1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
|
#
# IP netfilter configuration
#
menu "IP: Netfilter Configuration"
depends on INET && NETFILTER
config NF_CONNTRACK_IPV4
tristate "IPv4 support for new connection tracking (EXPERIMENTAL)"
depends on EXPERIMENTAL && NF_CONNTRACK
---help---
Connection tracking keeps a record of what packets have passed
through your machine, in order to figure out how they are related
into connections.
This is IPv4 support on Layer 3 independent connection tracking.
Layer 3 independent connection tracking is experimental scheme
which generalize ip_conntrack to support other layer 3 protocols.
To compile it as a module, choose M here. If unsure, say N.
# connection tracking, helpers and protocols
config IP_NF_CONNTRACK
tristate "Connection tracking (required for masq/NAT)"
---help---
Connection tracking keeps a record of what packets have passed
through your machine, in order to figure out how they are related
into connections.
This is required to do Masquerading or other kinds of Network
Address Translation (except for Fast NAT). It can also be used to
enhance packet filtering (see `Connection state match support'
below).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_CT_ACCT
bool "Connection tracking flow accounting"
depends on IP_NF_CONNTRACK
help
If this option is enabled, the connection tracking code will
keep per-flow packet and byte counters.
Those counters can be used for flow-based accounting or the
`connbytes' match.
If unsure, say `N'.
config IP_NF_CONNTRACK_MARK
bool 'Connection mark tracking support'
depends on IP_NF_CONNTRACK
help
This option enables support for connection marks, used by the
`CONNMARK' target and `connmark' match. Similar to the mark value
of packets, but this mark value is kept in the conntrack session
instead of the individual packets.
config IP_NF_CONNTRACK_EVENTS
bool "Connection tracking events"
depends on IP_NF_CONNTRACK
help
If this option is enabled, the connection tracking code will
provide a notifier chain that can be used by other kernel code
to get notified about changes in the connection tracking state.
IF unsure, say `N'.
config IP_NF_CONNTRACK_NETLINK
tristate 'Connection tracking netlink interface'
depends on IP_NF_CONNTRACK && NETFILTER_NETLINK
depends on IP_NF_CONNTRACK!=y || NETFILTER_NETLINK!=m
help
This option enables support for a netlink-based userspace interface
config IP_NF_CT_PROTO_SCTP
tristate 'SCTP protocol connection tracking support (EXPERIMENTAL)'
depends on IP_NF_CONNTRACK && EXPERIMENTAL
help
With this option enabled, the connection tracking code will
be able to do state tracking on SCTP connections.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_FTP
tristate "FTP protocol support"
depends on IP_NF_CONNTRACK
help
Tracking FTP connections is problematic: special helpers are
required for tracking them, and doing masquerading and other forms
of Network Address Translation on them.
To compile it as a module, choose M here. If unsure, say Y.
config IP_NF_IRC
tristate "IRC protocol support"
depends on IP_NF_CONNTRACK
---help---
There is a commonly-used extension to IRC called
Direct Client-to-Client Protocol (DCC). This enables users to send
files to each other, and also chat to each other without the need
of a server. DCC Sending is used anywhere you send files over IRC,
and DCC Chat is most commonly used by Eggdrop bots. If you are
using NAT, this extension will enable you to send files and initiate
chats. Note that you do NOT need this extension to get files or
have others initiate chats, or everything else in IRC.
To compile it as a module, choose M here. If unsure, say Y.
config IP_NF_NETBIOS_NS
tristate "NetBIOS name service protocol support (EXPERIMENTAL)"
depends on IP_NF_CONNTRACK && EXPERIMENTAL
help
NetBIOS name service requests are sent as broadcast messages from an
unprivileged port and responded to with unicast messages to the
same port. This make them hard to firewall properly because connection
tracking doesn't deal with broadcasts. This helper tracks locally
originating NetBIOS name service requests and the corresponding
responses. It relies on correct IP address configuration, specifically
netmask and broadcast address. When properly configured, the output
of "ip address show" should look similar to this:
$ ip -4 address show eth0
4: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 1000
inet 172.16.2.252/24 brd 172.16.2.255 scope global eth0
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TFTP
tristate "TFTP protocol support"
depends on IP_NF_CONNTRACK
help
TFTP connection tracking helper, this is required depending
on how restrictive your ruleset is.
