1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/*
* Copyright (C) 2015, 2016 ARM Ltd.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __KVM_ARM_VGIC_MMIO_H__
#define __KVM_ARM_VGIC_MMIO_H__
struct vgic_register_region {
unsigned int reg_offset;
unsigned int len;
unsigned int bits_per_irq;
unsigned int access_flags;
unsigned long (*read)(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len);
void (*write)(struct kvm_vcpu *vcpu, gpa_t addr, unsigned int len,
unsigned long val);
};
extern struct kvm_io_device_ops kvm_io_gic_ops;
#define VGIC_ACCESS_8bit 1
#define VGIC_ACCESS_32bit 2
#define VGIC_ACCESS_64bit 4
/*
* Generate a mask that covers the number of bytes required to address
* up to 1024 interrupts, each represented by <bits> bits. This assumes
* that <bits> is a power of two.
*/
#define VGIC_ADDR_IRQ_MASK(bits) (((bits) * 1024 / 8) - 1)
/*
* (addr & mask) gives us the byte offset for the INT ID, so we want to
* divide this with 'bytes per irq' to get the INT ID, which is given
* by '(bits) / 8'. But we do this with fixed-point-arithmetic and
* take advantage of the fact that division by a fraction equals
* multiplication with the inverted fraction, and scale up both the
* numerator and denominator with 8 to support at most 64 bits per IRQ:
*/
#define VGIC_ADDR_TO_INTID(addr, bits) (((addr) & VGIC_ADDR_IRQ_MASK(bits)) * \
64 / (bits) / 8)
/*
* Some VGIC registers store per-IRQ information, with a different number
* of bits per IRQ. For those registers this macro is used.
* The _WITH_LENGTH version instantiates registers with a fixed length
* and is mutually exclusive with the _PER_IRQ version.
*/
#define REGISTER_DESC_WITH_BITS_PER_IRQ(off, rd, wr, bpi, acc) \
{ \
.reg_offset = off, \
.bits_per_irq = bpi, \
.len = bpi * 1024 / 8, \
.access_flags = acc, \
.read = rd, \
.write = wr, \
}
#define REGISTER_DESC_WITH_LENGTH(off, rd, wr, length, acc) \
{ \
.reg_offset = off, \
.bits_per_irq = 0, \
.len = length, \
.access_flags = acc, \
.read = rd, \
.write = wr, \
}
int kvm_vgic_register_mmio_region(struct kvm *kvm, struct kvm_vcpu *vcpu,
struct vgic_register_region *reg_desc,
struct vgic_io_device *region,
int nr_irqs, bool offset_private);
unsigned long vgic_data_mmio_bus_to_host(const void *val, unsigned int len);
void vgic_data_host_to_mmio_bus(void *buf, unsigned int len,
unsigned long data);
unsigned long vgic_mmio_read_raz(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len);
unsigned long vgic_mmio_read_rao(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len);
void vgic_mmio_write_wi(struct kvm_vcpu *vcpu, gpa_t addr,
unsigned int len, unsigned long val);
unsigned long vgic_mmio_read_enable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len);
void vgic_mmio_write_senable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val);
void vgic_mmio_write_cenable(struct kvm_vcpu *vcpu,
gpa_t addr, unsigned int len,
unsigned long val);
unsigned int vgic_v2_init_dist_iodev(struct vgic_io_device *dev);
#endif
|