summaryrefslogtreecommitdiff
path: root/kernel/rcu/tree_plugin.h
blob: 410c74424d962a6cdedee4b4428079d7b73c8d8d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
/*
 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 * Internal non-public definitions that provide either classic
 * or preemptible semantics.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, you can access it online at
 * http://www.gnu.org/licenses/gpl-2.0.html.
 *
 * Copyright Red Hat, 2009
 * Copyright IBM Corporation, 2009
 *
 * Author: Ingo Molnar <mingo@elte.hu>
 *	   Paul E. McKenney <paulmck@linux.vnet.ibm.com>
 */

#include <linux/delay.h>
#include <linux/gfp.h>
#include <linux/oom.h>
#include <linux/smpboot.h>
#include "../time/tick-internal.h"

#define RCU_KTHREAD_PRIO 1

#ifdef CONFIG_RCU_BOOST
#include "../locking/rtmutex_common.h"
#define RCU_BOOST_PRIO CONFIG_RCU_BOOST_PRIO
#else
#define RCU_BOOST_PRIO RCU_KTHREAD_PRIO
#endif

#ifdef CONFIG_RCU_NOCB_CPU
static cpumask_var_t rcu_nocb_mask; /* CPUs to have callbacks offloaded. */
static bool have_rcu_nocb_mask;	    /* Was rcu_nocb_mask allocated? */
static bool __read_mostly rcu_nocb_poll;    /* Offload kthread are to poll. */
static char __initdata nocb_buf[NR_CPUS * 5];
#endif /* #ifdef CONFIG_RCU_NOCB_CPU */

/*
 * Check the RCU kernel configuration parameters and print informative
 * messages about anything out of the ordinary.  If you like #ifdef, you
 * will love this function.
 */
static void __init rcu_bootup_announce_oddness(void)
{
#ifdef CONFIG_RCU_TRACE
	pr_info("\tRCU debugfs-based tracing is enabled.\n");
#endif
#if (defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 64) || (!defined(CONFIG_64BIT) && CONFIG_RCU_FANOUT != 32)
	pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d\n",
	       CONFIG_RCU_FANOUT);
#endif
#ifdef CONFIG_RCU_FANOUT_EXACT
	pr_info("\tHierarchical RCU autobalancing is disabled.\n");
#endif
#ifdef CONFIG_RCU_FAST_NO_HZ
	pr_info("\tRCU dyntick-idle grace-period acceleration is enabled.\n");
#endif
#ifdef CONFIG_PROVE_RCU
	pr_info("\tRCU lockdep checking is enabled.\n");
#endif
#ifdef CONFIG_RCU_TORTURE_TEST_RUNNABLE
	pr_info("\tRCU torture testing starts during boot.\n");
#endif
#if defined(CONFIG_TREE_PREEMPT_RCU) && !defined(CONFIG_RCU_CPU_STALL_VERBOSE)
	pr_info("\tDump stacks of tasks blocking RCU-preempt GP.\n");
#endif
#if defined(CONFIG_RCU_CPU_STALL_INFO)
	pr_info("\tAdditional per-CPU info printed with stalls.\n");
#endif
#if NUM_RCU_LVL_4 != 0
	pr_info("\tFour-level hierarchy is enabled.\n");
#endif
	if (rcu_fanout_leaf != CONFIG_RCU_FANOUT_LEAF)
		pr_info("\tBoot-time adjustment of leaf fanout to %d.\n", rcu_fanout_leaf);
	if (nr_cpu_ids != NR_CPUS)
		pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%d.\n", NR_CPUS, nr_cpu_ids);
}

#ifdef CONFIG_TREE_PREEMPT_RCU

RCU_STATE_INITIALIZER(rcu_preempt, 'p', call_rcu);
static struct rcu_state *rcu_state_p = &rcu_preempt_state;

static int rcu_preempted_readers_exp(struct rcu_node *rnp);

/*
 * Tell them what RCU they are running.
 */
static void __init rcu_bootup_announce(void)
{
	pr_info("Preemptible hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
}

/*
 * Return the number of RCU-preempt batches processed thus far
 * for debug and statistics.
 */
long rcu_batches_completed_preempt(void)
{
	return rcu_preempt_state.completed;
}
EXPORT_SYMBOL_GPL(rcu_batches_completed_preempt);

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_preempt();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Record a preemptible-RCU quiescent state for the specified CPU.  Note
 * that this just means that the task currently running on the CPU is
 * not in a quiescent state.  There might be any number of tasks blocked
 * while in an RCU read-side critical section.
 *
 * Unlike the other rcu_*_qs() functions, callers to this function
 * must disable irqs in order to protect the assignment to
 * ->rcu_read_unlock_special.
 */
static void rcu_preempt_qs(int cpu)
{
	struct rcu_data *rdp = &per_cpu(rcu_preempt_data, cpu);

	if (rdp->passed_quiesce == 0)
		trace_rcu_grace_period(TPS("rcu_preempt"), rdp->gpnum, TPS("cpuqs"));
	rdp->passed_quiesce = 1;
	current->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_NEED_QS;
}

/*
 * We have entered the scheduler, and the current task might soon be
 * context-switched away from.  If this task is in an RCU read-side
 * critical section, we will no longer be able to rely on the CPU to
 * record that fact, so we enqueue the task on the blkd_tasks list.
 * The task will dequeue itself when it exits the outermost enclosing
 * RCU read-side critical section.  Therefore, the current grace period
 * cannot be permitted to complete until the blkd_tasks list entries
 * predating the current grace period drain, in other words, until
 * rnp->gp_tasks becomes NULL.
 *
 * Caller must disable preemption.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
	struct task_struct *t = current;
	unsigned long flags;
	struct rcu_data *rdp;
	struct rcu_node *rnp;

	if (t->rcu_read_lock_nesting > 0 &&
	    (t->rcu_read_unlock_special & RCU_READ_UNLOCK_BLOCKED) == 0) {

		/* Possibly blocking in an RCU read-side critical section. */
		rdp = per_cpu_ptr(rcu_preempt_state.rda, cpu);
		rnp = rdp->mynode;
		raw_spin_lock_irqsave(&rnp->lock, flags);
		smp_mb__after_unlock_lock();
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_BLOCKED;
		t->rcu_blocked_node = rnp;

		/*
		 * If this CPU has already checked in, then this task
		 * will hold up the next grace period rather than the
		 * current grace period.  Queue the task accordingly.
		 * If the task is queued for the current grace period
		 * (i.e., this CPU has not yet passed through a quiescent
		 * state for the current grace period), then as long
		 * as that task remains queued, the current grace period
		 * cannot end.  Note that there is some uncertainty as
		 * to exactly when the current grace period started.
		 * We take a conservative approach, which can result
		 * in unnecessarily waiting on tasks that started very
		 * slightly after the current grace period began.  C'est
		 * la vie!!!
		 *
		 * But first, note that the current CPU must still be
		 * on line!
		 */
		WARN_ON_ONCE((rdp->grpmask & rnp->qsmaskinit) == 0);
		WARN_ON_ONCE(!list_empty(&t->rcu_node_entry));
		if ((rnp->qsmask & rdp->grpmask) && rnp->gp_tasks != NULL) {
			list_add(&t->rcu_node_entry, rnp->gp_tasks->prev);
			rnp->gp_tasks = &t->rcu_node_entry;
#ifdef CONFIG_RCU_BOOST
			if (rnp->boost_tasks != NULL)
				rnp->boost_tasks = rnp->gp_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
		} else {
			list_add(&t->rcu_node_entry, &rnp->blkd_tasks);
			if (rnp->qsmask & rdp->grpmask)
				rnp->gp_tasks = &t->rcu_node_entry;
		}
		trace_rcu_preempt_task(rdp->rsp->name,
				       t->pid,
				       (rnp->qsmask & rdp->grpmask)
				       ? rnp->gpnum
				       : rnp->gpnum + 1);
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	} else if (t->rcu_read_lock_nesting < 0 &&
		   t->rcu_read_unlock_special) {

		/*
		 * Complete exit from RCU read-side critical section on
		 * behalf of preempted instance of __rcu_read_unlock().
		 */
		rcu_read_unlock_special(t);
	}

	/*
	 * Either we were not in an RCU read-side critical section to
	 * begin with, or we have now recorded that critical section
	 * globally.  Either way, we can now note a quiescent state
	 * for this CPU.  Again, if we were in an RCU read-side critical
	 * section, and if that critical section was blocking the current
	 * grace period, then the fact that the task has been enqueued
	 * means that we continue to block the current grace period.
	 */
	local_irq_save(flags);
	rcu_preempt_qs(cpu);
	local_irq_restore(flags);
}

/*
 * Check for preempted RCU readers blocking the current grace period
 * for the specified rcu_node structure.  If the caller needs a reliable
 * answer, it must hold the rcu_node's ->lock.
 */
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
	return rnp->gp_tasks != NULL;
}

/*
 * Record a quiescent state for all tasks that were previously queued
 * on the specified rcu_node structure and that were blocking the current
 * RCU grace period.  The caller must hold the specified rnp->lock with
 * irqs disabled, and this lock is released upon return, but irqs remain
 * disabled.
 */
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	unsigned long mask;
	struct rcu_node *rnp_p;

	if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;  /* Still need more quiescent states! */
	}

	rnp_p = rnp->parent;
	if (rnp_p == NULL) {
		/*
		 * Either there is only one rcu_node in the tree,
		 * or tasks were kicked up to root rcu_node due to
		 * CPUs going offline.
		 */
		rcu_report_qs_rsp(&rcu_preempt_state, flags);
		return;
	}

	/* Report up the rest of the hierarchy. */
	mask = rnp->grpmask;
	raw_spin_unlock(&rnp->lock);	/* irqs remain disabled. */
	raw_spin_lock(&rnp_p->lock);	/* irqs already disabled. */
	smp_mb__after_unlock_lock();
	rcu_report_qs_rnp(mask, &rcu_preempt_state, rnp_p, flags);
}

/*
 * Advance a ->blkd_tasks-list pointer to the next entry, instead
 * returning NULL if at the end of the list.
 */
static struct list_head *rcu_next_node_entry(struct task_struct *t,
					     struct rcu_node *rnp)
{
	struct list_head *np;

	np = t->rcu_node_entry.next;
	if (np == &rnp->blkd_tasks)
		np = NULL;
	return np;
}

/*
 * Handle special cases during rcu_read_unlock(), such as needing to
 * notify RCU core processing or task having blocked during the RCU
 * read-side critical section.
 */
void rcu_read_unlock_special(struct task_struct *t)
{
	int empty;
	int empty_exp;
	int empty_exp_now;
	unsigned long flags;
	struct list_head *np;
#ifdef CONFIG_RCU_BOOST
	bool drop_boost_mutex = false;
#endif /* #ifdef CONFIG_RCU_BOOST */
	struct rcu_node *rnp;
	int special;

	/* NMI handlers cannot block and cannot safely manipulate state. */
	if (in_nmi())
		return;

	local_irq_save(flags);

	/*
	 * If RCU core is waiting for this CPU to exit critical section,
	 * let it know that we have done so.
	 */
	special = t->rcu_read_unlock_special;
	if (special & RCU_READ_UNLOCK_NEED_QS) {
		rcu_preempt_qs(smp_processor_id());
		if (!t->rcu_read_unlock_special) {
			local_irq_restore(flags);
			return;
		}
	}

	/* Hardware IRQ handlers cannot block, complain if they get here. */
	if (WARN_ON_ONCE(in_irq() || in_serving_softirq())) {
		local_irq_restore(flags);
		return;
	}

	/* Clean up if blocked during RCU read-side critical section. */
	if (special & RCU_READ_UNLOCK_BLOCKED) {
		t->rcu_read_unlock_special &= ~RCU_READ_UNLOCK_BLOCKED;

		/*
		 * Remove this task from the list it blocked on.  The
		 * task can migrate while we acquire the lock, but at
		 * most one time.  So at most two passes through loop.
		 */
		for (;;) {
			rnp = t->rcu_blocked_node;
			raw_spin_lock(&rnp->lock);  /* irqs already disabled. */
			smp_mb__after_unlock_lock();
			if (rnp == t->rcu_blocked_node)
				break;
			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		}
		empty = !rcu_preempt_blocked_readers_cgp(rnp);
		empty_exp = !rcu_preempted_readers_exp(rnp);
		smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
		np = rcu_next_node_entry(t, rnp);
		list_del_init(&t->rcu_node_entry);
		t->rcu_blocked_node = NULL;
		trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
						rnp->gpnum, t->pid);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp->gp_tasks = np;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp->exp_tasks = np;
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp->boost_tasks = np;
		/* Snapshot ->boost_mtx ownership with rcu_node lock held. */
		drop_boost_mutex = rt_mutex_owner(&rnp->boost_mtx) == t;
#endif /* #ifdef CONFIG_RCU_BOOST */

