof(int32_t) */
+#define PREDICTOR_SIZE 50
struct predictor_t
{
- /* Adaption co-efficients */
- int32_t coeffsA[4];
- int32_t coeffsB[5];
-
/* Filter histories */
- int32_t historybuffer[HISTORY_SIZE + PREDICTOR_ORDER * 4];
- int32_t* delayA;
- int32_t* delayB;
- int32_t* adaptcoeffsA;
- int32_t* adaptcoeffsB;
+ int32_t* buf;
- int32_t lastA;
+ int32_t YlastA;
+ int32_t XlastA;
- int32_t filterA;
- int32_t filterB;
+ int32_t YfilterA;
+ int32_t XfilterA;
+ int32_t YfilterB;
+ int32_t XfilterB;
+
+ /* Adaption co-efficients */
+ int32_t YcoeffsA[4];
+ int32_t XcoeffsA[4];
+ int32_t YcoeffsB[5];
+ int32_t XcoeffsB[5];
+ int32_t historybuffer[HISTORY_SIZE + PREDICTOR_SIZE];
};
struct ape_ctx_t
@@ -129,8 +133,7 @@ struct ape_ctx_t
int frameflags;
int currentframeblocks;
int blocksdecoded;
- struct predictor_t predictorY;
- struct predictor_t predictorX;
+ struct predictor_t predictor;
};
int ape_parseheader(int fd, struct ape_ctx_t* ape_ctx);
diff --git a/apps/codecs/demac/libdemac/predictor.c b/apps/codecs/demac/libdemac/predictor.c
index 9531786fd1..a7210bf014 100644
--- a/apps/codecs/demac/libdemac/predictor.c
+++ b/apps/codecs/demac/libdemac/predictor.c
@@ -37,160 +37,230 @@ static const int32_t initial_coeffs[4] = {
360, 317, -109, 98
};
-static void init_predictor(struct predictor_t* p)
+#define YDELAYA (18 + PREDICTOR_ORDER*4)
+#define YDELAYB (18 + PREDICTOR_ORDER*3)
+#define XDELAYA (18 + PREDICTOR_ORDER*2)
+#define XDELAYB (18 + PREDICTOR_ORDER)
+
+#define YADAPTCOEFFSA (18)
+#define XADAPTCOEFFSA (14)
+#define YADAPTCOEFFSB (10)
+#define XADAPTCOEFFSB (5)
+
+void init_predictor_decoder(struct predictor_t* p)
{
/* Zero the history buffers */
- memset(p->historybuffer, 0, (PREDICTOR_ORDER*4) * sizeof(int32_t));
- p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
- p->delayB = p->historybuffer + PREDICTOR_ORDER*3;
- p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
- p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER;
+ memset(p->historybuffer, 0, PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
/* Initialise and zero the co-efficients */
- memcpy(p->coeffsA, initial_coeffs, sizeof(initial_coeffs));
- memset(p->coeffsB, 0, sizeof(p->coeffsB));
-
- p->filterA = 0;
- p->filterB = 0;
-
- p->lastA = 0;
+ memcpy(p->YcoeffsA, initial_coeffs, sizeof(initial_coeffs));
+ memcpy(p->XcoeffsA, initial_coeffs, sizeof(initial_coeffs));
+ memset(p->YcoeffsB, 0, sizeof(p->YcoeffsB));
+ memset(p->XcoeffsB, 0, sizeof(p->XcoeffsB));
+
+ p->YfilterA = 0;
