1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
|
/***************************************************************************
* Copyright (C) 2008-2021 by Andrzej Rybczak *
* andrzej@rybczak.net *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. *
***************************************************************************/
#include "screens/visualizer.h"
#ifdef ENABLE_VISUALIZER
#include <algorithm>
#include <boost/date_time/posix_time/posix_time.hpp>
#include <boost/math/constants/constants.hpp>
#include <cerrno>
#include <cmath>
#include <cstring>
#include <fstream>
#include <limits>
#include <fcntl.h>
#include <netdb.h>
#include <cassert>
#include "global.h"
#include "settings.h"
#include "status.h"
#include "statusbar.h"
#include "title.h"
#include "screens/screen_switcher.h"
#include "status.h"
#include "enums.h"
#include "utility/wide_string.h"
using Samples = std::vector<int16_t>;
using Global::MainStartY;
using Global::MainHeight;
Visualizer *myVisualizer;
namespace {
// toColor: a scaling function for coloring. For numbers 0 to max this function
// returns a coloring from the lowest color to the highest, and colors will not
// loop from 0 to max.
const NC::FormattedColor &toColor(size_t number, size_t max, bool wrap)
{
const auto colors_size = Config.visualizer_colors.size();
const auto index = (number * colors_size) / max;
return Config.visualizer_colors[
wrap ? index % colors_size : std::min(index, colors_size-1)
];
}
}
Visualizer::Visualizer()
: Screen(NC::Window(0, MainStartY, COLS, MainHeight, "", NC::Color::Default, NC::Border()))
, m_output_id(-1)
, m_reset_output(false)
, m_source_fd(-1)
, m_sample_consumption_rate(5)
, m_sample_consumption_rate_up_ctr(0)
, m_sample_consumption_rate_dn_ctr(0)
# ifdef HAVE_FFTW3_H
,
DFT_NONZERO_SIZE(2048 * (2*Config.visualizer_spectrum_dft_size + 4)),
DFT_TOTAL_SIZE(1 << 15),
DYNAMIC_RANGE(100-Config.visualizer_spectrum_gain),
HZ_MIN(Config.visualizer_spectrum_hz_min),
HZ_MAX(Config.visualizer_spectrum_hz_max),
GAIN(Config.visualizer_spectrum_gain),
SMOOTH_CHARS(ToWString("▁▂▃▄▅▆▇█"))
#endif
{
InitDataSource();
InitVisualization();
# ifdef HAVE_FFTW3_H
m_fftw_results = DFT_TOTAL_SIZE/2+1;
m_freq_magnitudes.resize(m_fftw_results);
m_fftw_input = static_cast<double *>(fftw_malloc(sizeof(double)*DFT_TOTAL_SIZE));
memset(m_fftw_input, 0, sizeof(double)*DFT_TOTAL_SIZE);
m_fftw_output = static_cast<fftw_complex *>(fftw_malloc(sizeof(fftw_complex)*m_fftw_results));
m_fftw_plan = fftw_plan_dft_r2c_1d(DFT_TOTAL_SIZE, m_fftw_input, m_fftw_output, FFTW_ESTIMATE);
m_dft_logspace.reserve(500);
m_bar_heights.reserve(100);
# endif // HAVE_FFTW3_H
}
void Visualizer::switchTo()
{
SwitchTo::execute(this);
Clear();
m_reset_output = true;
drawHeader();
# ifdef HAVE_FFTW3_H
GenLogspace();
m_bar_heights.reserve(w.getWidth());
# endif // HAVE_FFTW3_H
}
void Visualizer::resize()
{
size_t x_offset, width;
getWindowResizeParams(x_offset, width);
w.resize(width, MainHeight);
w.moveTo(x_offset, MainStartY);
hasToBeResized = 0;
InitVisualization();
# ifdef HAVE_FFTW3_H
GenLogspace();
m_bar_heights.reserve(w.getWidth());
# endif // HAVE_FFTW3_H
}
std::wstring Visualizer::title()
{
return L"Music visualizer";
}
void Visualizer::update()
{
if (m_source_fd < 0)
return;
// Disable and enable FIFO to get rid of the difference between audio and
// visualization.