		/*
		 * If this was the last task on the current list, and if
		 * we aren't waiting on any CPUs, report the quiescent state.
		 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
		 * so we must take a snapshot of the expedited state.
		 */
		empty_exp_now = !rcu_preempted_readers_exp(rnp);
		if (!empty && !rcu_preempt_blocked_readers_cgp(rnp)) {
			trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
							 rnp->gpnum,
							 0, rnp->qsmask,
							 rnp->level,
							 rnp->grplo,
							 rnp->grphi,
							 !!rnp->gp_tasks);
			rcu_report_unblock_qs_rnp(rnp, flags);
		} else {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
		}

#ifdef CONFIG_RCU_BOOST
		/* Unboost if we were boosted. */
		if (drop_boost_mutex) {
			rt_mutex_unlock(&rnp->boost_mtx);
			complete(&rnp->boost_completion);
		}
#endif /* #ifdef CONFIG_RCU_BOOST */

		/*
		 * If this was the last task on the expedited lists,
		 * then we need to report up the rcu_node hierarchy.
		 */
		if (!empty_exp && empty_exp_now)
			rcu_report_exp_rnp(&rcu_preempt_state, rnp, true);
	} else {
		local_irq_restore(flags);
	}
}

#ifdef CONFIG_RCU_CPU_STALL_VERBOSE

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period on the specified rcu_node structure.
 */
static void rcu_print_detail_task_stall_rnp(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	if (!rcu_preempt_blocked_readers_cgp(rnp)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry)
		sched_show_task(t);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

/*
 * Dump detailed information for all tasks blocking the current RCU
 * grace period.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
	struct rcu_node *rnp = rcu_get_root(rsp);

	rcu_print_detail_task_stall_rnp(rnp);
	rcu_for_each_leaf_node(rsp, rnp)
		rcu_print_detail_task_stall_rnp(rnp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_VERBOSE */

#ifdef CONFIG_RCU_CPU_STALL_INFO

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
	pr_err("\tTasks blocked on level-%d rcu_node (CPUs %d-%d):",
	       rnp->level, rnp->grplo, rnp->grphi);
}

static void rcu_print_task_stall_end(void)
{
	pr_cont("\n");
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void rcu_print_task_stall_begin(struct rcu_node *rnp)
{
}

static void rcu_print_task_stall_end(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

/*
 * Scan the current list of tasks blocked within RCU read-side critical
 * sections, printing out the tid of each.
 */
static int rcu_print_task_stall(struct rcu_node *rnp)
{
	struct task_struct *t;
	int ndetected = 0;

	if (!rcu_preempt_blocked_readers_cgp(rnp))
		return 0;
	rcu_print_task_stall_begin(rnp);
	t = list_entry(rnp->gp_tasks,
		       struct task_struct, rcu_node_entry);
	list_for_each_entry_continue(t, &rnp->blkd_tasks, rcu_node_entry) {
		pr_cont(" P%d", t->pid);
		ndetected++;
	}
	rcu_print_task_stall_end();
	return ndetected;
}

/*
 * Check that the list of blocked tasks for the newly completed grace
 * period is in fact empty.  It is a serious bug to complete a grace
 * period that still has RCU readers blocked!  This function must be
 * invoked -before- updating this rnp's ->gpnum, and the rnp's ->lock
 * must be held by the caller.
 *
 * Also, if there are blocked tasks on the list, they automatically
 * block the newly created grace period, so set up ->gp_tasks accordingly.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
	WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
	if (!list_empty(&rnp->blkd_tasks))
		rnp->gp_tasks = rnp->blkd_tasks.next;
	WARN_ON_ONCE(rnp->qsmask);
}

#ifdef CONFIG_HOTPLUG_CPU

/*
 * Handle tasklist migration for case in which all CPUs covered by the
 * specified rcu_node have gone offline.  Move them up to the root
 * rcu_node.  The reason for not just moving them to the immediate
 * parent is to remove the need for rcu_read_unlock_special() to
 * make more than two attempts to acquire the target rcu_node's lock.
 * Returns true if there were tasks blocking the current RCU grace
 * period.
 *
 * Returns 1 if there was previously a task blocking the current grace
 * period on the specified rcu_node structure.
 *
 * The caller must hold rnp->lock with irqs disabled.
 */
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
{
	struct list_head *lp;
	struct list_head *lp_root;
	int retval = 0;
	struct rcu_node *rnp_root = rcu_get_root(rsp);
	struct task_struct *t;

	if (rnp == rnp_root) {
		WARN_ONCE(1, "Last CPU thought to be offlined?");
		return 0;  /* Shouldn't happen: at least one CPU online. */
	}

	/* If we are on an internal node, complain bitterly. */
	WARN_ON_ONCE(rnp != rdp->mynode);

	/*
	 * Move tasks up to root rcu_node.  Don't try to get fancy for
	 * this corner-case operation -- just put this node's tasks
	 * at the head of the root node's list, and update the root node's
	 * ->gp_tasks and ->exp_tasks pointers to those of this node's,
	 * if non-NULL.  This might result in waiting for more tasks than
	 * absolutely necessary, but this is a good performance/complexity
	 * tradeoff.
	 */
	if (rcu_preempt_blocked_readers_cgp(rnp) && rnp->qsmask == 0)
		retval |= RCU_OFL_TASKS_NORM_GP;
	if (rcu_preempted_readers_exp(rnp))
		retval |= RCU_OFL_TASKS_EXP_GP;
	lp = &rnp->blkd_tasks;
	lp_root = &rnp_root->blkd_tasks;
	while (!list_empty(lp)) {
		t = list_entry(lp->next, typeof(*t), rcu_node_entry);
		raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
		smp_mb__after_unlock_lock();
		list_del(&t->rcu_node_entry);
		t->rcu_blocked_node = rnp_root;
		list_add(&t->rcu_node_entry, lp_root);
		if (&t->rcu_node_entry == rnp->gp_tasks)
			rnp_root->gp_tasks = rnp->gp_tasks;
		if (&t->rcu_node_entry == rnp->exp_tasks)
			rnp_root->exp_tasks = rnp->exp_tasks;
#ifdef CONFIG_RCU_BOOST
		if (&t->rcu_node_entry == rnp->boost_tasks)
			rnp_root->boost_tasks = rnp->boost_tasks;
#endif /* #ifdef CONFIG_RCU_BOOST */
		raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
	}

	rnp->gp_tasks = NULL;
	rnp->exp_tasks = NULL;
#ifdef CONFIG_RCU_BOOST
	rnp->boost_tasks = NULL;
	/*
	 * In case root is being boosted and leaf was not.  Make sure
	 * that we boost the tasks blocking the current grace period
	 * in this case.
	 */
	raw_spin_lock(&rnp_root->lock); /* irqs already disabled */
	smp_mb__after_unlock_lock();
	if (rnp_root->boost_tasks != NULL &&
	    rnp_root->boost_tasks != rnp_root->gp_tasks &&
	    rnp_root->boost_tasks != rnp_root->exp_tasks)
		rnp_root->boost_tasks = rnp_root->gp_tasks;
	raw_spin_unlock(&rnp_root->lock); /* irqs still disabled */
#endif /* #ifdef CONFIG_RCU_BOOST */

	return retval;
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Check for a quiescent state from the current CPU.  When a task blocks,
 * the task is recorded in the corresponding CPU's rcu_node structure,
 * which is checked elsewhere.
 *
 * Caller must disable hard irqs.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
	struct task_struct *t = current;

	if (t->rcu_read_lock_nesting == 0) {
		rcu_preempt_qs(cpu);
		return;
	}
	if (t->rcu_read_lock_nesting > 0 &&
	    per_cpu(rcu_preempt_data, cpu).qs_pending)
		t->rcu_read_unlock_special |= RCU_READ_UNLOCK_NEED_QS;
}

#ifdef CONFIG_RCU_BOOST

static void rcu_preempt_do_callbacks(void)
{
	rcu_do_batch(&rcu_preempt_state, this_cpu_ptr(&rcu_preempt_data));
}

#endif /* #ifdef CONFIG_RCU_BOOST */

/*
 * Queue a preemptible-RCU callback for invocation after a grace period.
 */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
{
	__call_rcu(head, func, &rcu_preempt_state, -1, 0);
}
EXPORT_SYMBOL_GPL(call_rcu);

/**
 * synchronize_rcu - wait until a grace period has elapsed.
 *
 * Control will return to the caller some time after a full grace
 * period has elapsed, in other words after all currently executing RCU
 * read-side critical sections have completed.  Note, however, that
 * upon return from synchronize_rcu(), the caller might well be executing
 * concurrently with new RCU read-side critical sections that began while
 * synchronize_rcu() was waiting.  RCU read-side critical sections are
 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
 *
 * See the description of synchronize_sched() for more detailed information
 * on memory ordering guarantees.
 */
void synchronize_rcu(void)
{
	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
			   !lock_is_held(&rcu_lock_map) &&
			   !lock_is_held(&rcu_sched_lock_map),
			   "Illegal synchronize_rcu() in RCU read-side critical section");
	if (!rcu_scheduler_active)
		return;
	if (rcu_expedited)
		synchronize_rcu_expedited();
	else
		wait_rcu_gp(call_rcu);
}
EXPORT_SYMBOL_GPL(synchronize_rcu);

static DECLARE_WAIT_QUEUE_HEAD(sync_rcu_preempt_exp_wq);
static unsigned long sync_rcu_preempt_exp_count;
static DEFINE_MUTEX(sync_rcu_preempt_exp_mutex);

/*
 * Return non-zero if there are any tasks in RCU read-side critical
 * sections blocking the current preemptible-RCU expedited grace period.
 * If there is no preemptible-RCU expedited grace period currently in
 * progress, returns zero unconditionally.
 */
static int rcu_preempted_readers_exp(struct rcu_node *rnp)
{
	return rnp->exp_tasks != NULL;
}

/*
 * return non-zero if there is no RCU expedited grace period in progress
 * for the specified rcu_node structure, in other words, if all CPUs and
 * tasks covered by the specified rcu_node structure have done their bit
 * for the current expedited grace period.  Works only for preemptible
 * RCU -- other RCU implementation use other means.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static int sync_rcu_preempt_exp_done(struct rcu_node *rnp)
{
	return !rcu_preempted_readers_exp(rnp) &&
	       ACCESS_ONCE(rnp->expmask) == 0;
}

/*
 * Report the exit from RCU read-side critical section for the last task
 * that queued itself during or before the current expedited preemptible-RCU
 * grace period.  This event is reported either to the rcu_node structure on
 * which the task was queued or to one of that rcu_node structure's ancestors,
 * recursively up the tree.  (Calm down, calm down, we do the recursion
 * iteratively!)
 *
 * Most callers will set the "wake" flag, but the task initiating the
 * expedited grace period need not wake itself.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
{
	unsigned long flags;
	unsigned long mask;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	for (;;) {
		if (!sync_rcu_preempt_exp_done(rnp)) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			break;
		}
		if (rnp->parent == NULL) {
			raw_spin_unlock_irqrestore(&rnp->lock, flags);
			if (wake) {
				smp_mb(); /* EGP done before wake_up(). */
				wake_up(&sync_rcu_preempt_exp_wq);
			}
			break;
		}
		mask = rnp->grpmask;
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
		rnp = rnp->parent;
		raw_spin_lock(&rnp->lock); /* irqs already disabled */
		smp_mb__after_unlock_lock();
		rnp->expmask &= ~mask;
	}
}

/*
 * Snapshot the tasks blocking the newly started preemptible-RCU expedited
 * grace period for the specified rcu_node structure.  If there are no such
 * tasks, report it up the rcu_node hierarchy.
 *
 * Caller must hold sync_rcu_preempt_exp_mutex and must exclude
 * CPU hotplug operations.
 */
static void
sync_rcu_preempt_exp_init(struct rcu_state *rsp, struct rcu_node *rnp)
{
	unsigned long flags;
	int must_wait = 0;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	if (list_empty(&rnp->blkd_tasks)) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	} else {
		rnp->exp_tasks = rnp->blkd_tasks.next;
		rcu_initiate_boost(rnp, flags);  /* releases rnp->lock */
		must_wait = 1;
	}
	if (!must_wait)
		rcu_report_exp_rnp(rsp, rnp, false); /* Don't wake self. */
}