If you are using a tftp client behind -j SNAT or -j MASQUERADING
you will need this.
To compile it as a module, choose M here. If unsure, say Y.
config IP_NF_AMANDA
tristate "Amanda backup protocol support"
depends on IP_NF_CONNTRACK
help
If you are running the Amanda backup package <http://www.amanda.org/>
on this machine or machines that will be MASQUERADED through this
machine, then you may want to enable this feature. This allows the
connection tracking and natting code to allow the sub-channels that
Amanda requires for communication of the backup data, messages and
index.
To compile it as a module, choose M here. If unsure, say Y.
config IP_NF_PPTP
tristate 'PPTP protocol support'
depends on IP_NF_CONNTRACK
help
This module adds support for PPTP (Point to Point Tunnelling
Protocol, RFC2637) connection tracking and NAT.
If you are running PPTP sessions over a stateful firewall or NAT
box, you may want to enable this feature.
Please note that not all PPTP modes of operation are supported yet.
For more info, read top of the file
net/ipv4/netfilter/ip_conntrack_pptp.c
If you want to compile it as a module, say M here and read
Documentation/modules.txt. If unsure, say `N'.
config IP_NF_QUEUE
tristate "IP Userspace queueing via NETLINK (OBSOLETE)"
help
Netfilter has the ability to queue packets to user space: the
netlink device can be used to access them using this driver.
This option enables the old IPv4-only "ip_queue" implementation
which has been obsoleted by the new "nfnetlink_queue" code (see
CONFIG_NETFILTER_NETLINK_QUEUE).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_IPTABLES
tristate "IP tables support (required for filtering/masq/NAT)"
help
iptables is a general, extensible packet identification framework.
The packet filtering and full NAT (masquerading, port forwarding,
etc) subsystems now use this: say `Y' or `M' here if you want to use
either of those.
To compile it as a module, choose M here. If unsure, say N.
# The matches.
config IP_NF_MATCH_LIMIT
tristate "limit match support"
depends on IP_NF_IPTABLES
help
limit matching allows you to control the rate at which a rule can be
matched: mainly useful in combination with the LOG target ("LOG
target support", below) and to avoid some Denial of Service attacks.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_IPRANGE
tristate "IP range match support"
depends on IP_NF_IPTABLES
help
This option makes possible to match IP addresses against IP address
ranges.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_MAC
tristate "MAC address match support"
depends on IP_NF_IPTABLES
help
MAC matching allows you to match packets based on the source
Ethernet address of the packet.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_PKTTYPE
tristate "Packet type match support"
depends on IP_NF_IPTABLES
help
Packet type matching allows you to match a packet by
its "class", eg. BROADCAST, MULTICAST, ...
Typical usage:
iptables -A INPUT -m pkttype --pkt-type broadcast -j LOG
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_MARK
tristate "netfilter MARK match support"
depends on IP_NF_IPTABLES
help
Netfilter mark matching allows you to match packets based on the
`nfmark' value in the packet. This can be set by the MARK target
(see below).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_MULTIPORT
tristate "Multiple port match support"
depends on IP_NF_IPTABLES
help
Multiport matching allows you to match TCP or UDP packets based on
a series of source or destination ports: normally a rule can only
match a single range of ports.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_TOS
tristate "TOS match support"
depends on IP_NF_IPTABLES
help
TOS matching allows you to match packets based on the Type Of
Service fields of the IP packet.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_RECENT
tristate "recent match support"
depends on IP_NF_IPTABLES
help
This match is used for creating one or many lists of recently
used addresses and then matching against that/those list(s).
