summaryrefslogtreecommitdiff
path: root/net/dsa/tag_8021q.c
blob: 8e3e8a5b855930b3aa20d5251ff66e235562f0c8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
 *
 * This module is not a complete tagger implementation. It only provides
 * primitives for taggers that rely on 802.1Q VLAN tags to use. The
 * dsa_8021q_netdev_ops is registered for API compliance and not used
 * directly by callers.
 */
#include <linux/if_bridge.h>
#include <linux/if_vlan.h>
#include <linux/dsa/8021q.h>

#include "dsa_priv.h"

/* Binary structure of the fake 12-bit VID field (when the TPID is
 * ETH_P_DSA_8021Q):
 *
 * | 11  | 10  |  9  |  8  |  7  |  6  |  5  |  4  |  3  |  2  |  1  |  0  |
 * +-----------+-----+-----------------+-----------+-----------------------+
 * |    DIR    | SVL |    SWITCH_ID    |  SUBVLAN  |          PORT         |
 * +-----------+-----+-----------------+-----------+-----------------------+
 *
 * DIR - VID[11:10]:
 *	Direction flags.
 *	* 1 (0b01) for RX VLAN,
 *	* 2 (0b10) for TX VLAN.
 *	These values make the special VIDs of 0, 1 and 4095 to be left
 *	unused by this coding scheme.
 *
 * SVL/SUBVLAN - { VID[9], VID[5:4] }:
 *	Sub-VLAN encoding. Valid only when DIR indicates an RX VLAN.
 *	* 0 (0b000): Field does not encode a sub-VLAN, either because
 *	received traffic is untagged, PVID-tagged or because a second
 *	VLAN tag is present after this tag and not inside of it.
 *	* 1 (0b001): Received traffic is tagged with a VID value private
 *	to the host. This field encodes the index in the host's lookup
 *	table through which the value of the ingress VLAN ID can be
 *	recovered.
 *	* 2 (0b010): Field encodes a sub-VLAN.
 *	...
 *	* 7 (0b111): Field encodes a sub-VLAN.
 *	When DIR indicates a TX VLAN, SUBVLAN must be transmitted as zero
 *	(by the host) and ignored on receive (by the switch).
 *
 * SWITCH_ID - VID[8:6]:
 *	Index of switch within DSA tree. Must be between 0 and 7.
 *
 * PORT - VID[3:0]:
 *	Index of switch port. Must be between 0 and 15.
 */

#define DSA_8021Q_DIR_SHIFT		10
#define DSA_8021Q_DIR_MASK		GENMASK(11, 10)
#define DSA_8021Q_DIR(x)		(((x) << DSA_8021Q_DIR_SHIFT) & \
						 DSA_8021Q_DIR_MASK)
#define DSA_8021Q_DIR_RX		DSA_8021Q_DIR(1)
#define DSA_8021Q_DIR_TX		DSA_8021Q_DIR(2)

#define DSA_8021Q_SWITCH_ID_SHIFT	6
#define DSA_8021Q_SWITCH_ID_MASK	GENMASK(8, 6)
#define DSA_8021Q_SWITCH_ID(x)		(((x) << DSA_8021Q_SWITCH_ID_SHIFT) & \
						 DSA_8021Q_SWITCH_ID_MASK)

#define DSA_8021Q_SUBVLAN_HI_SHIFT	9
#define DSA_8021Q_SUBVLAN_HI_MASK	GENMASK(9, 9)
#define DSA_8021Q_SUBVLAN_LO_SHIFT	4
#define DSA_8021Q_SUBVLAN_LO_MASK	GENMASK(4, 3)
#define DSA_8021Q_SUBVLAN_HI(x)		(((x) & GENMASK(2, 2)) >> 2)
#define DSA_8021Q_SUBVLAN_LO(x)		((x) & GENMASK(1, 0))
#define DSA_8021Q_SUBVLAN(x)		\
		(((DSA_8021Q_SUBVLAN_LO(x) << DSA_8021Q_SUBVLAN_LO_SHIFT) & \
		  DSA_8021Q_SUBVLAN_LO_MASK) | \
		 ((DSA_8021Q_SUBVLAN_HI(x) << DSA_8021Q_SUBVLAN_HI_SHIFT) & \
		  DSA_8021Q_SUBVLAN_HI_MASK))