if (m_reset_output && m_output_id != -1)
{
Mpd.DisableOutput(m_output_id);
usleep(50000);
Mpd.EnableOutput(m_output_id);
m_reset_output = false;
}
// PCM in format 44100:16:1 (for mono visualization) and
// 44100:16:2 (for stereo visualization) is supported.
ssize_t bytes_read = read(m_source_fd, m_incoming_samples.data(),
sizeof(int16_t) * m_incoming_samples.size());
if (bytes_read > 0)
{
const auto begin = m_incoming_samples.begin();
const auto end = m_incoming_samples.begin() + bytes_read/sizeof(int16_t);
if (Config.visualizer_autoscale)
{
m_auto_scale_multiplier += 1.0/Config.visualizer_fps;
for (auto sample = begin; sample != end; ++sample)
{
double scale = std::numeric_limits<int16_t>::min();
scale /= *sample;
scale = fabs(scale);
if (scale < m_auto_scale_multiplier)
m_auto_scale_multiplier = scale;
}
for (auto sample = begin; sample != end; ++sample)
{
int32_t tmp = *sample;
if (m_auto_scale_multiplier <= 50.0) // limit the auto scale
tmp *= m_auto_scale_multiplier;
if (tmp < std::numeric_limits<int16_t>::min())
*sample = std::numeric_limits<int16_t>::min();
else if (tmp > std::numeric_limits<int16_t>::max())
*sample = std::numeric_limits<int16_t>::max();
else
*sample = tmp;
}
}
m_buffered_samples.put(begin, end);
}
size_t requested_samples =
44100.0 / Config.visualizer_fps * pow(1.1, m_sample_consumption_rate);
if (Config.visualizer_in_stereo)
requested_samples *= 2;
//Statusbar::printf("Samples: %1%, %2%, %3%", m_buffered_samples.size(),
// requested_samples, m_sample_consumption_rate);
size_t new_samples = m_buffered_samples.move(requested_samples, m_rendered_samples);
if (new_samples == 0)
return;
// A crude way to adjust the amount of samples consumed from the buffer
// depending on how fast the rendering is.
if (m_buffered_samples.size() > 0)
{
if (++m_sample_consumption_rate_up_ctr > 8)
{
m_sample_consumption_rate_up_ctr = 0;
++m_sample_consumption_rate;
}
}
else if (m_sample_consumption_rate > 0)
{
if (++m_sample_consumption_rate_dn_ctr > 4)
{
m_sample_consumption_rate_dn_ctr = 0;
--m_sample_consumption_rate;
}
m_sample_consumption_rate_up_ctr = 0;
}
w.clear();
if (Config.visualizer_in_stereo)
{
auto chan_samples = m_rendered_samples.size()/2;
int16_t buf_left[chan_samples], buf_right[chan_samples];
for (size_t i = 0, j = 0; i < m_rendered_samples.size(); i += 2, ++j)
{
buf_left[j] = m_rendered_samples[i];
buf_right[j] = m_rendered_samples[i+1];
}
size_t half_height = w.getHeight()/2;
(this->*drawStereo)(buf_left, buf_right, chan_samples, half_height);
}
else
{
(this->*draw)(m_rendered_samples.data(), m_rendered_samples.size(), 0, w.getHeight());
}
w.refresh();
}
int Visualizer::windowTimeout()
{
if (m_source_fd >= 0 && Status::State::player() == MPD::psPlay)
return 1000/Config.visualizer_fps;
else
return Screen<WindowType>::windowTimeout();
}
/**********************************************************************/
void Visualizer::DrawSoundWave(const int16_t *buf, ssize_t samples, size_t y_offset, size_t height)
{
const size_t half_height = height/2;
const size_t base_y = y_offset+half_height;
const size_t win_width = w.getWidth();
const int samples_per_column = samples/win_width;
// too little samples
if (samples_per_column == 0)
return;
auto draw_point = [&](size_t x, int32_t y) {
auto c = toColor(std::abs(y), half_height, false);
w << NC::XY(x, base_y+y)
<< c
<< Config.visualizer_chars[0]
<< NC::FormattedColor::End<>(c);
};
int32_t point_y, prev_point_y = 0;
for (size_t x = 0; x < win_width; ++x)
{
point_y = 0;
// calculate mean from the relevant points
for (int j = 0; j < samples_per_column; ++j)
point_y += buf[x*samples_per_column+j];
point_y /= samples_per_column;
// normalize it to fit the screen
point_y *= height / 65536.0;
draw_point(x, point_y);
// if the gap between two consecutive points is too big,
// intermediate values are needed for the wave to be watchable.