/**
 * synchronize_rcu_expedited - Brute-force RCU grace period
 *
 * Wait for an RCU-preempt grace period, but expedite it.  The basic
 * idea is to invoke synchronize_sched_expedited() to push all the tasks to
 * the ->blkd_tasks lists and wait for this list to drain.  This consumes
 * significant time on all CPUs and is unfriendly to real-time workloads,
 * so is thus not recommended for any sort of common-case code.
 * In fact, if you are using synchronize_rcu_expedited() in a loop,
 * please restructure your code to batch your updates, and then Use a
 * single synchronize_rcu() instead.
 *
 * Note that it is illegal to call this function while holding any lock
 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
 * to call this function from a CPU-hotplug notifier.  Failing to observe
 * these restriction will result in deadlock.
 */
void synchronize_rcu_expedited(void)
{
	unsigned long flags;
	struct rcu_node *rnp;
	struct rcu_state *rsp = &rcu_preempt_state;
	unsigned long snap;
	int trycount = 0;

	smp_mb(); /* Caller's modifications seen first by other CPUs. */
	snap = ACCESS_ONCE(sync_rcu_preempt_exp_count) + 1;
	smp_mb(); /* Above access cannot bleed into critical section. */

	/*
	 * Block CPU-hotplug operations.  This means that any CPU-hotplug
	 * operation that finds an rcu_node structure with tasks in the
	 * process of being boosted will know that all tasks blocking
	 * this expedited grace period will already be in the process of
	 * being boosted.  This simplifies the process of moving tasks
	 * from leaf to root rcu_node structures.
	 */
	get_online_cpus();

	/*
	 * Acquire lock, falling back to synchronize_rcu() if too many
	 * lock-acquisition failures.  Of course, if someone does the
	 * expedited grace period for us, just leave.
	 */
	while (!mutex_trylock(&sync_rcu_preempt_exp_mutex)) {
		if (ULONG_CMP_LT(snap,
		    ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
			put_online_cpus();
			goto mb_ret; /* Others did our work for us. */
		}
		if (trycount++ < 10) {
			udelay(trycount * num_online_cpus());
		} else {
			put_online_cpus();
			wait_rcu_gp(call_rcu);
			return;
		}
	}
	if (ULONG_CMP_LT(snap, ACCESS_ONCE(sync_rcu_preempt_exp_count))) {
		put_online_cpus();
		goto unlock_mb_ret; /* Others did our work for us. */
	}

	/* force all RCU readers onto ->blkd_tasks lists. */
	synchronize_sched_expedited();

	/* Initialize ->expmask for all non-leaf rcu_node structures. */
	rcu_for_each_nonleaf_node_breadth_first(rsp, rnp) {
		raw_spin_lock_irqsave(&rnp->lock, flags);
		smp_mb__after_unlock_lock();
		rnp->expmask = rnp->qsmaskinit;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}

	/* Snapshot current state of ->blkd_tasks lists. */
	rcu_for_each_leaf_node(rsp, rnp)
		sync_rcu_preempt_exp_init(rsp, rnp);
	if (NUM_RCU_NODES > 1)
		sync_rcu_preempt_exp_init(rsp, rcu_get_root(rsp));

	put_online_cpus();

	/* Wait for snapshotted ->blkd_tasks lists to drain. */
	rnp = rcu_get_root(rsp);
	wait_event(sync_rcu_preempt_exp_wq,
		   sync_rcu_preempt_exp_done(rnp));

	/* Clean up and exit. */
	smp_mb(); /* ensure expedited GP seen before counter increment. */
	ACCESS_ONCE(sync_rcu_preempt_exp_count)++;
unlock_mb_ret:
	mutex_unlock(&sync_rcu_preempt_exp_mutex);
mb_ret:
	smp_mb(); /* ensure subsequent action seen after grace period. */
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

/**
 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
 *
 * Note that this primitive does not necessarily wait for an RCU grace period
 * to complete.  For example, if there are no RCU callbacks queued anywhere
 * in the system, then rcu_barrier() is within its rights to return
 * immediately, without waiting for anything, much less an RCU grace period.
 */
void rcu_barrier(void)
{
	_rcu_barrier(&rcu_preempt_state);
}
EXPORT_SYMBOL_GPL(rcu_barrier);

/*
 * Initialize preemptible RCU's state structures.
 */
static void __init __rcu_init_preempt(void)
{
	rcu_init_one(&rcu_preempt_state, &rcu_preempt_data);
}

/*
 * Check for a task exiting while in a preemptible-RCU read-side
 * critical section, clean up if so.  No need to issue warnings,
 * as debug_check_no_locks_held() already does this if lockdep
 * is enabled.
 */
void exit_rcu(void)
{
	struct task_struct *t = current;

	if (likely(list_empty(&current->rcu_node_entry)))
		return;
	t->rcu_read_lock_nesting = 1;
	barrier();
	t->rcu_read_unlock_special = RCU_READ_UNLOCK_BLOCKED;
	__rcu_read_unlock();
}

#else /* #ifdef CONFIG_TREE_PREEMPT_RCU */

static struct rcu_state *rcu_state_p = &rcu_sched_state;

/*
 * Tell them what RCU they are running.
 */
static void __init rcu_bootup_announce(void)
{
	pr_info("Hierarchical RCU implementation.\n");
	rcu_bootup_announce_oddness();
}

/*
 * Return the number of RCU batches processed thus far for debug & stats.
 */
long rcu_batches_completed(void)
{
	return rcu_batches_completed_sched();
}
EXPORT_SYMBOL_GPL(rcu_batches_completed);

/*
 * Because preemptible RCU does not exist, we never have to check for
 * CPUs being in quiescent states.
 */
static void rcu_preempt_note_context_switch(int cpu)
{
}

/*
 * Because preemptible RCU does not exist, there are never any preempted
 * RCU readers.
 */
static int rcu_preempt_blocked_readers_cgp(struct rcu_node *rnp)
{
	return 0;
}

#ifdef CONFIG_HOTPLUG_CPU

/* Because preemptible RCU does not exist, no quieting of tasks. */
static void rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Because preemptible RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static void rcu_print_detail_task_stall(struct rcu_state *rsp)
{
}

/*
 * Because preemptible RCU does not exist, we never have to check for
 * tasks blocked within RCU read-side critical sections.
 */
static int rcu_print_task_stall(struct rcu_node *rnp)
{
	return 0;
}

/*
 * Because there is no preemptible RCU, there can be no readers blocked,
 * so there is no need to check for blocked tasks.  So check only for
 * bogus qsmask values.
 */
static void rcu_preempt_check_blocked_tasks(struct rcu_node *rnp)
{
	WARN_ON_ONCE(rnp->qsmask);
}

#ifdef CONFIG_HOTPLUG_CPU

/*
 * Because preemptible RCU does not exist, it never needs to migrate
 * tasks that were blocked within RCU read-side critical sections, and
 * such non-existent tasks cannot possibly have been blocking the current
 * grace period.
 */
static int rcu_preempt_offline_tasks(struct rcu_state *rsp,
				     struct rcu_node *rnp,
				     struct rcu_data *rdp)
{
	return 0;
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Because preemptible RCU does not exist, it never has any callbacks
 * to check.
 */
static void rcu_preempt_check_callbacks(int cpu)
{
}

/*
 * Wait for an rcu-preempt grace period, but make it happen quickly.
 * But because preemptible RCU does not exist, map to rcu-sched.
 */
void synchronize_rcu_expedited(void)
{
	synchronize_sched_expedited();
}
EXPORT_SYMBOL_GPL(synchronize_rcu_expedited);

#ifdef CONFIG_HOTPLUG_CPU

/*
 * Because preemptible RCU does not exist, there is never any need to
 * report on tasks preempted in RCU read-side critical sections during
 * expedited RCU grace periods.
 */
static void rcu_report_exp_rnp(struct rcu_state *rsp, struct rcu_node *rnp,
			       bool wake)
{
}

#endif /* #ifdef CONFIG_HOTPLUG_CPU */

/*
 * Because preemptible RCU does not exist, rcu_barrier() is just
 * another name for rcu_barrier_sched().
 */
void rcu_barrier(void)
{
	rcu_barrier_sched();
}
EXPORT_SYMBOL_GPL(rcu_barrier);

/*
 * Because preemptible RCU does not exist, it need not be initialized.
 */
static void __init __rcu_init_preempt(void)
{
}

/*
 * Because preemptible RCU does not exist, tasks cannot possibly exit
 * while in preemptible RCU read-side critical sections.
 */
void exit_rcu(void)
{
}

#endif /* #else #ifdef CONFIG_TREE_PREEMPT_RCU */

#ifdef CONFIG_RCU_BOOST

#include "../locking/rtmutex_common.h"

#ifdef CONFIG_RCU_TRACE

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
	if (list_empty(&rnp->blkd_tasks))
		rnp->n_balk_blkd_tasks++;
	else if (rnp->exp_tasks == NULL && rnp->gp_tasks == NULL)
		rnp->n_balk_exp_gp_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->boost_tasks != NULL)
		rnp->n_balk_boost_tasks++;
	else if (rnp->gp_tasks != NULL && rnp->qsmask != 0)
		rnp->n_balk_notblocked++;
	else if (rnp->gp_tasks != NULL &&
		 ULONG_CMP_LT(jiffies, rnp->boost_time))
		rnp->n_balk_notyet++;
	else
		rnp->n_balk_nos++;
}

#else /* #ifdef CONFIG_RCU_TRACE */

static void rcu_initiate_boost_trace(struct rcu_node *rnp)
{
}

#endif /* #else #ifdef CONFIG_RCU_TRACE */

static void rcu_wake_cond(struct task_struct *t, int status)
{
	/*
	 * If the thread is yielding, only wake it when this
	 * is invoked from idle
	 */
	if (status != RCU_KTHREAD_YIELDING || is_idle_task(current))
		wake_up_process(t);
}

/*
 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
 * or ->boost_tasks, advancing the pointer to the next task in the
 * ->blkd_tasks list.
 *
 * Note that irqs must be enabled: boosting the task can block.
 * Returns 1 if there are more tasks needing to be boosted.
 */
static int rcu_boost(struct rcu_node *rnp)
{
	unsigned long flags;
	struct task_struct *t;
	struct list_head *tb;

	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL)
		return 0;  /* Nothing left to boost. */

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();

	/*
	 * Recheck under the lock: all tasks in need of boosting
	 * might exit their RCU read-side critical sections on their own.
	 */
	if (rnp->exp_tasks == NULL && rnp->boost_tasks == NULL) {
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return 0;
	}

	/*
	 * Preferentially boost tasks blocking expedited grace periods.
	 * This cannot starve the normal grace periods because a second
	 * expedited grace period must boost all blocked tasks, including
	 * those blocking the pre-existing normal grace period.
	 */
	if (rnp->exp_tasks != NULL) {
		tb = rnp->exp_tasks;
		rnp->n_exp_boosts++;
	} else {
		tb = rnp->boost_tasks;
		rnp->n_normal_boosts++;
	}
	rnp->n_tasks_boosted++;

	/*
	 * We boost task t by manufacturing an rt_mutex that appears to
	 * be held by task t.  We leave a pointer to that rt_mutex where
	 * task t can find it, and task t will release the mutex when it
	 * exits its outermost RCU read-side critical section.  Then
	 * simply acquiring this artificial rt_mutex will boost task
	 * t's priority.  (Thanks to tglx for suggesting this approach!)
	 *
	 * Note that task t must acquire rnp->lock to remove itself from
	 * the ->blkd_tasks list, which it will do from exit() if from
	 * nowhere else.  We therefore are guaranteed that task t will
	 * stay around at least until we drop rnp->lock.  Note that
	 * rnp->lock also resolves races between our priority boosting
	 * and task t's exiting its outermost RCU read-side critical
	 * section.
	 */
	t = container_of(tb, struct task_struct, rcu_node_entry);
	rt_mutex_init_proxy_locked(&rnp->boost_mtx, t);
	init_completion(&rnp->boost_completion);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	/* Lock only for side effect: boosts task t's priority. */
	rt_mutex_lock(&rnp->boost_mtx);
	rt_mutex_unlock(&rnp->boost_mtx);  /* Then keep lockdep happy. */