#define DSA_8021Q_PORT_SHIFT		0
#define DSA_8021Q_PORT_MASK		GENMASK(3, 0)
#define DSA_8021Q_PORT(x)		(((x) << DSA_8021Q_PORT_SHIFT) & \
						 DSA_8021Q_PORT_MASK)

/* Returns the VID to be inserted into the frame from xmit for switch steering
 * instructions on egress. Encodes switch ID and port ID.
 */
u16 dsa_8021q_tx_vid(struct dsa_switch *ds, int port)
{
	return DSA_8021Q_DIR_TX | DSA_8021Q_SWITCH_ID(ds->index) |
	       DSA_8021Q_PORT(port);
}
EXPORT_SYMBOL_GPL(dsa_8021q_tx_vid);

/* Returns the VID that will be installed as pvid for this switch port, sent as
 * tagged egress towards the CPU port and decoded by the rcv function.
 */
u16 dsa_8021q_rx_vid(struct dsa_switch *ds, int port)
{
	return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
	       DSA_8021Q_PORT(port);
}
EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid);

u16 dsa_8021q_rx_vid_subvlan(struct dsa_switch *ds, int port, u16 subvlan)
{
	return DSA_8021Q_DIR_RX | DSA_8021Q_SWITCH_ID(ds->index) |
	       DSA_8021Q_PORT(port) | DSA_8021Q_SUBVLAN(subvlan);
}
EXPORT_SYMBOL_GPL(dsa_8021q_rx_vid_subvlan);

/* Returns the decoded switch ID from the RX VID. */
int dsa_8021q_rx_switch_id(u16 vid)
{
	return (vid & DSA_8021Q_SWITCH_ID_MASK) >> DSA_8021Q_SWITCH_ID_SHIFT;
}
EXPORT_SYMBOL_GPL(dsa_8021q_rx_switch_id);

/* Returns the decoded port ID from the RX VID. */
int dsa_8021q_rx_source_port(u16 vid)
{
	return (vid & DSA_8021Q_PORT_MASK) >> DSA_8021Q_PORT_SHIFT;
}
EXPORT_SYMBOL_GPL(dsa_8021q_rx_source_port);

/* Returns the decoded subvlan from the RX VID. */
u16 dsa_8021q_rx_subvlan(u16 vid)
{
	u16 svl_hi, svl_lo;

	svl_hi = (vid & DSA_8021Q_SUBVLAN_HI_MASK) >>
		 DSA_8021Q_SUBVLAN_HI_SHIFT;
	svl_lo = (vid & DSA_8021Q_SUBVLAN_LO_MASK) >>
		 DSA_8021Q_SUBVLAN_LO_SHIFT;

	return (svl_hi << 2) | svl_lo;
}
EXPORT_SYMBOL_GPL(dsa_8021q_rx_subvlan);

bool vid_is_dsa_8021q(u16 vid)
{
	return ((vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_RX ||
		(vid & DSA_8021Q_DIR_MASK) == DSA_8021Q_DIR_TX);
}
EXPORT_SYMBOL_GPL(vid_is_dsa_8021q);