if (x > 0 && std::abs(prev_point_y-point_y) > 1)
{
const int32_t half = (prev_point_y+point_y)/2;
if (prev_point_y < point_y)
{
for (auto y = prev_point_y; y < point_y; ++y)
draw_point(x-(y < half), y);
}
else
{
for (auto y = prev_point_y; y > point_y; --y)
draw_point(x-(y > half), y);
}
}
prev_point_y = point_y;
}
}
void Visualizer::DrawSoundWaveStereo(const int16_t *buf_left, const int16_t *buf_right, ssize_t samples, size_t height)
{
DrawSoundWave(buf_left, samples, 0, height);
DrawSoundWave(buf_right, samples, height, w.getHeight() - height);
}
/**********************************************************************/
// DrawSoundWaveFill: This visualizer is very similar to DrawSoundWave, but
// instead of a single line the entire height is filled. In stereo mode, the top
// half of the screen is dedicated to the right channel, the bottom the left
// channel.
void Visualizer::DrawSoundWaveFill(const int16_t *buf, ssize_t samples, size_t y_offset, size_t height)
{
// if right channel is drawn, bars descend from the top to the bottom
const bool flipped = y_offset > 0;
const size_t win_width = w.getWidth();
const int samples_per_column = samples/win_width;
// too little samples
if (samples_per_column == 0)
return;
int32_t point_y;
for (size_t x = 0; x < win_width; ++x)
{
point_y = 0;
// calculate mean from the relevant points
for (int j = 0; j < samples_per_column; ++j)
point_y += buf[x*samples_per_column+j];
point_y /= samples_per_column;
// normalize it to fit the screen
point_y = std::abs(point_y);
point_y *= height / 32768.0;
for (int32_t j = 0; j < point_y; ++j)
{
auto c = toColor(j, height, false);
size_t y = flipped ? y_offset+j : y_offset+height-j-1;
w << NC::XY(x, y)
<< c
<< Config.visualizer_chars[1]
<< NC::FormattedColor::End<>(c);
}
}
}
void Visualizer::DrawSoundWaveFillStereo(const int16_t *buf_left, const int16_t *buf_right, ssize_t samples, size_t height)
{
DrawSoundWaveFill(buf_left, samples, 0, height);
DrawSoundWaveFill(buf_right, samples, height, w.getHeight() - height);
}
/**********************************************************************/
// Draws the sound wave as an ellipse with origin in the center of the screen.
void Visualizer::DrawSoundEllipse(const int16_t *buf, ssize_t samples, size_t, size_t height)
{
const size_t half_width = w.getWidth()/2;
const size_t half_height = height/2;
// Make it so that the loop goes around the ellipse exactly once.
const double deg_multiplier = 2*boost::math::constants::pi<double>()/samples;
int32_t x, y;
double radius, max_radius;
for (ssize_t i = 0; i < samples; ++i)
{
x = half_width * std::cos(i*deg_multiplier);
y = half_height * std::sin(i*deg_multiplier);
max_radius = sqrt(x*x + y*y);
// Calculate the distance of the sample from the center, where 0 is the
// center of the ellipse and 1 is its border.
radius = std::abs(buf[i]);
radius /= 32768.0;
// Appropriately scale the position.
x *= radius;
y *= radius;
auto c = toColor(sqrt(x*x + y*y), max_radius, false);
w << NC::XY(half_width + x, half_height + y)
<< c
<< Config.visualizer_chars[0]
<< NC::FormattedColor::End<>(c);
}
}
// DrawSoundEllipseStereo: This visualizer only works in stereo. The colors form
// concentric rings originating from the center (width/2, height/2). For any
// given point, the width is scaled with the left channel and height is scaled
// with the right channel. For example, if a song is entirely in the right
// channel, then it would just be a vertical line.