Short options are available by using 'iptables -m recent -h'
Official Website: <http://snowman.net/projects/ipt_recent/>
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_ECN
tristate "ECN match support"
depends on IP_NF_IPTABLES
help
This option adds a `ECN' match, which allows you to match against
the IPv4 and TCP header ECN fields.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_DSCP
tristate "DSCP match support"
depends on IP_NF_IPTABLES
help
This option adds a `DSCP' match, which allows you to match against
the IPv4 header DSCP field (DSCP codepoint).
The DSCP codepoint can have any value between 0x0 and 0x4f.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_AH_ESP
tristate "AH/ESP match support"
depends on IP_NF_IPTABLES
help
These two match extensions (`ah' and `esp') allow you to match a
range of SPIs inside AH or ESP headers of IPSec packets.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_LENGTH
tristate "LENGTH match support"
depends on IP_NF_IPTABLES
help
This option allows you to match the length of a packet against a
specific value or range of values.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_TTL
tristate "TTL match support"
depends on IP_NF_IPTABLES
help
This adds CONFIG_IP_NF_MATCH_TTL option, which enabled the user
to match packets by their TTL value.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_TCPMSS
tristate "tcpmss match support"
depends on IP_NF_IPTABLES
help
This option adds a `tcpmss' match, which allows you to examine the
MSS value of TCP SYN packets, which control the maximum packet size
for that connection.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_HELPER
tristate "Helper match support"
depends on IP_NF_IPTABLES
depends on IP_NF_CONNTRACK || NF_CONNTRACK_IPV4
help
Helper matching allows you to match packets in dynamic connections
tracked by a conntrack-helper, ie. ip_conntrack_ftp
To compile it as a module, choose M here. If unsure, say Y.
config IP_NF_MATCH_STATE
tristate "Connection state match support"
depends on IP_NF_IPTABLES
depends on IP_NF_CONNTRACK || NF_CONNTRACK_IPV4
help
Connection state matching allows you to match packets based on their
relationship to a tracked connection (ie. previous packets). This
is a powerful tool for packet classification.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_CONNTRACK
tristate "Connection tracking match support"
depends on IP_NF_IPTABLES
depends on IP_NF_CONNTRACK || NF_CONNTRACK_IPV4
help
This is a general conntrack match module, a superset of the state match.
It allows matching on additional conntrack information, which is
useful in complex configurations, such as NAT gateways with multiple
internet links or tunnels.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_OWNER
tristate "Owner match support"
depends on IP_NF_IPTABLES
help
Packet owner matching allows you to match locally-generated packets
based on who created them: the user, group, process or session.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_PHYSDEV
tristate "Physdev match support"
depends on IP_NF_IPTABLES && BRIDGE_NETFILTER
help
Physdev packet matching matches against the physical bridge ports
the IP packet arrived on or will leave by.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_MATCH_ADDRTYPE
tristate 'address type match support'
depends on IP_NF_IPTABLES
help
This option allows you to match what routing thinks of an address,
eg. UNICAST, LOCAL, BROADCAST, ...
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_REALM
tristate 'realm match support'
depends on IP_NF_IPTABLES
select NET_CLS_ROUTE
help
This option adds a `realm' match, which allows you to use the realm
key from the routing subsystem inside iptables.
This match pretty much resembles the CONFIG_NET_CLS_ROUTE4 option
in tc world.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_SCTP
tristate 'SCTP protocol match support'
depends on IP_NF_IPTABLES
help
With this option enabled, you will be able to use the iptables
`sctp' match in order to match on SCTP source/destination ports
and SCTP chunk types.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_DCCP
tristate 'DCCP protocol match support'
depends on IP_NF_IPTABLES
help
With this option enabled, you will be able to use the iptables
`dccp' match in order to match on DCCP source/destination ports
and DCCP flags.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_COMMENT
tristate 'comment match support'
depends on IP_NF_IPTABLES
help
This option adds a `comment' dummy-match, which allows you to put
comments in your iptables ruleset.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_CONNMARK
tristate 'Connection mark match support'
depends on IP_NF_IPTABLES
depends on (IP_NF_CONNTRACK && IP_NF_CONNTRACK_MARK) || (NF_CONNTRACK_MARK && NF_CONNTRACK_IPV4)
help
This option adds a `connmark' match, which allows you to match the
connection mark value previously set for the session by `CONNMARK'.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
ipt_connmark.o. If unsure, say `N'.