/* If @enabled is true, installs @vid with @flags into the switch port's HW
 * filter.
 * If @enabled is false, deletes @vid (ignores @flags) from the port. Had the
 * user explicitly configured this @vid through the bridge core, then the @vid
 * is installed again, but this time with the flags from the bridge layer.
 */
static int dsa_8021q_vid_apply(struct dsa_8021q_context *ctx, int port, u16 vid,
			       u16 flags, bool enabled)
{
	struct dsa_port *dp = dsa_to_port(ctx->ds, port);

	if (enabled)
		return ctx->ops->vlan_add(ctx->ds, dp->index, vid, flags);

	return ctx->ops->vlan_del(ctx->ds, dp->index, vid);
}

/* RX VLAN tagging (left) and TX VLAN tagging (right) setup shown for a single
 * front-panel switch port (here swp0).
 *
 * Port identification through VLAN (802.1Q) tags has different requirements
 * for it to work effectively:
 *  - On RX (ingress from network): each front-panel port must have a pvid
 *    that uniquely identifies it, and the egress of this pvid must be tagged
 *    towards the CPU port, so that software can recover the source port based
 *    on the VID in the frame. But this would only work for standalone ports;
 *    if bridged, this VLAN setup would break autonomous forwarding and would
 *    force all switched traffic to pass through the CPU. So we must also make
 *    the other front-panel ports members of this VID we're adding, albeit
 *    we're not making it their PVID (they'll still have their own).
 *    By the way - just because we're installing the same VID in multiple
 *    switch ports doesn't mean that they'll start to talk to one another, even
 *    while not bridged: the final forwarding decision is still an AND between
 *    the L2 forwarding information (which is limiting forwarding in this case)
 *    and the VLAN-based restrictions (of which there are none in this case,
 *    since all ports are members).
 *  - On TX (ingress from CPU and towards network) we are faced with a problem.
 *    If we were to tag traffic (from within DSA) with the port's pvid, all
 *    would be well, assuming the switch ports were standalone. Frames would
 *    have no choice but to be directed towards the correct front-panel port.
 *    But because we also want the RX VLAN to not break bridging, then
 *    inevitably that means that we have to give them a choice (of what
 *    front-panel port to go out on), and therefore we cannot steer traffic
 *    based on the RX VID. So what we do is simply install one more VID on the
 *    front-panel and CPU ports, and profit off of the fact that steering will
 *    work just by virtue of the fact that there is only one other port that's
 *    a member of the VID we're tagging the traffic with - the desired one.
 *
 * So at the end, each front-panel port will have one RX VID (also the PVID),
 * the RX VID of all other front-panel ports, and one TX VID. Whereas the CPU
 * port will have the RX and TX VIDs of all front-panel ports, and on top of
 * that, is also tagged-input and tagged-output (VLAN trunk).
 *
 *               CPU port                               CPU port
 * +-------------+-----+-------------+    +-------------+-----+-------------+
 * |  RX VID     |     |             |    |  TX VID     |     |             |
 * |  of swp0    |     |             |    |  of swp0    |     |             |
 * |             +-----+             |    |             +-----+             |
 * |                ^ T              |    |                | Tagged         |
 * |                |                |    |                | ingress        |
 * |    +-------+---+---+-------+    |    |    +-----------+                |
 * |    |       |       |       |    |    |    | Untagged                   |
 * |    |     U v     U v     U v    |    |    v egress                     |
 * | +-----+ +-----+ +-----+ +-----+ |    | +-----+ +-----+ +-----+ +-----+ |
 * | |     | |     | |     | |     | |    | |     | |     | |     | |     | |
 * | |PVID | |     | |     | |     | |    | |     | |     | |     | |     | |
 * +-+-----+-+-----+-+-----+-+-----+-+    +-+-----+-+-----+-+-----+-+-----+-+
 *   swp0    swp1    swp2    swp3           swp0    swp1    swp2    swp3
 */
static int dsa_8021q_setup_port(struct dsa_8021q_context *ctx, int port,
				bool enabled)
{
	int upstream = dsa_upstream_port(ctx->ds, port);
	u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);
	u16 tx_vid = dsa_8021q_tx_vid(ctx->ds, port);
	struct net_device *master;
	int i, err, subvlan;