	/* Wait for boostee to be done w/boost_mtx before reinitializing. */
	wait_for_completion(&rnp->boost_completion);

	return ACCESS_ONCE(rnp->exp_tasks) != NULL ||
	       ACCESS_ONCE(rnp->boost_tasks) != NULL;
}

/*
 * Priority-boosting kthread.  One per leaf rcu_node and one for the
 * root rcu_node.
 */
static int rcu_boost_kthread(void *arg)
{
	struct rcu_node *rnp = (struct rcu_node *)arg;
	int spincnt = 0;
	int more2boost;

	trace_rcu_utilization(TPS("Start boost kthread@init"));
	for (;;) {
		rnp->boost_kthread_status = RCU_KTHREAD_WAITING;
		trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
		rcu_wait(rnp->boost_tasks || rnp->exp_tasks);
		trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
		rnp->boost_kthread_status = RCU_KTHREAD_RUNNING;
		more2boost = rcu_boost(rnp);
		if (more2boost)
			spincnt++;
		else
			spincnt = 0;
		if (spincnt > 10) {
			rnp->boost_kthread_status = RCU_KTHREAD_YIELDING;
			trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
			schedule_timeout_interruptible(2);
			trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
			spincnt = 0;
		}
	}
	/* NOTREACHED */
	trace_rcu_utilization(TPS("End boost kthread@notreached"));
	return 0;
}

/*
 * Check to see if it is time to start boosting RCU readers that are
 * blocking the current grace period, and, if so, tell the per-rcu_node
 * kthread to start boosting them.  If there is an expedited grace
 * period in progress, it is always time to boost.
 *
 * The caller must hold rnp->lock, which this function releases.
 * The ->boost_kthread_task is immortal, so we don't need to worry
 * about it going away.
 */
static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	struct task_struct *t;

	if (!rcu_preempt_blocked_readers_cgp(rnp) && rnp->exp_tasks == NULL) {
		rnp->n_balk_exp_gp_tasks++;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		return;
	}
	if (rnp->exp_tasks != NULL ||
	    (rnp->gp_tasks != NULL &&
	     rnp->boost_tasks == NULL &&
	     rnp->qsmask == 0 &&
	     ULONG_CMP_GE(jiffies, rnp->boost_time))) {
		if (rnp->exp_tasks == NULL)
			rnp->boost_tasks = rnp->gp_tasks;
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
		t = rnp->boost_kthread_task;
		if (t)
			rcu_wake_cond(t, rnp->boost_kthread_status);
	} else {
		rcu_initiate_boost_trace(rnp);
		raw_spin_unlock_irqrestore(&rnp->lock, flags);
	}
}

/*
 * Wake up the per-CPU kthread to invoke RCU callbacks.
 */
static void invoke_rcu_callbacks_kthread(void)
{
	unsigned long flags;

	local_irq_save(flags);
	__this_cpu_write(rcu_cpu_has_work, 1);
	if (__this_cpu_read(rcu_cpu_kthread_task) != NULL &&
	    current != __this_cpu_read(rcu_cpu_kthread_task)) {
		rcu_wake_cond(__this_cpu_read(rcu_cpu_kthread_task),
			      __this_cpu_read(rcu_cpu_kthread_status));
	}
	local_irq_restore(flags);
}

/*
 * Is the current CPU running the RCU-callbacks kthread?
 * Caller must have preemption disabled.
 */
static bool rcu_is_callbacks_kthread(void)
{
	return __this_cpu_read(rcu_cpu_kthread_task) == current;
}

#define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)

/*
 * Do priority-boost accounting for the start of a new grace period.
 */
static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
	rnp->boost_time = jiffies + RCU_BOOST_DELAY_JIFFIES;
}

/*
 * Create an RCU-boost kthread for the specified node if one does not
 * already exist.  We only create this kthread for preemptible RCU.
 * Returns zero if all is well, a negated errno otherwise.
 */
static int rcu_spawn_one_boost_kthread(struct rcu_state *rsp,
						 struct rcu_node *rnp)
{
	int rnp_index = rnp - &rsp->node[0];
	unsigned long flags;
	struct sched_param sp;
	struct task_struct *t;

	if (&rcu_preempt_state != rsp)
		return 0;

	if (!rcu_scheduler_fully_active || rnp->qsmaskinit == 0)
		return 0;

	rsp->boost = 1;
	if (rnp->boost_kthread_task != NULL)
		return 0;
	t = kthread_create(rcu_boost_kthread, (void *)rnp,
			   "rcub/%d", rnp_index);
	if (IS_ERR(t))
		return PTR_ERR(t);
	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	rnp->boost_kthread_task = t;
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	sp.sched_priority = RCU_BOOST_PRIO;
	sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
	wake_up_process(t); /* get to TASK_INTERRUPTIBLE quickly. */
	return 0;
}

static void rcu_kthread_do_work(void)
{
	rcu_do_batch(&rcu_sched_state, this_cpu_ptr(&rcu_sched_data));
	rcu_do_batch(&rcu_bh_state, this_cpu_ptr(&rcu_bh_data));
	rcu_preempt_do_callbacks();
}

static void rcu_cpu_kthread_setup(unsigned int cpu)
{
	struct sched_param sp;

	sp.sched_priority = RCU_KTHREAD_PRIO;
	sched_setscheduler_nocheck(current, SCHED_FIFO, &sp);
}

static void rcu_cpu_kthread_park(unsigned int cpu)
{
	per_cpu(rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
}

static int rcu_cpu_kthread_should_run(unsigned int cpu)
{
	return __this_cpu_read(rcu_cpu_has_work);
}

/*
 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces the
 * RCU softirq used in flavors and configurations of RCU that do not
 * support RCU priority boosting.
 */
static void rcu_cpu_kthread(unsigned int cpu)
{
	unsigned int *statusp = this_cpu_ptr(&rcu_cpu_kthread_status);
	char work, *workp = this_cpu_ptr(&rcu_cpu_has_work);
	int spincnt;

	for (spincnt = 0; spincnt < 10; spincnt++) {
		trace_rcu_utilization(TPS("Start CPU kthread@rcu_wait"));
		local_bh_disable();
		*statusp = RCU_KTHREAD_RUNNING;
		this_cpu_inc(rcu_cpu_kthread_loops);
		local_irq_disable();
		work = *workp;
		*workp = 0;
		local_irq_enable();
		if (work)
			rcu_kthread_do_work();
		local_bh_enable();
		if (*workp == 0) {
			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
			*statusp = RCU_KTHREAD_WAITING;
			return;
		}
	}
	*statusp = RCU_KTHREAD_YIELDING;
	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
	schedule_timeout_interruptible(2);
	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
	*statusp = RCU_KTHREAD_WAITING;
}

/*
 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
 * served by the rcu_node in question.  The CPU hotplug lock is still
 * held, so the value of rnp->qsmaskinit will be stable.
 *
 * We don't include outgoingcpu in the affinity set, use -1 if there is
 * no outgoing CPU.  If there are no CPUs left in the affinity set,
 * this function allows the kthread to execute on any CPU.
 */
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
	struct task_struct *t = rnp->boost_kthread_task;
	unsigned long mask = rnp->qsmaskinit;
	cpumask_var_t cm;
	int cpu;

	if (!t)
		return;
	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
		return;
	for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++, mask >>= 1)
		if ((mask & 0x1) && cpu != outgoingcpu)
			cpumask_set_cpu(cpu, cm);
	if (cpumask_weight(cm) == 0) {
		cpumask_setall(cm);
		for (cpu = rnp->grplo; cpu <= rnp->grphi; cpu++)
			cpumask_clear_cpu(cpu, cm);
		WARN_ON_ONCE(cpumask_weight(cm) == 0);
	}
	set_cpus_allowed_ptr(t, cm);
	free_cpumask_var(cm);
}

static struct smp_hotplug_thread rcu_cpu_thread_spec = {
	.store			= &rcu_cpu_kthread_task,
	.thread_should_run	= rcu_cpu_kthread_should_run,
	.thread_fn		= rcu_cpu_kthread,
	.thread_comm		= "rcuc/%u",
	.setup			= rcu_cpu_kthread_setup,
	.park			= rcu_cpu_kthread_park,
};

/*
 * Spawn boost kthreads -- called as soon as the scheduler is running.
 */
static void __init rcu_spawn_boost_kthreads(void)
{
	struct rcu_node *rnp;
	int cpu;

	for_each_possible_cpu(cpu)
		per_cpu(rcu_cpu_has_work, cpu) = 0;
	BUG_ON(smpboot_register_percpu_thread(&rcu_cpu_thread_spec));
	rnp = rcu_get_root(rcu_state_p);
	(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
	if (NUM_RCU_NODES > 1) {
		rcu_for_each_leaf_node(rcu_state_p, rnp)
			(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
	}
}

static void rcu_prepare_kthreads(int cpu)
{
	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
	struct rcu_node *rnp = rdp->mynode;

	/* Fire up the incoming CPU's kthread and leaf rcu_node kthread. */
	if (rcu_scheduler_fully_active)
		(void)rcu_spawn_one_boost_kthread(rcu_state_p, rnp);
}

#else /* #ifdef CONFIG_RCU_BOOST */

static void rcu_initiate_boost(struct rcu_node *rnp, unsigned long flags)
	__releases(rnp->lock)
{
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
}

static void invoke_rcu_callbacks_kthread(void)
{
	WARN_ON_ONCE(1);
}

static bool rcu_is_callbacks_kthread(void)
{
	return false;
}

static void rcu_preempt_boost_start_gp(struct rcu_node *rnp)
{
}

static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
}

static void __init rcu_spawn_boost_kthreads(void)
{
}

static void rcu_prepare_kthreads(int cpu)
{
}

#endif /* #else #ifdef CONFIG_RCU_BOOST */

#if !defined(CONFIG_RCU_FAST_NO_HZ)

/*
 * Check to see if any future RCU-related work will need to be done
 * by the current CPU, even if none need be done immediately, returning
 * 1 if so.  This function is part of the RCU implementation; it is -not-
 * an exported member of the RCU API.
 *
 * Because we not have RCU_FAST_NO_HZ, just check whether this CPU needs
 * any flavor of RCU.
 */
#ifndef CONFIG_RCU_NOCB_CPU_ALL
int rcu_needs_cpu(int cpu, unsigned long *delta_jiffies)
{
	*delta_jiffies = ULONG_MAX;
	return rcu_cpu_has_callbacks(cpu, NULL);
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */

/*
 * Because we do not have RCU_FAST_NO_HZ, don't bother cleaning up
 * after it.
 */
static void rcu_cleanup_after_idle(int cpu)
{
}

/*
 * Do the idle-entry grace-period work, which, because CONFIG_RCU_FAST_NO_HZ=n,
 * is nothing.
 */
static void rcu_prepare_for_idle(int cpu)
{
}

/*
 * Don't bother keeping a running count of the number of RCU callbacks
 * posted because CONFIG_RCU_FAST_NO_HZ=n.
 */
static void rcu_idle_count_callbacks_posted(void)
{
}

#else /* #if !defined(CONFIG_RCU_FAST_NO_HZ) */

/*
 * This code is invoked when a CPU goes idle, at which point we want
 * to have the CPU do everything required for RCU so that it can enter
 * the energy-efficient dyntick-idle mode.  This is handled by a
 * state machine implemented by rcu_prepare_for_idle() below.
 *
 * The following three proprocessor symbols control this state machine:
 *
 * RCU_IDLE_GP_DELAY gives the number of jiffies that a CPU is permitted
 *	to sleep in dyntick-idle mode with RCU callbacks pending.  This
 *	is sized to be roughly one RCU grace period.  Those energy-efficiency
 *	benchmarkers who might otherwise be tempted to set this to a large
 *	number, be warned: Setting RCU_IDLE_GP_DELAY too high can hang your
 *	system.  And if you are -that- concerned about energy efficiency,
 *	just power the system down and be done with it!
 * RCU_IDLE_LAZY_GP_DELAY gives the number of jiffies that a CPU is
 *	permitted to sleep in dyntick-idle mode with only lazy RCU
 *	callbacks pending.  Setting this too high can OOM your system.
 *
 * The values below work well in practice.  If future workloads require
 * adjustment, they can be converted into kernel config parameters, though
 * making the state machine smarter might be a better option.
 */
#define RCU_IDLE_GP_DELAY 4		/* Roughly one grace period. */
#define RCU_IDLE_LAZY_GP_DELAY (6 * HZ)	/* Roughly six seconds. */

static int rcu_idle_gp_delay = RCU_IDLE_GP_DELAY;
module_param(rcu_idle_gp_delay, int, 0644);
static int rcu_idle_lazy_gp_delay = RCU_IDLE_LAZY_GP_DELAY;
module_param(rcu_idle_lazy_gp_delay, int, 0644);

extern int tick_nohz_active;