//
// Since every font/terminal is different, the visualizer is never a perfect
// circle. This visualizer assume the font height is twice the length of the
// font's width. If the font is skinner or wider than this, instead of a circle
// it will be an ellipse.
void Visualizer::DrawSoundEllipseStereo(const int16_t *buf_left, const int16_t *buf_right, ssize_t samples, size_t half_height)
{
const size_t width = w.getWidth();
const size_t left_half_width = width/2;
const size_t right_half_width = width - left_half_width;
const size_t top_half_height = half_height;
const size_t bottom_half_height = w.getHeight() - half_height;
// Makes the radius of each ring be approximately 2 cells wide.
const int32_t radius = 2*Config.visualizer_colors.size();
int32_t x, y;
for (ssize_t i = 0; i < samples; ++i)
{
x = buf_left[i]/32768.0 * (buf_left[i] < 0 ? left_half_width : right_half_width);
y = buf_right[i]/32768.0 * (buf_right[i] < 0 ? top_half_height : bottom_half_height);
// The arguments to the toColor function roughly follow a circle equation
// where the center is not centered around (0,0). For example (x - w)^2 +
// (y-h)+2 = r^2 centers the circle around the point (w,h). Because fonts
// are not all the same size, this will not always generate a perfect
// circle.
auto c = toColor(sqrt(x*x + 4*y*y), radius, true);
w << NC::XY(left_half_width + x, top_half_height + y)
<< c
<< Config.visualizer_chars[1]
<< NC::FormattedColor::End<>(c);
}
}
/**********************************************************************/
#ifdef HAVE_FFTW3_H
void Visualizer::DrawFrequencySpectrum(const int16_t *buf, ssize_t samples, size_t y_offset, size_t height)
{
// If right channel is drawn, bars descend from the top to the bottom.
const bool flipped = y_offset > 0;
// copy samples to fftw input array and apply Hamming window
ApplyWindow(m_fftw_input, buf, samples);
fftw_execute(m_fftw_plan);
// Count magnitude of each frequency and normalize
for (size_t i = 0; i < m_fftw_results; ++i)
m_freq_magnitudes[i] = sqrt(
m_fftw_output[i][0]*m_fftw_output[i][0]
+ m_fftw_output[i][1]*m_fftw_output[i][1]
) / (DFT_NONZERO_SIZE);
m_bar_heights.clear();
const size_t win_width = w.getWidth();
size_t cur_bin = 0;
while (cur_bin < m_fftw_results && Bin2Hz(cur_bin) < m_dft_logspace[0])
++cur_bin;
for (size_t x = 0; x < win_width; ++x)
{
double bar_height = 0;
// accumulate bins
size_t count = 0;
// check right bound
while (cur_bin < m_fftw_results && Bin2Hz(cur_bin) < m_dft_logspace[x])
{
// check left bound if not first index
if (x == 0 || Bin2Hz(cur_bin) >= m_dft_logspace[x-1])
{
bar_height += m_freq_magnitudes[cur_bin];
++count;
}
++cur_bin;
}
if (count == 0)
continue;
// average bins
bar_height /= count;
// log scale bar heights
bar_height = (20 * log10(bar_height) + DYNAMIC_RANGE + GAIN) / DYNAMIC_RANGE;
// Scale bar height between 0 and height
bar_height = bar_height > 0 ? bar_height * height : 0;
bar_height = bar_height > height ? height : bar_height;
m_bar_heights.emplace_back(x, bar_height);
}
size_t h_idx = 0;
for (size_t x = 0; x < win_width; ++x)
{
const size_t i = m_bar_heights[h_idx].first;