	/* The CPU port is implicitly configured by
	 * configuring the front-panel ports
	 */
	if (!dsa_is_user_port(ctx->ds, port))
		return 0;

	master = dsa_to_port(ctx->ds, port)->cpu_dp->master;

	/* Add this user port's RX VID to the membership list of all others
	 * (including itself). This is so that bridging will not be hindered.
	 * L2 forwarding rules still take precedence when there are no VLAN
	 * restrictions, so there are no concerns about leaking traffic.
	 */
	for (i = 0; i < ctx->ds->num_ports; i++) {
		u16 flags;

		if (i == upstream)
			continue;
		else if (i == port)
			/* The RX VID is pvid on this port */
			flags = BRIDGE_VLAN_INFO_UNTAGGED |
				BRIDGE_VLAN_INFO_PVID;
		else
			/* The RX VID is a regular VLAN on all others */
			flags = BRIDGE_VLAN_INFO_UNTAGGED;

		err = dsa_8021q_vid_apply(ctx, i, rx_vid, flags, enabled);
		if (err) {
			dev_err(ctx->ds->dev,
				"Failed to apply RX VID %d to port %d: %d\n",
				rx_vid, port, err);
			return err;
		}
	}

	/* CPU port needs to see this port's RX VID
	 * as tagged egress.
	 */
	err = dsa_8021q_vid_apply(ctx, upstream, rx_vid, 0, enabled);
	if (err) {
		dev_err(ctx->ds->dev,
			"Failed to apply RX VID %d to port %d: %d\n",
			rx_vid, port, err);
		return err;
	}

	/* Add to the master's RX filter not only @rx_vid, but in fact
	 * the entire subvlan range, just in case this DSA switch might
	 * want to use sub-VLANs.
	 */
	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++) {
		u16 vid = dsa_8021q_rx_vid_subvlan(ctx->ds, port, subvlan);

		if (enabled)
			vlan_vid_add(master, ctx->proto, vid);
		else
			vlan_vid_del(master, ctx->proto, vid);
	}

	/* Finally apply the TX VID on this port and on the CPU port */
	err = dsa_8021q_vid_apply(ctx, port, tx_vid, BRIDGE_VLAN_INFO_UNTAGGED,
				  enabled);
	if (err) {
		dev_err(ctx->ds->dev,
			"Failed to apply TX VID %d on port %d: %d\n",
			tx_vid, port, err);
		return err;
	}
	err = dsa_8021q_vid_apply(ctx, upstream, tx_vid, 0, enabled);
	if (err) {
		dev_err(ctx->ds->dev,
			"Failed to apply TX VID %d on port %d: %d\n",
			tx_vid, upstream, err);
		return err;
	}

	return err;
}

int dsa_8021q_setup(struct dsa_8021q_context *ctx, bool enabled)
{
	int rc, port;

	ASSERT_RTNL();

	for (port = 0; port < ctx->ds->num_ports; port++) {
		rc = dsa_8021q_setup_port(ctx, port, enabled);
		if (rc < 0) {
			dev_err(ctx->ds->dev,
				"Failed to setup VLAN tagging for port %d: %d\n",
				port, rc);
			return rc;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dsa_8021q_setup);

static int dsa_8021q_crosschip_link_apply(struct dsa_8021q_context *ctx,
					  int port,
					  struct dsa_8021q_context *other_ctx,
					  int other_port, bool enabled)
{
	u16 rx_vid = dsa_8021q_rx_vid(ctx->ds, port);