/*
 * Try to advance callbacks for all flavors of RCU on the current CPU, but
 * only if it has been awhile since the last time we did so.  Afterwards,
 * if there are any callbacks ready for immediate invocation, return true.
 */
static bool __maybe_unused rcu_try_advance_all_cbs(void)
{
	bool cbs_ready = false;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
	struct rcu_node *rnp;
	struct rcu_state *rsp;

	/* Exit early if we advanced recently. */
	if (jiffies == rdtp->last_advance_all)
		return 0;
	rdtp->last_advance_all = jiffies;

	for_each_rcu_flavor(rsp) {
		rdp = this_cpu_ptr(rsp->rda);
		rnp = rdp->mynode;

		/*
		 * Don't bother checking unless a grace period has
		 * completed since we last checked and there are
		 * callbacks not yet ready to invoke.
		 */
		if (rdp->completed != rnp->completed &&
		    rdp->nxttail[RCU_DONE_TAIL] != rdp->nxttail[RCU_NEXT_TAIL])
			note_gp_changes(rsp, rdp);

		if (cpu_has_callbacks_ready_to_invoke(rdp))
			cbs_ready = true;
	}
	return cbs_ready;
}

/*
 * Allow the CPU to enter dyntick-idle mode unless it has callbacks ready
 * to invoke.  If the CPU has callbacks, try to advance them.  Tell the
 * caller to set the timeout based on whether or not there are non-lazy
 * callbacks.
 *
 * The caller must have disabled interrupts.
 */
#ifndef CONFIG_RCU_NOCB_CPU_ALL
int rcu_needs_cpu(int cpu, unsigned long *dj)
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);

	/* Snapshot to detect later posting of non-lazy callback. */
	rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;

	/* If no callbacks, RCU doesn't need the CPU. */
	if (!rcu_cpu_has_callbacks(cpu, &rdtp->all_lazy)) {
		*dj = ULONG_MAX;
		return 0;
	}

	/* Attempt to advance callbacks. */
	if (rcu_try_advance_all_cbs()) {
		/* Some ready to invoke, so initiate later invocation. */
		invoke_rcu_core();
		return 1;
	}
	rdtp->last_accelerate = jiffies;

	/* Request timer delay depending on laziness, and round. */
	if (!rdtp->all_lazy) {
		*dj = round_up(rcu_idle_gp_delay + jiffies,
			       rcu_idle_gp_delay) - jiffies;
	} else {
		*dj = round_jiffies(rcu_idle_lazy_gp_delay + jiffies) - jiffies;
	}
	return 0;
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */

/*
 * Prepare a CPU for idle from an RCU perspective.  The first major task
 * is to sense whether nohz mode has been enabled or disabled via sysfs.
 * The second major task is to check to see if a non-lazy callback has
 * arrived at a CPU that previously had only lazy callbacks.  The third
 * major task is to accelerate (that is, assign grace-period numbers to)
 * any recently arrived callbacks.
 *
 * The caller must have disabled interrupts.
 */
static void rcu_prepare_for_idle(int cpu)
{
#ifndef CONFIG_RCU_NOCB_CPU_ALL
	bool needwake;
	struct rcu_data *rdp;
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
	struct rcu_node *rnp;
	struct rcu_state *rsp;
	int tne;

	/* Handle nohz enablement switches conservatively. */
	tne = ACCESS_ONCE(tick_nohz_active);
	if (tne != rdtp->tick_nohz_enabled_snap) {
		if (rcu_cpu_has_callbacks(cpu, NULL))
			invoke_rcu_core(); /* force nohz to see update. */
		rdtp->tick_nohz_enabled_snap = tne;
		return;
	}
	if (!tne)
		return;

	/* If this is a no-CBs CPU, no callbacks, just return. */
	if (rcu_is_nocb_cpu(cpu))
		return;

	/*
	 * If a non-lazy callback arrived at a CPU having only lazy
	 * callbacks, invoke RCU core for the side-effect of recalculating
	 * idle duration on re-entry to idle.
	 */
	if (rdtp->all_lazy &&
	    rdtp->nonlazy_posted != rdtp->nonlazy_posted_snap) {
		rdtp->all_lazy = false;
		rdtp->nonlazy_posted_snap = rdtp->nonlazy_posted;
		invoke_rcu_core();
		return;
	}

	/*
	 * If we have not yet accelerated this jiffy, accelerate all
	 * callbacks on this CPU.
	 */
	if (rdtp->last_accelerate == jiffies)
		return;
	rdtp->last_accelerate = jiffies;
	for_each_rcu_flavor(rsp) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (!*rdp->nxttail[RCU_DONE_TAIL])
			continue;
		rnp = rdp->mynode;
		raw_spin_lock(&rnp->lock); /* irqs already disabled. */
		smp_mb__after_unlock_lock();
		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
		raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
		if (needwake)
			rcu_gp_kthread_wake(rsp);
	}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
}

/*
 * Clean up for exit from idle.  Attempt to advance callbacks based on
 * any grace periods that elapsed while the CPU was idle, and if any
 * callbacks are now ready to invoke, initiate invocation.
 */
static void rcu_cleanup_after_idle(int cpu)
{
#ifndef CONFIG_RCU_NOCB_CPU_ALL
	if (rcu_is_nocb_cpu(cpu))
		return;
	if (rcu_try_advance_all_cbs())
		invoke_rcu_core();
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */
}

/*
 * Keep a running count of the number of non-lazy callbacks posted
 * on this CPU.  This running counter (which is never decremented) allows
 * rcu_prepare_for_idle() to detect when something out of the idle loop
 * posts a callback, even if an equal number of callbacks are invoked.
 * Of course, callbacks should only be posted from within a trace event
 * designed to be called from idle or from within RCU_NONIDLE().
 */
static void rcu_idle_count_callbacks_posted(void)
{
	__this_cpu_add(rcu_dynticks.nonlazy_posted, 1);
}

/*
 * Data for flushing lazy RCU callbacks at OOM time.
 */
static atomic_t oom_callback_count;
static DECLARE_WAIT_QUEUE_HEAD(oom_callback_wq);

/*
 * RCU OOM callback -- decrement the outstanding count and deliver the
 * wake-up if we are the last one.
 */
static void rcu_oom_callback(struct rcu_head *rhp)
{
	if (atomic_dec_and_test(&oom_callback_count))
		wake_up(&oom_callback_wq);
}

/*
 * Post an rcu_oom_notify callback on the current CPU if it has at
 * least one lazy callback.  This will unnecessarily post callbacks
 * to CPUs that already have a non-lazy callback at the end of their
 * callback list, but this is an infrequent operation, so accept some
 * extra overhead to keep things simple.
 */
static void rcu_oom_notify_cpu(void *unused)
{
	struct rcu_state *rsp;
	struct rcu_data *rdp;

	for_each_rcu_flavor(rsp) {
		rdp = raw_cpu_ptr(rsp->rda);
		if (rdp->qlen_lazy != 0) {
			atomic_inc(&oom_callback_count);
			rsp->call(&rdp->oom_head, rcu_oom_callback);
		}
	}
}

/*
 * If low on memory, ensure that each CPU has a non-lazy callback.
 * This will wake up CPUs that have only lazy callbacks, in turn
 * ensuring that they free up the corresponding memory in a timely manner.
 * Because an uncertain amount of memory will be freed in some uncertain
 * timeframe, we do not claim to have freed anything.
 */
static int rcu_oom_notify(struct notifier_block *self,
			  unsigned long notused, void *nfreed)
{
	int cpu;

	/* Wait for callbacks from earlier instance to complete. */
	wait_event(oom_callback_wq, atomic_read(&oom_callback_count) == 0);
	smp_mb(); /* Ensure callback reuse happens after callback invocation. */

	/*
	 * Prevent premature wakeup: ensure that all increments happen
	 * before there is a chance of the counter reaching zero.
	 */
	atomic_set(&oom_callback_count, 1);

	get_online_cpus();
	for_each_online_cpu(cpu) {
		smp_call_function_single(cpu, rcu_oom_notify_cpu, NULL, 1);
		cond_resched();
	}
	put_online_cpus();

	/* Unconditionally decrement: no need to wake ourselves up. */
	atomic_dec(&oom_callback_count);

	return NOTIFY_OK;
}

static struct notifier_block rcu_oom_nb = {
	.notifier_call = rcu_oom_notify
};

static int __init rcu_register_oom_notifier(void)
{
	register_oom_notifier(&rcu_oom_nb);
	return 0;
}
early_initcall(rcu_register_oom_notifier);

#endif /* #else #if !defined(CONFIG_RCU_FAST_NO_HZ) */

#ifdef CONFIG_RCU_CPU_STALL_INFO

#ifdef CONFIG_RCU_FAST_NO_HZ

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
	unsigned long nlpd = rdtp->nonlazy_posted - rdtp->nonlazy_posted_snap;

	sprintf(cp, "last_accelerate: %04lx/%04lx, nonlazy_posted: %ld, %c%c",
		rdtp->last_accelerate & 0xffff, jiffies & 0xffff,
		ulong2long(nlpd),
		rdtp->all_lazy ? 'L' : '.',
		rdtp->tick_nohz_enabled_snap ? '.' : 'D');
}

#else /* #ifdef CONFIG_RCU_FAST_NO_HZ */

static void print_cpu_stall_fast_no_hz(char *cp, int cpu)
{
	*cp = '\0';
}

#endif /* #else #ifdef CONFIG_RCU_FAST_NO_HZ */

/* Initiate the stall-info list. */
static void print_cpu_stall_info_begin(void)
{
	pr_cont("\n");
}

/*
 * Print out diagnostic information for the specified stalled CPU.
 *
 * If the specified CPU is aware of the current RCU grace period
 * (flavor specified by rsp), then print the number of scheduling
 * clock interrupts the CPU has taken during the time that it has
 * been aware.  Otherwise, print the number of RCU grace periods
 * that this CPU is ignorant of, for example, "1" if the CPU was
 * aware of the previous grace period.
 *
 * Also print out idle and (if CONFIG_RCU_FAST_NO_HZ) idle-entry info.
 */
static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	char fast_no_hz[72];
	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
	struct rcu_dynticks *rdtp = rdp->dynticks;
	char *ticks_title;
	unsigned long ticks_value;

	if (rsp->gpnum == rdp->gpnum) {
		ticks_title = "ticks this GP";
		ticks_value = rdp->ticks_this_gp;
	} else {
		ticks_title = "GPs behind";
		ticks_value = rsp->gpnum - rdp->gpnum;
	}
	print_cpu_stall_fast_no_hz(fast_no_hz, cpu);
	pr_err("\t%d: (%lu %s) idle=%03x/%llx/%d softirq=%u/%u %s\n",
	       cpu, ticks_value, ticks_title,
	       atomic_read(&rdtp->dynticks) & 0xfff,
	       rdtp->dynticks_nesting, rdtp->dynticks_nmi_nesting,
	       rdp->softirq_snap, kstat_softirqs_cpu(RCU_SOFTIRQ, cpu),
	       fast_no_hz);
}

/* Terminate the stall-info list. */
static void print_cpu_stall_info_end(void)
{
	pr_err("\t");
}

/* Zero ->ticks_this_gp for all flavors of RCU. */
static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
	rdp->ticks_this_gp = 0;
	rdp->softirq_snap = kstat_softirqs_cpu(RCU_SOFTIRQ, smp_processor_id());
}