+ p->YfilterB = 0;
+ p->YlastA = 0;
+
+ p->XfilterA = 0;
+ p->XfilterB = 0;
+ p->XlastA = 0;
}
-static int do_predictor_decode(struct predictor_t* p, int32_t A, int32_t B)
-{
- int32_t predictionA, predictionB, currentA;
-
- p->delayA[0] = p->lastA;
- p->delayA[-1] = p->delayA[0] - p->delayA[-1];
-
- predictionA = scalarproduct4_rev32(p->coeffsA,p->delayA);
-
- /* Apply a scaled first-order filter compression */
- p->delayB[0] = B - ((p->filterB * 31) >> 5);
- p->filterB = B;
-
- p->delayB[-1] = p->delayB[0] - p->delayB[-1];
-
- predictionB = scalarproduct5_rev32(p->coeffsB,p->delayB);
+#ifdef CPU_COLDFIRE
+/* Putting this in IRAM makes a small speedup (e.g. 186% -> 187%
+ realtime for a -c1000 file on Coldfire, but is slower on PP. */
+int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count) ICODE_ATTR;
+#endif
- currentA = A + ((predictionA + (predictionB >> 1)) >> 10);
-
- p->adaptcoeffsA[0] = SIGN(p->delayA[0]);
- p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]);
-
- p->adaptcoeffsB[0] = SIGN(p->delayB[0]);
- p->adaptcoeffsB[-1] = SIGN(p->delayB[-1]);
+int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count)
+{
+ int32_t predictionA, predictionB;
- if (A > 0)
- {
- vector_sub4_rev32(p->coeffsA, p->adaptcoeffsA);
- vector_sub5_rev32(p->coeffsB, p->adaptcoeffsB);
- }
- else if (A < 0)
+ while (count--)
{
- vector_add4_rev32(p->coeffsA, p->adaptcoeffsA);
- vector_add5_rev32(p->coeffsB, p->adaptcoeffsB);
- }
-
- p->delayA++;
- p->delayB++;
- p->adaptcoeffsA++;
- p->adaptcoeffsB++;
-
- /* Have we filled the history buffer? */
- if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) {
- memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4),
- (PREDICTOR_ORDER*4) * sizeof(int32_t));
- p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
- p->delayB = p->historybuffer + PREDICTOR_ORDER*3;
- p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
- p->adaptcoeffsB = p->historybuffer + PREDICTOR_ORDER;
- }
+ /* Predictor Y */
+ p->buf[YDELAYA] = p->YlastA;
+ p->buf[YADAPTCOEFFSA] = SIGN(p->buf[YDELAYA]);
+
+ p->buf[YDELAYA-1] = p->buf[YDELAYA] - p->buf[YDELAYA-1];
+ p->buf[YADAPTCOEFFSA-1] = SIGN(p->buf[YDELAYA-1]);
+
+ predictionA = (p->buf[YDELAYA] * p->YcoeffsA[0]) +
+ (p->buf[YDELAYA-1] * p->YcoeffsA[1]) +
+ (p->buf[YDELAYA-2] * p->YcoeffsA[2]) +
+ (p->buf[YDELAYA-3] * p->YcoeffsA[3]);
+
+ /* Apply a scaled first-order filter compression */
+ p->buf[YDELAYB] = p->XfilterA - ((p->YfilterB * 31) >> 5);
+ p->buf[YADAPTCOEFFSB] = SIGN(p->buf[YDELAYB]);