	/* @rx_vid of local @ds port @port goes to @other_port of
	 * @other_ds
	 */
	return dsa_8021q_vid_apply(other_ctx, other_port, rx_vid,
				   BRIDGE_VLAN_INFO_UNTAGGED, enabled);
}

static int dsa_8021q_crosschip_link_add(struct dsa_8021q_context *ctx, int port,
					struct dsa_8021q_context *other_ctx,
					int other_port)
{
	struct dsa_8021q_crosschip_link *c;

	list_for_each_entry(c, &ctx->crosschip_links, list) {
		if (c->port == port && c->other_ctx == other_ctx &&
		    c->other_port == other_port) {
			refcount_inc(&c->refcount);
			return 0;
		}
	}

	dev_dbg(ctx->ds->dev,
		"adding crosschip link from port %d to %s port %d\n",
		port, dev_name(other_ctx->ds->dev), other_port);

	c = kzalloc(sizeof(*c), GFP_KERNEL);
	if (!c)
		return -ENOMEM;

	c->port = port;
	c->other_ctx = other_ctx;
	c->other_port = other_port;
	refcount_set(&c->refcount, 1);

	list_add(&c->list, &ctx->crosschip_links);

	return 0;
}

static void dsa_8021q_crosschip_link_del(struct dsa_8021q_context *ctx,
					 struct dsa_8021q_crosschip_link *c,
					 bool *keep)
{
	*keep = !refcount_dec_and_test(&c->refcount);

	if (*keep)
		return;

	dev_dbg(ctx->ds->dev,
		"deleting crosschip link from port %d to %s port %d\n",
		c->port, dev_name(c->other_ctx->ds->dev), c->other_port);

	list_del(&c->list);
	kfree(c);
}

/* Make traffic from local port @port be received by remote port @other_port.
 * This means that our @rx_vid needs to be installed on @other_ds's upstream
 * and user ports. The user ports should be egress-untagged so that they can
 * pop the dsa_8021q VLAN. But the @other_upstream can be either egress-tagged
 * or untagged: it doesn't matter, since it should never egress a frame having
 * our @rx_vid.
 */
int dsa_8021q_crosschip_bridge_join(struct dsa_8021q_context *ctx, int port,
				    struct dsa_8021q_context *other_ctx,
				    int other_port)
{
	/* @other_upstream is how @other_ds reaches us. If we are part
	 * of disjoint trees, then we are probably connected through
	 * our CPU ports. If we're part of the same tree though, we should
	 * probably use dsa_towards_port.
	 */
	int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
	int rc;

	rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_port);
	if (rc)
		return rc;

	rc = dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
					    other_port, true);
	if (rc)
		return rc;

	rc = dsa_8021q_crosschip_link_add(ctx, port, other_ctx, other_upstream);
	if (rc)
		return rc;

	return dsa_8021q_crosschip_link_apply(ctx, port, other_ctx,
					      other_upstream, true);
}
EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_join);

int dsa_8021q_crosschip_bridge_leave(struct dsa_8021q_context *ctx, int port,
				     struct dsa_8021q_context *other_ctx,
				     int other_port)
{
	int other_upstream = dsa_upstream_port(other_ctx->ds, other_port);
	struct dsa_8021q_crosschip_link *c, *n;

	list_for_each_entry_safe(c, n, &ctx->crosschip_links, list) {
		if (c->port == port && c->other_ctx == other_ctx &&
		    (c->other_port == other_port ||
		     c->other_port == other_upstream)) {
			struct dsa_8021q_context *other_ctx = c->other_ctx;
			int other_port = c->other_port;
			bool keep;
			int rc;

			dsa_8021q_crosschip_link_del(ctx, c, &keep);
			if (keep)
				continue;

			rc = dsa_8021q_crosschip_link_apply(ctx, port,
							    other_ctx,
							    other_port,
							    false);
			if (rc)
				return rc;
		}
	}

	return 0;
}
EXPORT_SYMBOL_GPL(dsa_8021q_crosschip_bridge_leave);

struct sk_buff *dsa_8021q_xmit(struct sk_buff *skb, struct net_device *netdev,
			       u16 tpid, u16 tci)
{
	/* skb->data points at skb_mac_header, which
	 * is fine for vlan_insert_tag.
	 */
	return vlan_insert_tag(skb, htons(tpid), tci);
}
EXPORT_SYMBOL_GPL(dsa_8021q_xmit);

MODULE_LICENSE("GPL v2");