summaryrefslogtreecommitdiff
path: root/kernel/sched/loadavg.c
blob: d2a655643a026111d61390e406382f5696fe7291 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
// SPDX-License-Identifier: GPL-2.0
/*
 * kernel/sched/loadavg.c
 *
 * This file contains the magic bits required to compute the global loadavg
 * figure. Its a silly number but people think its important. We go through
 * great pains to make it work on big machines and tickless kernels.
 */
#include "sched.h"

/*
 * Global load-average calculations
 *
 * We take a distributed and async approach to calculating the global load-avg
 * in order to minimize overhead.
 *
 * The global load average is an exponentially decaying average of nr_running +
 * nr_uninterruptible.
 *
 * Once every LOAD_FREQ:
 *
 *   nr_active = 0;
 *   for_each_possible_cpu(cpu)
 *	nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
 *
 *   avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
 *
 * Due to a number of reasons the above turns in the mess below:
 *
 *  - for_each_possible_cpu() is prohibitively expensive on machines with
 *    serious number of CPUs, therefore we need to take a distributed approach
 *    to calculating nr_active.
 *
 *        \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
 *                      = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
 *
 *    So assuming nr_active := 0 when we start out -- true per definition, we
 *    can simply take per-CPU deltas and fold those into a global accumulate
 *    to obtain the same result. See calc_load_fold_active().
 *
 *    Furthermore, in order to avoid synchronizing all per-CPU delta folding
 *    across the machine, we assume 10 ticks is sufficient time for every
 *    CPU to have completed this task.
 *
 *    This places an upper-bound on the IRQ-off latency of the machine. Then
 *    again, being late doesn't loose the delta, just wrecks the sample.
 *
 *  - cpu_rq()->nr_uninterruptible isn't accurately tracked per-CPU because
 *    this would add another cross-CPU cacheline miss and atomic operation
 *    to the wakeup path. Instead we increment on whatever CPU the task ran
 *    when it went into uninterruptible state and decrement on whatever CPU
 *    did the wakeup. This means that only the sum of nr_uninterruptible over
 *    all CPUs yields the correct result.
 *
 *  This covers the NO_HZ=n code, for extra head-aches, see the comment below.
 */

/* Variables and functions for calc_load */
atomic_long_t calc_load_tasks;
unsigned long calc_load_update;
unsigned long avenrun[3];
EXPORT_SYMBOL(avenrun); /* should be removed */

/**
 * get_avenrun - get the load average array
 * @loads:	pointer to dest load array
 * @offset:	offset to add
 * @shift:	shift count to shift the result left
 *
 * These values are estimates at best, so no need for locking.
 */
void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
{
	loads[0] = (avenrun[0] + offset) << shift;
	loads[1] = (avenrun[1] + offset) << shift;
	loads[2] = (avenrun[2] + offset) << shift;
}

long calc_load_fold_active(struct rq *this_rq, long adjust)
{
	long nr_active, delta = 0;

	nr_active = this_rq->nr_running - adjust;
	nr_active += (long)this_rq->nr_uninterruptible;

	if (nr_active != this_rq->calc_load_active) {
		delta = nr_active - this_rq->calc_load_active;
		this_rq->calc_load_active = nr_active;
	}

	return delta;
}

/**
 * fixed_power_int - compute: x^n, in O(log n) time
 *
 * @x:         base of the power
 * @frac_bits: fractional bits of @x
 * @n:         power to raise @x to.
 *
 * By exploiting the relation between the definition of the natural power
 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
 * (where: n_i \elem {0, 1}, the binary vector representing n),
 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
 * of course trivially computable in O(log_2 n), the length of our binary
 * vector.
 */
static unsigned long
fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
{
	unsigned long result = 1UL << frac_bits;

	if (n) {
		for (;;) {
			if (n & 1) {
				result *= x;
				result += 1UL << (frac_bits - 1);
				result >>= frac_bits;
			}
			n >>= 1;
			if (!n)
				break;
			x *= x;
			x += 1UL << (frac_bits - 1);
			x >>= frac_bits;
		}
	}

