summaryrefslogtreecommitdiff
path: root/security/keys/big_key.c
blob: c2f91a0cf8899cb0d8d69fd06ebcc05405cf45f7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
/* Large capacity key type
 *
 * Copyright (C) 2013 Red Hat, Inc. All Rights Reserved.
 * Written by David Howells (dhowells@redhat.com)
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public Licence
 * as published by the Free Software Foundation; either version
 * 2 of the Licence, or (at your option) any later version.
 */

#include <linux/module.h>
#include <linux/init.h>
#include <linux/seq_file.h>
#include <linux/file.h>
#include <linux/shmem_fs.h>
#include <linux/err.h>
#include <keys/user-type.h>
#include <keys/big_key-type.h>

MODULE_LICENSE("GPL");

/*
 * If the data is under this limit, there's no point creating a shm file to
 * hold it as the permanently resident metadata for the shmem fs will be at
 * least as large as the data.
 */
#define BIG_KEY_FILE_THRESHOLD (sizeof(struct inode) + sizeof(struct dentry))

/*
 * big_key defined keys take an arbitrary string as the description and an
 * arbitrary blob of data as the payload
 */
struct key_type key_type_big_key = {
	.name			= "big_key",
	.def_lookup_type	= KEYRING_SEARCH_LOOKUP_DIRECT,
	.preparse		= big_key_preparse,
	.free_preparse		= big_key_free_preparse,
	.instantiate		= generic_key_instantiate,
	.match			= user_match,
	.revoke			= big_key_revoke,
	.destroy		= big_key_destroy,
	.describe		= big_key_describe,
	.read			= big_key_read,
};

/*
 * Preparse a big key
 */
int big_key_preparse(struct key_preparsed_payload *prep)
{
	struct path *path = (struct path *)&prep->payload;
	struct file *file;
	ssize_t written;
	size_t datalen = prep->datalen;
	int ret;

	ret = -EINVAL;
	if (datalen <= 0 || datalen > 1024 * 1024 || !prep->data)
		goto error;

	/* Set an arbitrary quota */
	prep->quotalen = 16;

	prep->type_data[1] = (void *)(unsigned long)datalen;

	if (datalen > BIG_KEY_FILE_THRESHOLD) {
		/* Create a shmem file to store the data in.  This will permit the data
		 * to be swapped out if needed.
		 *
		 * TODO: Encrypt the stored data with a temporary key.
		 */
		file = shmem_kernel_file_setup("", datalen, 0);
		if (IS_ERR(file)) {
			ret = PTR_ERR(file);
			goto error;
		}

		written = kernel_write(file, prep->data, prep->datalen, 0);
		if (written != datalen) {
			ret = written;
			if (written >= 0)
				ret = -ENOMEM;
			goto err_fput;
		}

		/* Pin the mount and dentry to the key so that we can open it again
		 * later
		 */
		*path = file->f_path;
		path_get(path);
		fput(file);
	} else {
		/* Just store the data in a buffer */
		void *data = kmalloc(datalen, GFP_KERNEL);
		if (!data)
			return -ENOMEM;

		prep->payload[0] = memcpy(data, prep->data, prep->datalen);
	}
	return 0;

err_fput:
	fput(file);
error:
	return ret;
}

/*
 * Clear preparsement.
 */
void big_key_free_preparse(struct key_preparsed_payload *prep)
{
	if (prep->datalen > BIG_KEY_FILE_THRESHOLD) {
		struct path *path = (struct path *)&prep->payload;
		path_put(path);
	} else {
		kfree(prep->payload[0]);
	}
}

/*
 * dispose of the links from a revoked keyring
 * - called with the key sem write-locked
 */
void big_key_revoke(struct key *key)
{
	struct path *path = (struct path *)&key->payload.data2;

	/* clear the quota */
	key_payload_reserve(key, 0);
	if (key_is_instantiated(key) && key->type_data.x[1] > BIG_KEY_FILE_THRESHOLD)
		vfs_truncate(path, 0);
}

/*
 * dispose of the data dangling from the corpse of a big_key key
 */
void big_key_destroy(struct key *key)
{
	if (key->type_data.x[1] > BIG_KEY_FILE_THRESHOLD) {
		struct path *path = (struct path *)&key->payload.data2;
		path_put(path);
		path->mnt = NULL;
		path->dentry = NULL;
	} else {
		kfree(key->payload.data);
		key->payload.data = NULL;
	}
}

/*
 * describe the big_key key
 */
void big_key_describe(const struct key *key, struct seq_file *m)
{
	unsigned long datalen = key->type_data.x[1];

	seq_puts(m, key->description);

	if (key_is_instantiated(key))
		seq_printf(m, ": %lu [%s]",
			   datalen,
			   datalen > BIG_KEY_FILE_THRESHOLD ? "file" : "buff");
}

/*
 * read the key data
 * - the key's semaphore is read-locked
 */
long big_key_read(const struct key *key, char __user *buffer, size_t buflen)
{
	unsigned long datalen = key->type_data.x[1];
	long ret;

	if (!buffer || buflen < datalen)
		return datalen;

	if (datalen > BIG_KEY_FILE_THRESHOLD) {
		struct path *path = (struct path *)&key->payload.data2;
		struct file *file;
		loff_t pos;

		file = dentry_open(path, O_RDONLY, current_cred());
		if (IS_ERR(file))
			return PTR_ERR(file);

		pos = 0;
		ret = vfs_read(file, buffer, datalen, &pos);
		fput(file);
		if (ret >= 0 && ret != datalen)
			ret = -EIO;
	} else {
		ret = datalen;
		if (copy_to_user(buffer, key->payload.data, datalen) != 0)
			ret = -EFAULT;
	}

	return ret;
}

/*
 * Module stuff
 */
static int __init big_key_init(void)
{
	return register_key_type(&key_type_big_key);
}

static void __exit big_key_cleanup(void)
{
	unregister_key_type(&key_type_big_key);
}

module_init(big_key_init);
module_exit(big_key_cleanup);