+ p->YfilterB = p->XfilterA;
+
+ p->buf[YDELAYB-1] = p->buf[YDELAYB] - p->buf[YDELAYB-1];
+ p->buf[YADAPTCOEFFSB-1] = SIGN(p->buf[YDELAYB-1]);
+
+ predictionB = (p->buf[YDELAYB] * p->YcoeffsB[0]) +
+ (p->buf[YDELAYB-1] * p->YcoeffsB[1]) +
+ (p->buf[YDELAYB-2] * p->YcoeffsB[2]) +
+ (p->buf[YDELAYB-3] * p->YcoeffsB[3]) +
+ (p->buf[YDELAYB-4] * p->YcoeffsB[4]);
+
+ p->YlastA = *decoded0 + ((predictionA + (predictionB >> 1)) >> 10);
+ p->YfilterA = p->YlastA + ((p->YfilterA * 31) >> 5);
+
+ /* Predictor X */
+
+ p->buf[XDELAYA] = p->XlastA;
+ p->buf[XADAPTCOEFFSA] = SIGN(p->buf[XDELAYA]);
+ p->buf[XDELAYA-1] = p->buf[XDELAYA] - p->buf[XDELAYA-1];
+ p->buf[XADAPTCOEFFSA-1] = SIGN(p->buf[XDELAYA-1]);
+
+ predictionA = (p->buf[XDELAYA] * p->XcoeffsA[0]) +
+ (p->buf[XDELAYA-1] * p->XcoeffsA[1]) +
+ (p->buf[XDELAYA-2] * p->XcoeffsA[2]) +
+ (p->buf[XDELAYA-3] * p->XcoeffsA[3]);
+
+ /* Apply a scaled first-order filter compression */
+ p->buf[XDELAYB] = p->YfilterA - ((p->XfilterB * 31) >> 5);
+ p->buf[XADAPTCOEFFSB] = SIGN(p->buf[XDELAYB]);
+ p->XfilterB = p->YfilterA;
+ p->buf[XDELAYB-1] = p->buf[XDELAYB] - p->buf[XDELAYB-1];
+ p->buf[XADAPTCOEFFSB-1] = SIGN(p->buf[XDELAYB-1]);
+
+ predictionB = (p->buf[XDELAYB] * p->XcoeffsB[0]) +
+ (p->buf[XDELAYB-1] * p->XcoeffsB[1]) +
+ (p->buf[XDELAYB-2] * p->XcoeffsB[2]) +
+ (p->buf[XDELAYB-3] * p->XcoeffsB[3]) +
+ (p->buf[XDELAYB-4] * p->XcoeffsB[4]);
+
+ p->XlastA = *decoded1 + ((predictionA + (predictionB >> 1)) >> 10);
+ p->XfilterA = p->XlastA + ((p->XfilterA * 31) >> 5);
+
+ if (*decoded0 > 0)
+ {
+ p->YcoeffsA[0] -= p->buf[YADAPTCOEFFSA];
+ p->YcoeffsA[1] -= p->buf[YADAPTCOEFFSA-1];
+ p->YcoeffsA[2] -= p->buf[YADAPTCOEFFSA-2];
+ p->YcoeffsA[3] -= p->buf[YADAPTCOEFFSA-3];
+
+ p->YcoeffsB[0] -= p->buf[YADAPTCOEFFSB];
+ p->YcoeffsB[1] -= p->buf[YADAPTCOEFFSB-1];
+ p->YcoeffsB[2] -= p->buf[YADAPTCOEFFSB-2];
+ p->YcoeffsB[3] -= p->buf[YADAPTCOEFFSB-3];
+ p->YcoeffsB[4] -= p->buf[YADAPTCOEFFSB-4];
+ }
+ else if (*decoded0 < 0)
+ {
+ p->YcoeffsA[0] += p->buf[YADAPTCOEFFSA];
+ p->YcoeffsA[1] += p->buf[YADAPTCOEFFSA-1];
+ p->YcoeffsA[2] += p->buf[YADAPTCOEFFSA-2];
+ p->YcoeffsA[3] += p->buf[YADAPTCOEFFSA-3];
+
+ p->YcoeffsB[0] += p->buf[YADAPTCOEFFSB];
+ p->YcoeffsB[1] += p->buf[YADAPTCOEFFSB-1];
+ p->YcoeffsB[2] += p->buf[YADAPTCOEFFSB-2];
+ p->YcoeffsB[3] += p->buf[YADAPTCOEFFSB-3];
+ p->YcoeffsB[4] += p->buf[YADAPTCOEFFSB-4];
+ }
- p->lastA = currentA;
- p->filterA = currentA + ((p->filterA * 31) >> 5);
+ *(decoded0++) = p->YfilterA;