config IP_NF_MATCH_CONNBYTES
tristate 'Connection byte/packet counter match support'
depends on IP_NF_IPTABLES
depends on (IP_NF_CONNTRACK && IP_NF_CT_ACCT) || (NF_CT_ACCT && NF_CONNTRACK_IPV4)
help
This option adds a `connbytes' match, which allows you to match the
number of bytes and/or packets for each direction within a connection.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_MATCH_HASHLIMIT
tristate 'hashlimit match support'
depends on IP_NF_IPTABLES
help
This option adds a new iptables `hashlimit' match.
As opposed to `limit', this match dynamically crates a hash table
of limit buckets, based on your selection of source/destination
ip addresses and/or ports.
It enables you to express policies like `10kpps for any given
destination IP' or `500pps from any given source IP' with a single
IPtables rule.
config IP_NF_MATCH_STRING
tristate 'string match support'
depends on IP_NF_IPTABLES
select TEXTSEARCH
select TEXTSEARCH_KMP
select TEXTSEARCH_BM
select TEXTSEARCH_FSM
help
This option adds a `string' match, which allows you to look for
pattern matchings in packets.
To compile it as a module, choose M here. If unsure, say N.
# `filter', generic and specific targets
config IP_NF_FILTER
tristate "Packet filtering"
depends on IP_NF_IPTABLES
help
Packet filtering defines a table `filter', which has a series of
rules for simple packet filtering at local input, forwarding and
local output. See the man page for iptables(8).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_REJECT
tristate "REJECT target support"
depends on IP_NF_FILTER
help
The REJECT target allows a filtering rule to specify that an ICMP
error should be issued in response to an incoming packet, rather
than silently being dropped.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_LOG
tristate "LOG target support"
depends on IP_NF_IPTABLES
help
This option adds a `LOG' target, which allows you to create rules in
any iptables table which records the packet header to the syslog.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_ULOG
tristate "ULOG target support (OBSOLETE)"
depends on IP_NF_IPTABLES
---help---
This option enables the old IPv4-only "ipt_ULOG" implementation
which has been obsoleted by the new "nfnetlink_log" code (see
CONFIG_NETFILTER_NETLINK_LOG).
This option adds a `ULOG' target, which allows you to create rules in
any iptables table. The packet is passed to a userspace logging
daemon using netlink multicast sockets; unlike the LOG target
which can only be viewed through syslog.
The apropriate userspace logging daemon (ulogd) may be obtained from
<http://www.gnumonks.org/projects/ulogd/>
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_TCPMSS
tristate "TCPMSS target support"
depends on IP_NF_IPTABLES
---help---
This option adds a `TCPMSS' target, which allows you to alter the
MSS value of TCP SYN packets, to control the maximum size for that
connection (usually limiting it to your outgoing interface's MTU
minus 40).
This is used to overcome criminally braindead ISPs or servers which
block ICMP Fragmentation Needed packets. The symptoms of this
problem are that everything works fine from your Linux
firewall/router, but machines behind it can never exchange large
packets:
1) Web browsers connect, then hang with no data received.
2) Small mail works fine, but large emails hang.
3) ssh works fine, but scp hangs after initial handshaking.
Workaround: activate this option and add a rule to your firewall
configuration like:
iptables -A FORWARD -p tcp --tcp-flags SYN,RST SYN \
-j TCPMSS --clamp-mss-to-pmtu
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_NFQUEUE
tristate "NFQUEUE Target Support"
depends on IP_NF_IPTABLES
help
This Target replaced the old obsolete QUEUE target.
As opposed to QUEUE, it supports 65535 different queues,
not just one.
To compile it as a module, choose M here. If unsure, say N.