const double bar_height = m_bar_heights[h_idx].second;
double h = 0;
if (x == i) {
// this data point exists
h = bar_height;
if (h_idx < m_bar_heights.size()-1)
++h_idx;
} else {
// data point does not exist, need to interpolate
h = Interpolate(x, h_idx);
}
for (size_t j = 0; j < h; ++j)
{
size_t y = flipped ? y_offset+j : y_offset+height-j-1;
auto color = toColor(j, height, false);
std::wstring ch;
// select character to draw
if (Config.visualizer_spectrum_smooth_look) {
// smooth
const size_t size = SMOOTH_CHARS.size();
const size_t idx = static_cast<size_t>(size*h) % size;
if (j < h-1 || idx == size-1) {
// full height
ch = SMOOTH_CHARS[size-1];
} else {
// fractional height
if (flipped) {
ch = SMOOTH_CHARS[size-idx-2];
color = NC::FormattedColor(color.color(), {NC::Format::Reverse});
} else {
ch = SMOOTH_CHARS[idx];
}
}
} else {
// default, non-smooth
ch = Config.visualizer_chars[1];
}
// draw character on screen
w << NC::XY(x, y)
<< color
<< ch
<< NC::FormattedColor::End<>(color);
}
}
}
void Visualizer::DrawFrequencySpectrumStereo(const int16_t *buf_left, const int16_t *buf_right, ssize_t samples, size_t height)
{
DrawFrequencySpectrum(buf_left, samples, 0, height);
DrawFrequencySpectrum(buf_right, samples, height, w.getHeight() - height);
}
double Visualizer::Interpolate(size_t x, size_t h_idx)
{
const double x_next = m_bar_heights[h_idx].first;
const double h_next = m_bar_heights[h_idx].second;
double dh = 0;
if (h_idx == 0) {
// no data points on left, linear extrap
if (h_idx < m_bar_heights.size()-1) {
const double x_next2 = m_bar_heights[h_idx+1].first;
const double h_next2 = m_bar_heights[h_idx+1].second;
dh = (h_next2 - h_next) / (x_next2 - x_next);
}
return h_next - dh*(x_next-x);
} else if (h_idx == 1) {
// one data point on left, linear interp
const double x_prev = m_bar_heights[h_idx-1].first;
const double h_prev = m_bar_heights[h_idx-1].second;
dh = (h_next - h_prev) / (x_next - x_prev);
return h_next - dh*(x_next-x);
} else if (h_idx < m_bar_heights.size()-1) {
// two data points on both sides, cubic interp
// see https://en.wikipedia.org/wiki/Cubic_Hermite_spline#Interpolation_on_an_arbitrary_interval
const double x_prev2 = m_bar_heights[h_idx-2].first;
const double h_prev2 = m_bar_heights[h_idx-2].second;
const double x_prev = m_bar_heights[h_idx-1].first;
const double h_prev = m_bar_heights[h_idx-1].second;
const double x_next2 = m_bar_heights[h_idx+1].first;
const double h_next2 = m_bar_heights[h_idx+1].second;
const double m0 = (h_prev - h_prev2) / (x_prev - x_prev2);
const double m1 = (h_next2 - h_next) / (x_next2 - x_next);
const double t = (x - x_prev) / (x_next - x_prev);
const double h00 = 2*t*t*t - 3*t*t + 1;
const double h10 = t*t*t - 2*t*t + t;
const double h01 = -2*t*t*t + 3*t*t;
const double h11 = t*t*t - t*t;
return h00*h_prev + h10*(x_next-x_prev)*m0 + h01*h_next + h11*(x_next-x_prev)*m1;
}
// less than two data points on right, no interp, should never happen unless VERY low DFT size
return h_next;
}
void Visualizer::ApplyWindow(double *output, const int16_t *input, ssize_t samples)
{