	return result;
}

/*
 * a1 = a0 * e + a * (1 - e)
 *
 * a2 = a1 * e + a * (1 - e)
 *    = (a0 * e + a * (1 - e)) * e + a * (1 - e)
 *    = a0 * e^2 + a * (1 - e) * (1 + e)
 *
 * a3 = a2 * e + a * (1 - e)
 *    = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
 *    = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
 *
 *  ...
 *
 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
 *    = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
 *    = a0 * e^n + a * (1 - e^n)
 *
 * [1] application of the geometric series:
 *
 *              n         1 - x^(n+1)
 *     S_n := \Sum x^i = -------------
 *             i=0          1 - x
 */
unsigned long
calc_load_n(unsigned long load, unsigned long exp,
	    unsigned long active, unsigned int n)
{
	return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
}

#ifdef CONFIG_NO_HZ_COMMON
/*
 * Handle NO_HZ for the global load-average.
 *
 * Since the above described distributed algorithm to compute the global
 * load-average relies on per-CPU sampling from the tick, it is affected by
 * NO_HZ.
 *
 * The basic idea is to fold the nr_active delta into a global NO_HZ-delta upon
 * entering NO_HZ state such that we can include this as an 'extra' CPU delta
 * when we read the global state.
 *
 * Obviously reality has to ruin such a delightfully simple scheme:
 *
 *  - When we go NO_HZ idle during the window, we can negate our sample
 *    contribution, causing under-accounting.
 *
 *    We avoid this by keeping two NO_HZ-delta counters and flipping them
 *    when the window starts, thus separating old and new NO_HZ load.
 *
 *    The only trick is the slight shift in index flip for read vs write.
 *
 *        0s            5s            10s           15s
 *          +10           +10           +10           +10
 *        |-|-----------|-|-----------|-|-----------|-|
 *    r:0 0 1           1 0           0 1           1 0
 *    w:0 1 1           0 0           1 1           0 0
 *
 *    This ensures we'll fold the old NO_HZ contribution in this window while
 *    accumlating the new one.
 *
 *  - When we wake up from NO_HZ during the window, we push up our
 *    contribution, since we effectively move our sample point to a known
 *    busy state.
 *
 *    This is solved by pushing the window forward, and thus skipping the
 *    sample, for this CPU (effectively using the NO_HZ-delta for this CPU which
 *    was in effect at the time the window opened). This also solves the issue
 *    of having to deal with a CPU having been in NO_HZ for multiple LOAD_FREQ
 *    intervals.
 *
 * When making the ILB scale, we should try to pull this in as well.
 */
static atomic_long_t calc_load_nohz[2];
static int calc_load_idx;

static inline int calc_load_write_idx(void)
{
	int idx = calc_load_idx;

	/*
	 * See calc_global_nohz(), if we observe the new index, we also
	 * need to observe the new update time.
	 */
	smp_rmb();

	/*
	 * If the folding window started, make sure we start writing in the
	 * next NO_HZ-delta.
	 */
	if (!time_before(jiffies, READ_ONCE(calc_load_update)))
		idx++;

	return idx & 1;
}

static inline int calc_load_read_idx(void)
{
	return calc_load_idx & 1;
}

static void calc_load_nohz_fold(struct rq *rq)
{
	long delta;

	delta = calc_load_fold_active(rq, 0);
	if (delta) {
		int idx = calc_load_write_idx();

		atomic_long_add(delta, &calc_load_nohz[idx]);
	}
}

void calc_load_nohz_start(void)
{
	/*
	 * We're going into NO_HZ mode, if there's any pending delta, fold it
	 * into the pending NO_HZ delta.
	 */
	calc_load_nohz_fold(this_rq());
}

/*
 * Keep track of the load for NOHZ_FULL, must be called between
 * calc_load_nohz_{start,stop}().
 */
void calc_load_nohz_remote(struct rq *rq)
{
	calc_load_nohz_fold(rq);
}

void calc_load_nohz_stop(void)
{
	struct rq *this_rq = this_rq();