# NAT + specific targets
config IP_NF_NAT
tristate "Full NAT"
depends on IP_NF_IPTABLES && IP_NF_CONNTRACK
help
The Full NAT option allows masquerading, port forwarding and other
forms of full Network Address Port Translation. It is controlled by
the `nat' table in iptables: see the man page for iptables(8).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_NAT_NEEDED
bool
depends on IP_NF_NAT != n
default y
config IP_NF_TARGET_MASQUERADE
tristate "MASQUERADE target support"
depends on IP_NF_NAT
help
Masquerading is a special case of NAT: all outgoing connections are
changed to seem to come from a particular interface's address, and
if the interface goes down, those connections are lost. This is
only useful for dialup accounts with dynamic IP address (ie. your IP
address will be different on next dialup).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_REDIRECT
tristate "REDIRECT target support"
depends on IP_NF_NAT
help
REDIRECT is a special case of NAT: all incoming connections are
mapped onto the incoming interface's address, causing the packets to
come to the local machine instead of passing through. This is
useful for transparent proxies.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_NETMAP
tristate "NETMAP target support"
depends on IP_NF_NAT
help
NETMAP is an implementation of static 1:1 NAT mapping of network
addresses. It maps the network address part, while keeping the host
address part intact. It is similar to Fast NAT, except that
Netfilter's connection tracking doesn't work well with Fast NAT.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_SAME
tristate "SAME target support"
depends on IP_NF_NAT
help
This option adds a `SAME' target, which works like the standard SNAT
target, but attempts to give clients the same IP for all connections.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_NAT_SNMP_BASIC
tristate "Basic SNMP-ALG support (EXPERIMENTAL)"
depends on EXPERIMENTAL && IP_NF_NAT
---help---
This module implements an Application Layer Gateway (ALG) for
SNMP payloads. In conjunction with NAT, it allows a network
management system to access multiple private networks with
conflicting addresses. It works by modifying IP addresses
inside SNMP payloads to match IP-layer NAT mapping.
This is the "basic" form of SNMP-ALG, as described in RFC 2962
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_NAT_IRC
tristate
depends on IP_NF_IPTABLES!=n && IP_NF_CONNTRACK!=n && IP_NF_NAT!=n
default IP_NF_NAT if IP_NF_IRC=y
default m if IP_NF_IRC=m
# If they want FTP, set to $CONFIG_IP_NF_NAT (m or y),
# or $CONFIG_IP_NF_FTP (m or y), whichever is weaker. Argh.
config IP_NF_NAT_FTP
tristate
depends on IP_NF_IPTABLES!=n && IP_NF_CONNTRACK!=n && IP_NF_NAT!=n
default IP_NF_NAT if IP_NF_FTP=y
default m if IP_NF_FTP=m
config IP_NF_NAT_TFTP
tristate
depends on IP_NF_IPTABLES!=n && IP_NF_CONNTRACK!=n && IP_NF_NAT!=n
default IP_NF_NAT if IP_NF_TFTP=y
default m if IP_NF_TFTP=m
config IP_NF_NAT_AMANDA
tristate
depends on IP_NF_IPTABLES!=n && IP_NF_CONNTRACK!=n && IP_NF_NAT!=n
default IP_NF_NAT if IP_NF_AMANDA=y
default m if IP_NF_AMANDA=m
config IP_NF_NAT_PPTP
tristate
depends on IP_NF_NAT!=n && IP_NF_PPTP!=n
default IP_NF_NAT if IP_NF_PPTP=y
default m if IP_NF_PPTP=m
# mangle + specific targets
config IP_NF_MANGLE
tristate "Packet mangling"
depends on IP_NF_IPTABLES
help
This option adds a `mangle' table to iptables: see the man page for
iptables(8). This table is used for various packet alterations
which can effect how the packet is routed.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_TOS
tristate "TOS target support"
depends on IP_NF_MANGLE
help
This option adds a `TOS' target, which allows you to create rules in
the `mangle' table which alter the Type Of Service field of an IP
packet prior to routing.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_ECN
tristate "ECN target support"
depends on IP_NF_MANGLE
---help---
This option adds a `ECN' target, which can be used in the iptables mangle
table.