// Use Blackman window for low sidelobes and fast sidelobe rolloff
// don't care too much about mainlobe width
const double alpha = 0.16;
const double a0 = (1 - alpha) / 2;
const double a1 = 0.5;
const double a2 = alpha / 2;
const double pi = boost::math::constants::pi<double>();
for (unsigned i = 0; i < samples; ++i)
{
double window = a0 - a1*cos(2*pi*i/(DFT_NONZERO_SIZE-1)) + a2*cos(4*pi*i/(DFT_NONZERO_SIZE-1));
output[i] = window * input[i] / INT16_MAX;
}
}
double Visualizer::Bin2Hz(size_t bin)
{
return bin*44100/DFT_TOTAL_SIZE;
}
// Generate log-scaled vector of frequencies from HZ_MIN to HZ_MAX
void Visualizer::GenLogspace()
{
// Calculate number of extra bins needed between 0 HZ and HZ_MIN
const size_t win_width = w.getWidth();
const size_t left_bins = (log10(HZ_MIN) - win_width*log10(HZ_MIN)) / (log10(HZ_MIN) - log10(HZ_MAX));
// Generate logspaced frequencies
m_dft_logspace.resize(win_width);
const double log_scale = log10(HZ_MAX) / (left_bins + m_dft_logspace.size() - 1);
for (size_t i = left_bins; i < m_dft_logspace.size() + left_bins; ++i) {
m_dft_logspace[i - left_bins] = pow(10, i * log_scale);
}
}
#endif // HAVE_FFTW3_H
void Visualizer::InitDataSource()
{
if (!Config.visualizer_fifo_path.empty())
m_source_location = Config.visualizer_fifo_path; // deprecated
else
m_source_location = Config.visualizer_data_source;
// If there's a colon and a location doesn't start with '/' we have a UDP
// sink. Otherwise assume it's a FIFO.
auto colon = m_source_location.rfind(':');
if (m_source_location[0] != '/' && colon != std::string::npos)
{
m_source_port = m_source_location.substr(colon+1);
m_source_location.resize(colon);
}
else
m_source_port.clear();
}
void Visualizer::InitVisualization()
{
size_t rendered_samples = 0;
switch (Config.visualizer_type)
{
case VisualizerType::Wave:
// Guarantee integral amount of samples per column.
rendered_samples = ceil(44100.0 / Config.visualizer_fps / w.getWidth());
rendered_samples *= w.getWidth();
// Slow the scolling 10 times to make it watchable.
rendered_samples *= 10;
draw = &Visualizer::DrawSoundWave;
drawStereo = &Visualizer::DrawSoundWaveStereo;
break;
case VisualizerType::WaveFilled:
// Guarantee integral amount of samples per column.
rendered_samples = ceil(44100.0 / Config.visualizer_fps / w.getWidth());
rendered_samples *= w.getWidth();
// Slow the scolling 10 times to make it watchable.
rendered_samples *= 10;
draw = &Visualizer::DrawSoundWaveFill;
drawStereo = &Visualizer::DrawSoundWaveFillStereo;
break;
# ifdef HAVE_FFTW3_H
case VisualizerType::Spectrum:
rendered_samples = DFT_NONZERO_SIZE;
draw = &Visualizer::DrawFrequencySpectrum;
drawStereo = &Visualizer::DrawFrequencySpectrumStereo;
break;
# endif // HAVE_FFTW3_H
case VisualizerType::Ellipse:
// Keep constant amount of samples on the screen regardless of fps.
rendered_samples = 44100 / 30;
draw = &Visualizer::DrawSoundEllipse;
drawStereo = &Visualizer::DrawSoundEllipseStereo;
break;
}
if (Config.visualizer_in_stereo)
rendered_samples *= 2;
m_rendered_samples.resize(rendered_samples);
// Keep 500ms worth of samples in the incoming buffer.