	/*
	 * If we're still before the pending sample window, we're done.
	 */
	this_rq->calc_load_update = READ_ONCE(calc_load_update);
	if (time_before(jiffies, this_rq->calc_load_update))
		return;

	/*
	 * We woke inside or after the sample window, this means we're already
	 * accounted through the nohz accounting, so skip the entire deal and
	 * sync up for the next window.
	 */
	if (time_before(jiffies, this_rq->calc_load_update + 10))
		this_rq->calc_load_update += LOAD_FREQ;
}

static long calc_load_nohz_read(void)
{
	int idx = calc_load_read_idx();
	long delta = 0;

	if (atomic_long_read(&calc_load_nohz[idx]))
		delta = atomic_long_xchg(&calc_load_nohz[idx], 0);

	return delta;
}

/*
 * NO_HZ can leave us missing all per-CPU ticks calling
 * calc_load_fold_active(), but since a NO_HZ CPU folds its delta into
 * calc_load_nohz per calc_load_nohz_start(), all we need to do is fold
 * in the pending NO_HZ delta if our NO_HZ period crossed a load cycle boundary.
 *
 * Once we've updated the global active value, we need to apply the exponential
 * weights adjusted to the number of cycles missed.
 */
static void calc_global_nohz(void)
{
	unsigned long sample_window;
	long delta, active, n;

	sample_window = READ_ONCE(calc_load_update);
	if (!time_before(jiffies, sample_window + 10)) {
		/*
		 * Catch-up, fold however many we are behind still
		 */
		delta = jiffies - sample_window - 10;
		n = 1 + (delta / LOAD_FREQ);

		active = atomic_long_read(&calc_load_tasks);
		active = active > 0 ? active * FIXED_1 : 0;

		avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
		avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
		avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);

		WRITE_ONCE(calc_load_update, sample_window + n * LOAD_FREQ);
	}

	/*
	 * Flip the NO_HZ index...
	 *
	 * Make sure we first write the new time then flip the index, so that
	 * calc_load_write_idx() will see the new time when it reads the new
	 * index, this avoids a double flip messing things up.
	 */
	smp_wmb();
	calc_load_idx++;
}
#else /* !CONFIG_NO_HZ_COMMON */

static inline long calc_load_nohz_read(void) { return 0; }
static inline void calc_global_nohz(void) { }

#endif /* CONFIG_NO_HZ_COMMON */

/*
 * calc_load - update the avenrun load estimates 10 ticks after the
 * CPUs have updated calc_load_tasks.
 *
 * Called from the global timer code.
 */
void calc_global_load(void)
{
	unsigned long sample_window;
	long active, delta;

	sample_window = READ_ONCE(calc_load_update);
	if (time_before(jiffies, sample_window + 10))
		return;

	/*
	 * Fold the 'old' NO_HZ-delta to include all NO_HZ CPUs.
	 */
	delta = calc_load_nohz_read();
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	active = atomic_long_read(&calc_load_tasks);
	active = active > 0 ? active * FIXED_1 : 0;

	avenrun[0] = calc_load(avenrun[0], EXP_1, active);
	avenrun[1] = calc_load(avenrun[1], EXP_5, active);
	avenrun[2] = calc_load(avenrun[2], EXP_15, active);

	WRITE_ONCE(calc_load_update, sample_window + LOAD_FREQ);

	/*
	 * In case we went to NO_HZ for multiple LOAD_FREQ intervals
	 * catch up in bulk.
	 */
	calc_global_nohz();
}

/*
 * Called from scheduler_tick() to periodically update this CPU's
 * active count.
 */
void calc_global_load_tick(struct rq *this_rq)
{
	long delta;

	if (time_before(jiffies, this_rq->calc_load_update))
		return;

	delta  = calc_load_fold_active(this_rq, 0);
	if (delta)
		atomic_long_add(delta, &calc_load_tasks);

	this_rq->calc_load_update += LOAD_FREQ;
}