/* Increment ->ticks_this_gp for all flavors of RCU. */
static void increment_cpu_stall_ticks(void)
{
	struct rcu_state *rsp;

	for_each_rcu_flavor(rsp)
		raw_cpu_inc(rsp->rda->ticks_this_gp);
}

#else /* #ifdef CONFIG_RCU_CPU_STALL_INFO */

static void print_cpu_stall_info_begin(void)
{
	pr_cont(" {");
}

static void print_cpu_stall_info(struct rcu_state *rsp, int cpu)
{
	pr_cont(" %d", cpu);
}

static void print_cpu_stall_info_end(void)
{
	pr_cont("} ");
}

static void zero_cpu_stall_ticks(struct rcu_data *rdp)
{
}

static void increment_cpu_stall_ticks(void)
{
}

#endif /* #else #ifdef CONFIG_RCU_CPU_STALL_INFO */

#ifdef CONFIG_RCU_NOCB_CPU

/*
 * Offload callback processing from the boot-time-specified set of CPUs
 * specified by rcu_nocb_mask.  For each CPU in the set, there is a
 * kthread created that pulls the callbacks from the corresponding CPU,
 * waits for a grace period to elapse, and invokes the callbacks.
 * The no-CBs CPUs do a wake_up() on their kthread when they insert
 * a callback into any empty list, unless the rcu_nocb_poll boot parameter
 * has been specified, in which case each kthread actively polls its
 * CPU.  (Which isn't so great for energy efficiency, but which does
 * reduce RCU's overhead on that CPU.)
 *
 * This is intended to be used in conjunction with Frederic Weisbecker's
 * adaptive-idle work, which would seriously reduce OS jitter on CPUs
 * running CPU-bound user-mode computations.
 *
 * Offloading of callback processing could also in theory be used as
 * an energy-efficiency measure because CPUs with no RCU callbacks
 * queued are more aggressive about entering dyntick-idle mode.
 */


/* Parse the boot-time rcu_nocb_mask CPU list from the kernel parameters. */
static int __init rcu_nocb_setup(char *str)
{
	alloc_bootmem_cpumask_var(&rcu_nocb_mask);
	have_rcu_nocb_mask = true;
	cpulist_parse(str, rcu_nocb_mask);
	return 1;
}
__setup("rcu_nocbs=", rcu_nocb_setup);

static int __init parse_rcu_nocb_poll(char *arg)
{
	rcu_nocb_poll = 1;
	return 0;
}
early_param("rcu_nocb_poll", parse_rcu_nocb_poll);

/*
 * Wake up any no-CBs CPUs' kthreads that were waiting on the just-ended
 * grace period.
 */
static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
	wake_up_all(&rnp->nocb_gp_wq[rnp->completed & 0x1]);
}

/*
 * Set the root rcu_node structure's ->need_future_gp field
 * based on the sum of those of all rcu_node structures.  This does
 * double-count the root rcu_node structure's requests, but this
 * is necessary to handle the possibility of a rcu_nocb_kthread()
 * having awakened during the time that the rcu_node structures
 * were being updated for the end of the previous grace period.
 */
static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
	rnp->need_future_gp[(rnp->completed + 1) & 0x1] += nrq;
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
	init_waitqueue_head(&rnp->nocb_gp_wq[0]);
	init_waitqueue_head(&rnp->nocb_gp_wq[1]);
}

#ifndef CONFIG_RCU_NOCB_CPU_ALL
/* Is the specified CPU a no-CBs CPU? */
bool rcu_is_nocb_cpu(int cpu)
{
	if (have_rcu_nocb_mask)
		return cpumask_test_cpu(cpu, rcu_nocb_mask);
	return false;
}
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_ALL */

/*
 * Kick the leader kthread for this NOCB group.
 */
static void wake_nocb_leader(struct rcu_data *rdp, bool force)
{
	struct rcu_data *rdp_leader = rdp->nocb_leader;

	if (!ACCESS_ONCE(rdp_leader->nocb_kthread))
		return;
	if (ACCESS_ONCE(rdp_leader->nocb_leader_sleep) || force) {
		/* Prior xchg orders against prior callback enqueue. */
		ACCESS_ONCE(rdp_leader->nocb_leader_sleep) = false;
		wake_up(&rdp_leader->nocb_wq);
	}
}

/*
 * Enqueue the specified string of rcu_head structures onto the specified
 * CPU's no-CBs lists.  The CPU is specified by rdp, the head of the
 * string by rhp, and the tail of the string by rhtp.  The non-lazy/lazy
 * counts are supplied by rhcount and rhcount_lazy.
 *
 * If warranted, also wake up the kthread servicing this CPUs queues.
 */
static void __call_rcu_nocb_enqueue(struct rcu_data *rdp,
				    struct rcu_head *rhp,
				    struct rcu_head **rhtp,
				    int rhcount, int rhcount_lazy,
				    unsigned long flags)
{
	int len;
	struct rcu_head **old_rhpp;
	struct task_struct *t;

	/* Enqueue the callback on the nocb list and update counts. */
	old_rhpp = xchg(&rdp->nocb_tail, rhtp);
	ACCESS_ONCE(*old_rhpp) = rhp;
	atomic_long_add(rhcount, &rdp->nocb_q_count);
	atomic_long_add(rhcount_lazy, &rdp->nocb_q_count_lazy);

	/* If we are not being polled and there is a kthread, awaken it ... */
	t = ACCESS_ONCE(rdp->nocb_kthread);
	if (rcu_nocb_poll || !t) {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
				    TPS("WakeNotPoll"));
		return;
	}
	len = atomic_long_read(&rdp->nocb_q_count);
	if (old_rhpp == &rdp->nocb_head) {
		if (!irqs_disabled_flags(flags)) {
			/* ... if queue was empty ... */
			wake_nocb_leader(rdp, false);
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmpty"));
		} else {
			rdp->nocb_defer_wakeup = true;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    TPS("WakeEmptyIsDeferred"));
		}
		rdp->qlen_last_fqs_check = 0;
	} else if (len > rdp->qlen_last_fqs_check + qhimark) {
		/* ... or if many callbacks queued. */
		wake_nocb_leader(rdp, true);
		rdp->qlen_last_fqs_check = LONG_MAX / 2;
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeOvf"));
	} else {
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("WakeNot"));
	}
	return;
}

/*
 * This is a helper for __call_rcu(), which invokes this when the normal
 * callback queue is inoperable.  If this is not a no-CBs CPU, this
 * function returns failure back to __call_rcu(), which can complain
 * appropriately.
 *
 * Otherwise, this function queues the callback where the corresponding
 * "rcuo" kthread can find it.
 */
static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy, unsigned long flags)
{

	if (!rcu_is_nocb_cpu(rdp->cpu))
		return false;
	__call_rcu_nocb_enqueue(rdp, rhp, &rhp->next, 1, lazy, flags);
	if (__is_kfree_rcu_offset((unsigned long)rhp->func))
		trace_rcu_kfree_callback(rdp->rsp->name, rhp,
					 (unsigned long)rhp->func,
					 -atomic_long_read(&rdp->nocb_q_count_lazy),
					 -atomic_long_read(&rdp->nocb_q_count));
	else
		trace_rcu_callback(rdp->rsp->name, rhp,
				   -atomic_long_read(&rdp->nocb_q_count_lazy),
				   -atomic_long_read(&rdp->nocb_q_count));
	return true;
}

/*
 * Adopt orphaned callbacks on a no-CBs CPU, or return 0 if this is
 * not a no-CBs CPU.
 */
static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp,
						     unsigned long flags)
{
	long ql = rsp->qlen;
	long qll = rsp->qlen_lazy;

	/* If this is not a no-CBs CPU, tell the caller to do it the old way. */
	if (!rcu_is_nocb_cpu(smp_processor_id()))
		return false;
	rsp->qlen = 0;
	rsp->qlen_lazy = 0;

	/* First, enqueue the donelist, if any.  This preserves CB ordering. */
	if (rsp->orphan_donelist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_donelist,
					rsp->orphan_donetail, ql, qll, flags);
		ql = qll = 0;
		rsp->orphan_donelist = NULL;
		rsp->orphan_donetail = &rsp->orphan_donelist;
	}
	if (rsp->orphan_nxtlist != NULL) {
		__call_rcu_nocb_enqueue(rdp, rsp->orphan_nxtlist,
					rsp->orphan_nxttail, ql, qll, flags);
		ql = qll = 0;
		rsp->orphan_nxtlist = NULL;
		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
	}
	return true;
}

/*
 * If necessary, kick off a new grace period, and either way wait
 * for a subsequent grace period to complete.
 */
static void rcu_nocb_wait_gp(struct rcu_data *rdp)
{
	unsigned long c;
	bool d;
	unsigned long flags;
	bool needwake;
	struct rcu_node *rnp = rdp->mynode;

	raw_spin_lock_irqsave(&rnp->lock, flags);
	smp_mb__after_unlock_lock();
	needwake = rcu_start_future_gp(rnp, rdp, &c);
	raw_spin_unlock_irqrestore(&rnp->lock, flags);
	if (needwake)
		rcu_gp_kthread_wake(rdp->rsp);

	/*
	 * Wait for the grace period.  Do so interruptibly to avoid messing
	 * up the load average.
	 */
	trace_rcu_future_gp(rnp, rdp, c, TPS("StartWait"));
	for (;;) {
		wait_event_interruptible(
			rnp->nocb_gp_wq[c & 0x1],
			(d = ULONG_CMP_GE(ACCESS_ONCE(rnp->completed), c)));
		if (likely(d))
			break;
		flush_signals(current);
		trace_rcu_future_gp(rnp, rdp, c, TPS("ResumeWait"));
	}
	trace_rcu_future_gp(rnp, rdp, c, TPS("EndWait"));
	smp_mb(); /* Ensure that CB invocation happens after GP end. */
}

/*
 * Leaders come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_leader_wait(struct rcu_data *my_rdp)
{
	bool firsttime = true;
	bool gotcbs;
	struct rcu_data *rdp;
	struct rcu_head **tail;

wait_again:

	/* Wait for callbacks to appear. */
	if (!rcu_nocb_poll) {
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Sleep");
		wait_event_interruptible(my_rdp->nocb_wq,
				!ACCESS_ONCE(my_rdp->nocb_leader_sleep));
		/* Memory barrier handled by smp_mb() calls below and repoll. */
	} else if (firsttime) {
		firsttime = false; /* Don't drown trace log with "Poll"! */
		trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu, "Poll");
	}

	/*
	 * Each pass through the following loop checks a follower for CBs.
	 * We are our own first follower.  Any CBs found are moved to
	 * nocb_gp_head, where they await a grace period.
	 */
	gotcbs = false;
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		rdp->nocb_gp_head = ACCESS_ONCE(rdp->nocb_head);
		if (!rdp->nocb_gp_head)
			continue;  /* No CBs here, try next follower. */

		/* Move callbacks to wait-for-GP list, which is empty. */
		ACCESS_ONCE(rdp->nocb_head) = NULL;
		rdp->nocb_gp_tail = xchg(&rdp->nocb_tail, &rdp->nocb_head);
		rdp->nocb_gp_count = atomic_long_xchg(&rdp->nocb_q_count, 0);
		rdp->nocb_gp_count_lazy =
			atomic_long_xchg(&rdp->nocb_q_count_lazy, 0);
		gotcbs = true;
	}

	/*
	 * If there were no callbacks, sleep a bit, rescan after a
	 * memory barrier, and go retry.
	 */
	if (unlikely(!gotcbs)) {
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(my_rdp->rsp->name, my_rdp->cpu,
					    "WokeEmpty");
		flush_signals(current);
		schedule_timeout_interruptible(1);

		/* Rescan in case we were a victim of memory ordering. */
		my_rdp->nocb_leader_sleep = true;
		smp_mb();  /* Ensure _sleep true before scan. */
		for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower)
			if (ACCESS_ONCE(rdp->nocb_head)) {
				/* Found CB, so short-circuit next wait. */
				my_rdp->nocb_leader_sleep = false;
				break;
			}
		goto wait_again;
	}

	/* Wait for one grace period. */
	rcu_nocb_wait_gp(my_rdp);

	/*
	 * We left ->nocb_leader_sleep unset to reduce cache thrashing.
	 * We set it now, but recheck for new callbacks while
	 * traversing our follower list.
	 */
	my_rdp->nocb_leader_sleep = true;
	smp_mb(); /* Ensure _sleep true before scan of ->nocb_head. */

	/* Each pass through the following loop wakes a follower, if needed. */
	for (rdp = my_rdp; rdp; rdp = rdp->nocb_next_follower) {
		if (ACCESS_ONCE(rdp->nocb_head))
			my_rdp->nocb_leader_sleep = false;/* No need to sleep.*/
		if (!rdp->nocb_gp_head)
			continue; /* No CBs, so no need to wake follower. */

		/* Append callbacks to follower's "done" list. */
		tail = xchg(&rdp->nocb_follower_tail, rdp->nocb_gp_tail);
		*tail = rdp->nocb_gp_head;
		atomic_long_add(rdp->nocb_gp_count, &rdp->nocb_follower_count);
		atomic_long_add(rdp->nocb_gp_count_lazy,
				&rdp->nocb_follower_count_lazy);
		if (rdp != my_rdp && tail == &rdp->nocb_follower_head) {
			/*
			 * List was empty, wake up the follower.
			 * Memory barriers supplied by atomic_long_add().
			 */
			wake_up(&rdp->nocb_wq);
		}
	}