size_t buffered_samples = 44100.0 / 2;
if (Config.visualizer_in_stereo)
buffered_samples *= 2;
m_incoming_samples.resize(buffered_samples);
m_buffered_samples.resize(buffered_samples);
}
/**********************************************************************/
void Visualizer::Clear()
{
w.clear();
std::fill(m_rendered_samples.begin(), m_rendered_samples.end(), 0);
// Discard any lingering data from the data source.
if (m_source_fd >= 0)
{
ssize_t bytes_read;
do
bytes_read = read(m_source_fd, m_incoming_samples.data(),
sizeof(int16_t) * m_incoming_samples.size());
while (bytes_read > 0);
}
}
void Visualizer::ToggleVisualizationType()
{
switch (Config.visualizer_type)
{
case VisualizerType::Wave:
Config.visualizer_type = VisualizerType::WaveFilled;
break;
case VisualizerType::WaveFilled:
# ifdef HAVE_FFTW3_H
Config.visualizer_type = VisualizerType::Spectrum;
# else
Config.visualizer_type = VisualizerType::Ellipse;
# endif // HAVE_FFTW3_H
break;
# ifdef HAVE_FFTW3_H
case VisualizerType::Spectrum:
Config.visualizer_type = VisualizerType::Ellipse;
break;
# endif // HAVE_FFTW3_H
case VisualizerType::Ellipse:
Config.visualizer_type = VisualizerType::Wave;
break;
}
InitVisualization();
Statusbar::printf("Visualization type: %1%", Config.visualizer_type);
}
void Visualizer::OpenDataSource()
{
if (m_source_fd >= 0)
return;
if (!m_source_port.empty())
{
addrinfo hints, *res;
memset (&hints, 0, sizeof (hints));
hints.ai_family = PF_UNSPEC;
hints.ai_socktype = SOCK_DGRAM;
hints.ai_protocol = IPPROTO_UDP;
int errcode = getaddrinfo(m_source_location.c_str(), m_source_port.c_str(),
&hints, &res);
if (errcode != 0)
{
Statusbar::printf("Couldn't resolve \"%1%:%2%\": %3%",
m_source_location, m_source_port, gai_strerror(errcode));
return;
}
for (auto addr = res; addr != nullptr; addr = addr->ai_next)
{
m_source_fd = socket(res->ai_family, res->ai_socktype, res->ai_protocol);
if (m_source_fd >= 0)
{
// No SOCK_NONBLOCK on MacOS
int socket_flags = fcntl(m_source_fd, F_GETFL, 0);
fcntl(m_source_fd, F_SETFL, socket_flags | O_NONBLOCK);
errcode = bind(m_source_fd, res->ai_addr, res->ai_addrlen);
if (errcode < 0)
{
std::cerr << "Binding a socket failed: " << strerror(errno) << std::endl;
CloseDataSource();
}
else
break;
}
else
std::cerr << "Creation of socket failed: " << strerror(errno) << std::endl;
}
freeaddrinfo(res);
}
else
{
m_source_fd = open(m_source_location.c_str(), O_RDONLY | O_NONBLOCK);
if (m_source_fd < 0)
Statusbar::printf("Couldn't open \"%1%\" for reading PCM data: %2%",
m_source_location, strerror(errno));
}
}
void Visualizer::CloseDataSource()
{
if (m_source_fd >= 0)
close(m_source_fd);
m_source_fd = -1;
}
void Visualizer::FindOutputID()
{
m_output_id = -1;
// Look for the output only if its name is specified and we're fetching
// samples from a FIFO.
if (!Config.visualizer_output_name.empty() && m_source_port.empty())
{
for (MPD::OutputIterator out = Mpd.GetOutputs(), end; out != end; ++out)
{
if (out->name() == Config.visualizer_output_name)
{
m_output_id = out->id();
break;
}
}
if (m_output_id == -1)
Statusbar::printf("There is no output named \"%s\"", Config.visualizer_output_name);
}
}
void Visualizer::ResetAutoScaleMultiplier()
{
m_auto_scale_multiplier = 1;
}
#endif // ENABLE_VISUALIZER
|