You can use this target to remove the ECN bits from the IPv4 header of
an IP packet. This is particularly useful, if you need to work around
existing ECN blackholes on the internet, but don't want to disable
ECN support in general.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_DSCP
tristate "DSCP target support"
depends on IP_NF_MANGLE
help
This option adds a `DSCP' match, which allows you to match against
the IPv4 header DSCP field (DSCP codepoint).
The DSCP codepoint can have any value between 0x0 and 0x4f.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_MARK
tristate "MARK target support"
depends on IP_NF_MANGLE
help
This option adds a `MARK' target, which allows you to create rules
in the `mangle' table which alter the netfilter mark (nfmark) field
associated with the packet prior to routing. This can change
the routing method (see `Use netfilter MARK value as routing
key') and can also be used by other subsystems to change their
behavior.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_CLASSIFY
tristate "CLASSIFY target support"
depends on IP_NF_MANGLE
help
This option adds a `CLASSIFY' target, which enables the user to set
the priority of a packet. Some qdiscs can use this value for
classification, among these are:
atm, cbq, dsmark, pfifo_fast, htb, prio
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_TTL
tristate 'TTL target support'
depends on IP_NF_MANGLE
help
This option adds a `TTL' target, which enables the user to modify
the TTL value of the IP header.
While it is safe to decrement/lower the TTL, this target also enables
functionality to increment and set the TTL value of the IP header to
arbitrary values. This is EXTREMELY DANGEROUS since you can easily
create immortal packets that loop forever on the network.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_TARGET_CONNMARK
tristate 'CONNMARK target support'
depends on IP_NF_MANGLE
depends on (IP_NF_CONNTRACK && IP_NF_CONNTRACK_MARK) || (NF_CONNTRACK_MARK && NF_CONNTRACK_IPV4)
help
This option adds a `CONNMARK' target, which allows one to manipulate
the connection mark value. Similar to the MARK target, but
affects the connection mark value rather than the packet mark value.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. The module will be called
ipt_CONNMARK.o. If unsure, say `N'.
config IP_NF_TARGET_CLUSTERIP
tristate "CLUSTERIP target support (EXPERIMENTAL)"
depends on IP_NF_MANGLE && EXPERIMENTAL
depends on (IP_NF_CONNTRACK && IP_NF_CONNTRACK_MARK) || (NF_CONNTRACK_MARK && NF_CONNTRACK_IPV4)
help
The CLUSTERIP target allows you to build load-balancing clusters of
network servers without having a dedicated load-balancing
router/server/switch.
To compile it as a module, choose M here. If unsure, say N.
# raw + specific targets
config IP_NF_RAW
tristate 'raw table support (required for NOTRACK/TRACE)'
depends on IP_NF_IPTABLES
help
This option adds a `raw' table to iptables. This table is the very
first in the netfilter framework and hooks in at the PREROUTING
and OUTPUT chains.
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
config IP_NF_TARGET_NOTRACK
tristate 'NOTRACK target support'
depends on IP_NF_RAW
depends on IP_NF_CONNTRACK || NF_CONNTRACK_IPV4
help
The NOTRACK target allows a select rule to specify
which packets *not* to enter the conntrack/NAT
subsystem with all the consequences (no ICMP error tracking,
no protocol helpers for the selected packets).
If you want to compile it as a module, say M here and read
<file:Documentation/modules.txt>. If unsure, say `N'.
# ARP tables
config IP_NF_ARPTABLES
tristate "ARP tables support"
help
arptables is a general, extensible packet identification framework.
The ARP packet filtering and mangling (manipulation)subsystems
use this: say Y or M here if you want to use either of those.
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_ARPFILTER
tristate "ARP packet filtering"
depends on IP_NF_ARPTABLES
help
ARP packet filtering defines a table `filter', which has a series of
rules for simple ARP packet filtering at local input and
local output. On a bridge, you can also specify filtering rules
for forwarded ARP packets. See the man page for arptables(8).
To compile it as a module, choose M here. If unsure, say N.
config IP_NF_ARP_MANGLE
tristate "ARP payload mangling"
depends on IP_NF_ARPTABLES
help
Allows altering the ARP packet payload: source and destination
hardware and network addresses.
endmenu
|