	/* If we (the leader) don't have CBs, go wait some more. */
	if (!my_rdp->nocb_follower_head)
		goto wait_again;
}

/*
 * Followers come here to wait for additional callbacks to show up.
 * This function does not return until callbacks appear.
 */
static void nocb_follower_wait(struct rcu_data *rdp)
{
	bool firsttime = true;

	for (;;) {
		if (!rcu_nocb_poll) {
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "FollowerSleep");
			wait_event_interruptible(rdp->nocb_wq,
						 ACCESS_ONCE(rdp->nocb_follower_head));
		} else if (firsttime) {
			/* Don't drown trace log with "Poll"! */
			firsttime = false;
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "Poll");
		}
		if (smp_load_acquire(&rdp->nocb_follower_head)) {
			/* ^^^ Ensure CB invocation follows _head test. */
			return;
		}
		if (!rcu_nocb_poll)
			trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
					    "WokeEmpty");
		flush_signals(current);
		schedule_timeout_interruptible(1);
	}
}

/*
 * Per-rcu_data kthread, but only for no-CBs CPUs.  Each kthread invokes
 * callbacks queued by the corresponding no-CBs CPU, however, there is
 * an optional leader-follower relationship so that the grace-period
 * kthreads don't have to do quite so many wakeups.
 */
static int rcu_nocb_kthread(void *arg)
{
	int c, cl;
	struct rcu_head *list;
	struct rcu_head *next;
	struct rcu_head **tail;
	struct rcu_data *rdp = arg;

	/* Each pass through this loop invokes one batch of callbacks */
	for (;;) {
		/* Wait for callbacks. */
		if (rdp->nocb_leader == rdp)
			nocb_leader_wait(rdp);
		else
			nocb_follower_wait(rdp);

		/* Pull the ready-to-invoke callbacks onto local list. */
		list = ACCESS_ONCE(rdp->nocb_follower_head);
		BUG_ON(!list);
		trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, "WokeNonEmpty");
		ACCESS_ONCE(rdp->nocb_follower_head) = NULL;
		tail = xchg(&rdp->nocb_follower_tail, &rdp->nocb_follower_head);
		c = atomic_long_xchg(&rdp->nocb_follower_count, 0);
		cl = atomic_long_xchg(&rdp->nocb_follower_count_lazy, 0);
		rdp->nocb_p_count += c;
		rdp->nocb_p_count_lazy += cl;

		/* Each pass through the following loop invokes a callback. */
		trace_rcu_batch_start(rdp->rsp->name, cl, c, -1);
		c = cl = 0;
		while (list) {
			next = list->next;
			/* Wait for enqueuing to complete, if needed. */
			while (next == NULL && &list->next != tail) {
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WaitQueue"));
				schedule_timeout_interruptible(1);
				trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu,
						    TPS("WokeQueue"));
				next = list->next;
			}
			debug_rcu_head_unqueue(list);
			local_bh_disable();
			if (__rcu_reclaim(rdp->rsp->name, list))
				cl++;
			c++;
			local_bh_enable();
			list = next;
		}
		trace_rcu_batch_end(rdp->rsp->name, c, !!list, 0, 0, 1);
		ACCESS_ONCE(rdp->nocb_p_count) -= c;
		ACCESS_ONCE(rdp->nocb_p_count_lazy) -= cl;
		rdp->n_nocbs_invoked += c;
	}
	return 0;
}

/* Is a deferred wakeup of rcu_nocb_kthread() required? */
static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return ACCESS_ONCE(rdp->nocb_defer_wakeup);
}

/* Do a deferred wakeup of rcu_nocb_kthread(). */
static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
	if (!rcu_nocb_need_deferred_wakeup(rdp))
		return;
	ACCESS_ONCE(rdp->nocb_defer_wakeup) = false;
	wake_nocb_leader(rdp, false);
	trace_rcu_nocb_wake(rdp->rsp->name, rdp->cpu, TPS("DeferredWakeEmpty"));
}

void __init rcu_init_nohz(void)
{
	int cpu;
	bool need_rcu_nocb_mask = true;
	struct rcu_state *rsp;

#ifdef CONFIG_RCU_NOCB_CPU_NONE
	need_rcu_nocb_mask = false;
#endif /* #ifndef CONFIG_RCU_NOCB_CPU_NONE */

#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running && cpumask_weight(tick_nohz_full_mask))
		need_rcu_nocb_mask = true;
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!have_rcu_nocb_mask && need_rcu_nocb_mask) {
		if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
			pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
			return;
		}
		have_rcu_nocb_mask = true;
	}
	if (!have_rcu_nocb_mask)
		return;

#ifdef CONFIG_RCU_NOCB_CPU_ZERO
	pr_info("\tOffload RCU callbacks from CPU 0\n");
	cpumask_set_cpu(0, rcu_nocb_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ZERO */
#ifdef CONFIG_RCU_NOCB_CPU_ALL
	pr_info("\tOffload RCU callbacks from all CPUs\n");
	cpumask_copy(rcu_nocb_mask, cpu_possible_mask);
#endif /* #ifdef CONFIG_RCU_NOCB_CPU_ALL */
#if defined(CONFIG_NO_HZ_FULL)
	if (tick_nohz_full_running)
		cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */

	if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
		pr_info("\tNote: kernel parameter 'rcu_nocbs=' contains nonexistent CPUs.\n");
		cpumask_and(rcu_nocb_mask, cpu_possible_mask,
			    rcu_nocb_mask);
	}
	cpulist_scnprintf(nocb_buf, sizeof(nocb_buf), rcu_nocb_mask);
	pr_info("\tOffload RCU callbacks from CPUs: %s.\n", nocb_buf);
	if (rcu_nocb_poll)
		pr_info("\tPoll for callbacks from no-CBs CPUs.\n");

	for_each_rcu_flavor(rsp) {
		for_each_cpu(cpu, rcu_nocb_mask) {
			struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);

			/*
			 * If there are early callbacks, they will need
			 * to be moved to the nocb lists.
			 */
			WARN_ON_ONCE(rdp->nxttail[RCU_NEXT_TAIL] !=
				     &rdp->nxtlist &&
				     rdp->nxttail[RCU_NEXT_TAIL] != NULL);
			init_nocb_callback_list(rdp);
		}
	}
}

/* Initialize per-rcu_data variables for no-CBs CPUs. */
static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
	rdp->nocb_tail = &rdp->nocb_head;
	init_waitqueue_head(&rdp->nocb_wq);
	rdp->nocb_follower_tail = &rdp->nocb_follower_head;
}

/* How many follower CPU IDs per leader?  Default of -1 for sqrt(nr_cpu_ids). */
static int rcu_nocb_leader_stride = -1;
module_param(rcu_nocb_leader_stride, int, 0444);

/*
 * Create a kthread for each RCU flavor for each no-CBs CPU.
 * Also initialize leader-follower relationships.
 */
static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
	int cpu;
	int ls = rcu_nocb_leader_stride;
	int nl = 0;  /* Next leader. */
	struct rcu_data *rdp;
	struct rcu_data *rdp_leader = NULL;  /* Suppress misguided gcc warn. */
	struct rcu_data *rdp_prev = NULL;
	struct task_struct *t;

	if (rcu_nocb_mask == NULL)
		return;
	if (ls == -1) {
		ls = int_sqrt(nr_cpu_ids);
		rcu_nocb_leader_stride = ls;
	}

	/*
	 * Each pass through this loop sets up one rcu_data structure and
	 * spawns one rcu_nocb_kthread().
	 */
	for_each_cpu(cpu, rcu_nocb_mask) {
		rdp = per_cpu_ptr(rsp->rda, cpu);
		if (rdp->cpu >= nl) {
			/* New leader, set up for followers & next leader. */
			nl = DIV_ROUND_UP(rdp->cpu + 1, ls) * ls;
			rdp->nocb_leader = rdp;
			rdp_leader = rdp;
		} else {
			/* Another follower, link to previous leader. */
			rdp->nocb_leader = rdp_leader;
			rdp_prev->nocb_next_follower = rdp;
		}
		rdp_prev = rdp;

		/* Spawn the kthread for this CPU. */
		t = kthread_run(rcu_nocb_kthread, rdp,
				"rcuo%c/%d", rsp->abbr, cpu);
		BUG_ON(IS_ERR(t));
		ACCESS_ONCE(rdp->nocb_kthread) = t;
	}
}

/* Prevent __call_rcu() from enqueuing callbacks on no-CBs CPUs */
static bool init_nocb_callback_list(struct rcu_data *rdp)
{
	if (rcu_nocb_mask == NULL ||
	    !cpumask_test_cpu(rdp->cpu, rcu_nocb_mask))
		return false;
	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
	return true;
}

#else /* #ifdef CONFIG_RCU_NOCB_CPU */

static void rcu_nocb_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
{
}

static void rcu_nocb_gp_set(struct rcu_node *rnp, int nrq)
{
}

static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}

static bool __call_rcu_nocb(struct rcu_data *rdp, struct rcu_head *rhp,
			    bool lazy, unsigned long flags)
{
	return false;
}

static bool __maybe_unused rcu_nocb_adopt_orphan_cbs(struct rcu_state *rsp,
						     struct rcu_data *rdp,
						     unsigned long flags)
{
	return false;
}

static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
{
}

static bool rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp)
{
	return false;
}

static void do_nocb_deferred_wakeup(struct rcu_data *rdp)
{
}

static void __init rcu_spawn_nocb_kthreads(struct rcu_state *rsp)
{
}

static bool init_nocb_callback_list(struct rcu_data *rdp)
{
	return false;
}

#endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */

/*
 * An adaptive-ticks CPU can potentially execute in kernel mode for an
 * arbitrarily long period of time with the scheduling-clock tick turned
 * off.  RCU will be paying attention to this CPU because it is in the
 * kernel, but the CPU cannot be guaranteed to be executing the RCU state
 * machine because the scheduling-clock tick has been disabled.  Therefore,
 * if an adaptive-ticks CPU is failing to respond to the current grace
 * period and has not be idle from an RCU perspective, kick it.
 */
static void __maybe_unused rcu_kick_nohz_cpu(int cpu)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(cpu))
		smp_send_reschedule(cpu);
#endif /* #ifdef CONFIG_NO_HZ_FULL */
}


#ifdef CONFIG_NO_HZ_FULL_SYSIDLE

/*
 * Define RCU flavor that holds sysidle state.  This needs to be the
 * most active flavor of RCU.
 */
#ifdef CONFIG_PREEMPT_RCU
static struct rcu_state *rcu_sysidle_state = &rcu_preempt_state;
#else /* #ifdef CONFIG_PREEMPT_RCU */
static struct rcu_state *rcu_sysidle_state = &rcu_sched_state;
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */

static int full_sysidle_state;		/* Current system-idle state. */
#define RCU_SYSIDLE_NOT		0	/* Some CPU is not idle. */
#define RCU_SYSIDLE_SHORT	1	/* All CPUs idle for brief period. */
#define RCU_SYSIDLE_LONG	2	/* All CPUs idle for long enough. */
#define RCU_SYSIDLE_FULL	3	/* All CPUs idle, ready for sysidle. */
#define RCU_SYSIDLE_FULL_NOTED	4	/* Actually entered sysidle state. */

/*
 * Invoked to note exit from irq or task transition to idle.  Note that
 * usermode execution does -not- count as idle here!  After all, we want
 * to detect full-system idle states, not RCU quiescent states and grace
 * periods.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
	unsigned long j;

	/* Adjust nesting, check for fully idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting--;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
		if (rdtp->dynticks_idle_nesting != 0)
			return;  /* Still not fully idle. */
	} else {
		if ((rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) ==
		    DYNTICK_TASK_NEST_VALUE) {
			rdtp->dynticks_idle_nesting = 0;
		} else {
			rdtp->dynticks_idle_nesting -= DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting < 0);
			return;  /* Still not fully idle. */
		}
	}

	/* Record start of fully idle period. */
	j = jiffies;
	ACCESS_ONCE(rdtp->dynticks_idle_jiffies) = j;
	smp_mb__before_atomic();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic();
	WARN_ON_ONCE(atomic_read(&rdtp->dynticks_idle) & 0x1);
}