- return p->filterA;
-}
-
-static int32_t X;
+ if (*decoded1 > 0)
+ {
+ p->XcoeffsA[0] -= p->buf[XADAPTCOEFFSA];
+ p->XcoeffsA[1] -= p->buf[XADAPTCOEFFSA-1];
+ p->XcoeffsA[2] -= p->buf[XADAPTCOEFFSA-2];
+ p->XcoeffsA[3] -= p->buf[XADAPTCOEFFSA-3];
+
+ p->XcoeffsB[0] -= p->buf[XADAPTCOEFFSB];
+ p->XcoeffsB[1] -= p->buf[XADAPTCOEFFSB-1];
+ p->XcoeffsB[2] -= p->buf[XADAPTCOEFFSB-2];
+ p->XcoeffsB[3] -= p->buf[XADAPTCOEFFSB-3];
+ p->XcoeffsB[4] -= p->buf[XADAPTCOEFFSB-4];
+ }
+ else if (*decoded1 < 0)
+ {
+ p->XcoeffsA[0] += p->buf[XADAPTCOEFFSA];
+ p->XcoeffsA[1] += p->buf[XADAPTCOEFFSA-1];
+ p->XcoeffsA[2] += p->buf[XADAPTCOEFFSA-2];
+ p->XcoeffsA[3] += p->buf[XADAPTCOEFFSA-3];
+
+ p->XcoeffsB[0] += p->buf[XADAPTCOEFFSB];
+ p->XcoeffsB[1] += p->buf[XADAPTCOEFFSB-1];
+ p->XcoeffsB[2] += p->buf[XADAPTCOEFFSB-2];
+ p->XcoeffsB[3] += p->buf[XADAPTCOEFFSB-3];
+ p->XcoeffsB[4] += p->buf[XADAPTCOEFFSB-4];
+ }
-void init_predictor_decoder(struct ape_ctx_t* ape_ctx)
-{
- X = 0;
+ *(decoded1++) = p->XfilterA;
- init_predictor(&ape_ctx->predictorY);
- init_predictor(&ape_ctx->predictorX);
-}
+ /* Combined */
+ p->buf++;
-int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count) ICODE_ATTR;
-int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count)
-{
- while (count--)
- {
- *decoded0 = do_predictor_decode(&ape_ctx->predictorY, *decoded0, X);
- X = do_predictor_decode(&ape_ctx->predictorX, *decoded1, *(decoded0)++);
- *(decoded1++) = X;
+ /* Have we filled the history buffer? */
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
+ }
}
return 0;
}
-int predictor_decode_mono(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int count)
+int predictor_decode_mono(struct predictor_t* p, int32_t* decoded0, int count)
{
- struct predictor_t* p = &ape_ctx->predictorY;
int32_t predictionA, currentA, A;
- currentA = p->lastA;
+ currentA = p->YlastA;
while (count--)
{
A = *decoded0;
- p->delayA[0] = currentA;
- p->delayA[-1] = p->delayA[0] - p->delayA[-1];
+ p->buf[YDELAYA] = currentA;
+ p->buf[YDELAYA-1] = p->buf[YDELAYA] - p->buf[YDELAYA-1];
- predictionA = (p->delayA[0] * p->coeffsA[0]) +
- (p->delayA[-1] * p->coeffsA[1]) +
- (p->delayA[-2] * p->coeffsA[2]) +
- (p->delayA[-3] * p->coeffsA[3]);
+ predictionA = (p->buf[YDELAYA] * p->YcoeffsA[0]) +
+ (p->buf[YDELAYA-1] * p->YcoeffsA[1]) +
+ (p->buf[YDELAYA-2] * p->YcoeffsA[2]) +
+ (p->buf[YDELAYA-3] * p->YcoeffsA[3]);
currentA = A + (predictionA >> 10);
- p->adaptcoeffsA[0] = SIGN(p->delayA[0]);
- p->adaptcoeffsA[-1] = SIGN(p->delayA[-1]);