/*
 * Unconditionally force exit from full system-idle state.  This is
 * invoked when a normal CPU exits idle, but must be called separately
 * for the timekeeping CPU (tick_do_timer_cpu).  The reason for this
 * is that the timekeeping CPU is permitted to take scheduling-clock
 * interrupts while the system is in system-idle state, and of course
 * rcu_sysidle_exit() has no way of distinguishing a scheduling-clock
 * interrupt from any other type of interrupt.
 */
void rcu_sysidle_force_exit(void)
{
	int oldstate = ACCESS_ONCE(full_sysidle_state);
	int newoldstate;

	/*
	 * Each pass through the following loop attempts to exit full
	 * system-idle state.  If contention proves to be a problem,
	 * a trylock-based contention tree could be used here.
	 */
	while (oldstate > RCU_SYSIDLE_SHORT) {
		newoldstate = cmpxchg(&full_sysidle_state,
				      oldstate, RCU_SYSIDLE_NOT);
		if (oldstate == newoldstate &&
		    oldstate == RCU_SYSIDLE_FULL_NOTED) {
			rcu_kick_nohz_cpu(tick_do_timer_cpu);
			return; /* We cleared it, done! */
		}
		oldstate = newoldstate;
	}
	smp_mb(); /* Order initial oldstate fetch vs. later non-idle work. */
}

/*
 * Invoked to note entry to irq or task transition from idle.  Note that
 * usermode execution does -not- count as idle here!  The caller must
 * have disabled interrupts.
 */
static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
	/* Adjust nesting, check for already non-idle. */
	if (irq) {
		rdtp->dynticks_idle_nesting++;
		WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
		if (rdtp->dynticks_idle_nesting != 1)
			return; /* Already non-idle. */
	} else {
		/*
		 * Allow for irq misnesting.  Yes, it really is possible
		 * to enter an irq handler then never leave it, and maybe
		 * also vice versa.  Handle both possibilities.
		 */
		if (rdtp->dynticks_idle_nesting & DYNTICK_TASK_NEST_MASK) {
			rdtp->dynticks_idle_nesting += DYNTICK_TASK_NEST_VALUE;
			WARN_ON_ONCE(rdtp->dynticks_idle_nesting <= 0);
			return; /* Already non-idle. */
		} else {
			rdtp->dynticks_idle_nesting = DYNTICK_TASK_EXIT_IDLE;
		}
	}

	/* Record end of idle period. */
	smp_mb__before_atomic();
	atomic_inc(&rdtp->dynticks_idle);
	smp_mb__after_atomic();
	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks_idle) & 0x1));

	/*
	 * If we are the timekeeping CPU, we are permitted to be non-idle
	 * during a system-idle state.  This must be the case, because
	 * the timekeeping CPU has to take scheduling-clock interrupts
	 * during the time that the system is transitioning to full
	 * system-idle state.  This means that the timekeeping CPU must
	 * invoke rcu_sysidle_force_exit() directly if it does anything
	 * more than take a scheduling-clock interrupt.
	 */
	if (smp_processor_id() == tick_do_timer_cpu)
		return;

	/* Update system-idle state: We are clearly no longer fully idle! */
	rcu_sysidle_force_exit();
}

/*
 * Check to see if the current CPU is idle.  Note that usermode execution
 * does not count as idle.  The caller must have disabled interrupts.
 */
static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
	int cur;
	unsigned long j;
	struct rcu_dynticks *rdtp = rdp->dynticks;

	/*
	 * If some other CPU has already reported non-idle, if this is
	 * not the flavor of RCU that tracks sysidle state, or if this
	 * is an offline or the timekeeping CPU, nothing to do.
	 */
	if (!*isidle || rdp->rsp != rcu_sysidle_state ||
	    cpu_is_offline(rdp->cpu) || rdp->cpu == tick_do_timer_cpu)
		return;
	if (rcu_gp_in_progress(rdp->rsp))
		WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu);

	/* Pick up current idle and NMI-nesting counter and check. */
	cur = atomic_read(&rdtp->dynticks_idle);
	if (cur & 0x1) {
		*isidle = false; /* We are not idle! */
		return;
	}
	smp_mb(); /* Read counters before timestamps. */

	/* Pick up timestamps. */
	j = ACCESS_ONCE(rdtp->dynticks_idle_jiffies);
	/* If this CPU entered idle more recently, update maxj timestamp. */
	if (ULONG_CMP_LT(*maxj, j))
		*maxj = j;
}

/*
 * Is this the flavor of RCU that is handling full-system idle?
 */
static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return rsp == rcu_sysidle_state;
}

/*
 * Return a delay in jiffies based on the number of CPUs, rcu_node
 * leaf fanout, and jiffies tick rate.  The idea is to allow larger
 * systems more time to transition to full-idle state in order to
 * avoid the cache thrashing that otherwise occur on the state variable.
 * Really small systems (less than a couple of tens of CPUs) should
 * instead use a single global atomically incremented counter, and later
 * versions of this will automatically reconfigure themselves accordingly.
 */
static unsigned long rcu_sysidle_delay(void)
{
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return 0;
	return DIV_ROUND_UP(nr_cpu_ids * HZ, rcu_fanout_leaf * 1000);
}

/*
 * Advance the full-system-idle state.  This is invoked when all of
 * the non-timekeeping CPUs are idle.
 */
static void rcu_sysidle(unsigned long j)
{
	/* Check the current state. */
	switch (ACCESS_ONCE(full_sysidle_state)) {
	case RCU_SYSIDLE_NOT:

		/* First time all are idle, so note a short idle period. */
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_SHORT;
		break;

	case RCU_SYSIDLE_SHORT:

		/*
		 * Idle for a bit, time to advance to next state?
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_SHORT, RCU_SYSIDLE_LONG);
		break;

	case RCU_SYSIDLE_LONG:

		/*
		 * Do an additional check pass before advancing to full.
		 * cmpxchg failure means race with non-idle, let them win.
		 */
		if (ULONG_CMP_GE(jiffies, j + rcu_sysidle_delay()))
			(void)cmpxchg(&full_sysidle_state,
				      RCU_SYSIDLE_LONG, RCU_SYSIDLE_FULL);
		break;

	default:
		break;
	}
}

/*
 * Found a non-idle non-timekeeping CPU, so kick the system-idle state
 * back to the beginning.
 */
static void rcu_sysidle_cancel(void)
{
	smp_mb();
	if (full_sysidle_state > RCU_SYSIDLE_SHORT)
		ACCESS_ONCE(full_sysidle_state) = RCU_SYSIDLE_NOT;
}

/*
 * Update the sysidle state based on the results of a force-quiescent-state
 * scan of the CPUs' dyntick-idle state.
 */
static void rcu_sysidle_report(struct rcu_state *rsp, int isidle,
			       unsigned long maxj, bool gpkt)
{
	if (rsp != rcu_sysidle_state)
		return;  /* Wrong flavor, ignore. */
	if (gpkt && nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL)
		return;  /* Running state machine from timekeeping CPU. */
	if (isidle)
		rcu_sysidle(maxj);    /* More idle! */
	else
		rcu_sysidle_cancel(); /* Idle is over. */
}

/*
 * Wrapper for rcu_sysidle_report() when called from the grace-period
 * kthread's context.
 */
static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
	rcu_sysidle_report(rsp, isidle, maxj, true);
}

/* Callback and function for forcing an RCU grace period. */
struct rcu_sysidle_head {
	struct rcu_head rh;
	int inuse;
};

static void rcu_sysidle_cb(struct rcu_head *rhp)
{
	struct rcu_sysidle_head *rshp;

	/*
	 * The following memory barrier is needed to replace the
	 * memory barriers that would normally be in the memory
	 * allocator.
	 */
	smp_mb();  /* grace period precedes setting inuse. */

	rshp = container_of(rhp, struct rcu_sysidle_head, rh);
	ACCESS_ONCE(rshp->inuse) = 0;
}

/*
 * Check to see if the system is fully idle, other than the timekeeping CPU.
 * The caller must have disabled interrupts.
 */
bool rcu_sys_is_idle(void)
{
	static struct rcu_sysidle_head rsh;
	int rss = ACCESS_ONCE(full_sysidle_state);

	if (WARN_ON_ONCE(smp_processor_id() != tick_do_timer_cpu))
		return false;

	/* Handle small-system case by doing a full scan of CPUs. */
	if (nr_cpu_ids <= CONFIG_NO_HZ_FULL_SYSIDLE_SMALL) {
		int oldrss = rss - 1;

		/*
		 * One pass to advance to each state up to _FULL.
		 * Give up if any pass fails to advance the state.
		 */
		while (rss < RCU_SYSIDLE_FULL && oldrss < rss) {
			int cpu;
			bool isidle = true;
			unsigned long maxj = jiffies - ULONG_MAX / 4;
			struct rcu_data *rdp;

			/* Scan all the CPUs looking for nonidle CPUs. */
			for_each_possible_cpu(cpu) {
				rdp = per_cpu_ptr(rcu_sysidle_state->rda, cpu);
				rcu_sysidle_check_cpu(rdp, &isidle, &maxj);
				if (!isidle)
					break;
			}
			rcu_sysidle_report(rcu_sysidle_state,
					   isidle, maxj, false);
			oldrss = rss;
			rss = ACCESS_ONCE(full_sysidle_state);
		}
	}

	/* If this is the first observation of an idle period, record it. */
	if (rss == RCU_SYSIDLE_FULL) {
		rss = cmpxchg(&full_sysidle_state,
			      RCU_SYSIDLE_FULL, RCU_SYSIDLE_FULL_NOTED);
		return rss == RCU_SYSIDLE_FULL;
	}

	smp_mb(); /* ensure rss load happens before later caller actions. */

	/* If already fully idle, tell the caller (in case of races). */
	if (rss == RCU_SYSIDLE_FULL_NOTED)
		return true;

	/*
	 * If we aren't there yet, and a grace period is not in flight,
	 * initiate a grace period.  Either way, tell the caller that
	 * we are not there yet.  We use an xchg() rather than an assignment
	 * to make up for the memory barriers that would otherwise be
	 * provided by the memory allocator.
	 */
	if (nr_cpu_ids > CONFIG_NO_HZ_FULL_SYSIDLE_SMALL &&
	    !rcu_gp_in_progress(rcu_sysidle_state) &&
	    !rsh.inuse && xchg(&rsh.inuse, 1) == 0)
		call_rcu(&rsh.rh, rcu_sysidle_cb);
	return false;
}

/*
 * Initialize dynticks sysidle state for CPUs coming online.
 */
static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
	rdtp->dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE;
}

#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

static void rcu_sysidle_enter(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_exit(struct rcu_dynticks *rdtp, int irq)
{
}

static void rcu_sysidle_check_cpu(struct rcu_data *rdp, bool *isidle,
				  unsigned long *maxj)
{
}

static bool is_sysidle_rcu_state(struct rcu_state *rsp)
{
	return false;
}

static void rcu_sysidle_report_gp(struct rcu_state *rsp, int isidle,
				  unsigned long maxj)
{
}

static void rcu_sysidle_init_percpu_data(struct rcu_dynticks *rdtp)
{
}

#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */

/*
 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
 * grace-period kthread will do force_quiescent_state() processing?
 * The idea is to avoid waking up RCU core processing on such a
 * CPU unless the grace period has extended for too long.
 *
 * This code relies on the fact that all NO_HZ_FULL CPUs are also
 * CONFIG_RCU_NOCB_CPU CPUs.
 */
static bool rcu_nohz_full_cpu(struct rcu_state *rsp)
{
#ifdef CONFIG_NO_HZ_FULL
	if (tick_nohz_full_cpu(smp_processor_id()) &&
	    (!rcu_gp_in_progress(rsp) ||
	     ULONG_CMP_LT(jiffies, ACCESS_ONCE(rsp->gp_start) + HZ)))
		return 1;
#endif /* #ifdef CONFIG_NO_HZ_FULL */
	return 0;
}

/*
 * Bind the grace-period kthread for the sysidle flavor of RCU to the
 * timekeeping CPU.
 */
static void rcu_bind_gp_kthread(void)
{
	int __maybe_unused cpu;

	if (!tick_nohz_full_enabled())
		return;
#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
	cpu = tick_do_timer_cpu;
	if (cpu >= 0 && cpu < nr_cpu_ids && raw_smp_processor_id() != cpu)
		set_cpus_allowed_ptr(current, cpumask_of(cpu));
#else /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
	if (!is_housekeeping_cpu(raw_smp_processor_id()))
		housekeeping_affine(current);
#endif /* #else #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
}