+ p->buf[YADAPTCOEFFSA] = SIGN(p->buf[YDELAYA]);
+ p->buf[YADAPTCOEFFSA-1] = SIGN(p->buf[YDELAYA-1]);
if (A > 0)
{
- p->coeffsA[0] -= p->adaptcoeffsA[0];
- p->coeffsA[1] -= p->adaptcoeffsA[-1];
- p->coeffsA[2] -= p->adaptcoeffsA[-2];
- p->coeffsA[3] -= p->adaptcoeffsA[-3];
+ p->YcoeffsA[0] -= p->buf[YADAPTCOEFFSA];
+ p->YcoeffsA[1] -= p->buf[YADAPTCOEFFSA-1];
+ p->YcoeffsA[2] -= p->buf[YADAPTCOEFFSA-2];
+ p->YcoeffsA[3] -= p->buf[YADAPTCOEFFSA-3];
}
else if (A < 0)
{
- p->coeffsA[0] += p->adaptcoeffsA[0];
- p->coeffsA[1] += p->adaptcoeffsA[-1];
- p->coeffsA[2] += p->adaptcoeffsA[-2];
- p->coeffsA[3] += p->adaptcoeffsA[-3];
+ p->YcoeffsA[0] += p->buf[YADAPTCOEFFSA];
+ p->YcoeffsA[1] += p->buf[YADAPTCOEFFSA-1];
+ p->YcoeffsA[2] += p->buf[YADAPTCOEFFSA-2];
+ p->YcoeffsA[3] += p->buf[YADAPTCOEFFSA-3];
}
- p->delayA++;
- p->adaptcoeffsA++;
+ p->buf++;
/* Have we filled the history buffer? */
- if (p->delayA == p->historybuffer + HISTORY_SIZE + (PREDICTOR_ORDER*4)) {
- memmove(p->historybuffer, p->delayA - (PREDICTOR_ORDER*4),
- (PREDICTOR_ORDER*4) * sizeof(int32_t));
- p->delayA = p->historybuffer + PREDICTOR_ORDER*4;
- p->adaptcoeffsA = p->historybuffer + PREDICTOR_ORDER*2;
+ if (p->buf == p->historybuffer + HISTORY_SIZE) {
+ memmove(p->historybuffer, p->buf,
+ PREDICTOR_SIZE * sizeof(int32_t));
+ p->buf = p->historybuffer;
}
- p->filterA = currentA + ((p->filterA * 31) >> 5);
- *(decoded0++) = p->filterA;
+ p->YfilterA = currentA + ((p->YfilterA * 31) >> 5);
+ *(decoded0++) = p->YfilterA;
}
- p->lastA = currentA;
+ p->YlastA = currentA;
return 0;
}
diff --git a/apps/codecs/demac/libdemac/predictor.h b/apps/codecs/demac/libdemac/predictor.h
index 3c023c8188..df2ba629e6 100644
--- a/apps/codecs/demac/libdemac/predictor.h
+++ b/apps/codecs/demac/libdemac/predictor.h
@@ -2,7 +2,7 @@
libdemac - A Monkey's Audio decoder
-$Id:$
+$Id$
Copyright (C) Dave Chapman 2007
@@ -29,8 +29,8 @@ Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110, USA
#include "parser.h"
#include "filter.h"
-void init_predictor_decoder(struct ape_ctx_t* ape_ctx);
-int predictor_decode_stereo(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int32_t* decoded1, int count);
-int predictor_decode_mono(struct ape_ctx_t* ape_ctx, int32_t* decoded0, int count);
+void init_predictor_decoder(struct predictor_t* p);
+int predictor_decode_stereo(struct predictor_t* p, int32_t* decoded0, int32_t* decoded1, int count);
+int predictor_decode_mono(struct predictor_t* p, int32_t* decoded0, int count);
#endif