summaryrefslogtreecommitdiff
path: root/kernel/events/uprobes.c
blob: 0d36bf3920bac82b39bf517413c0fefeac54fdd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
/*
 * User-space Probes (UProbes)
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *
 * Copyright (C) IBM Corporation, 2008-2012
 * Authors:
 *	Srikar Dronamraju
 *	Jim Keniston
 * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
 */

#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/pagemap.h>	/* read_mapping_page */
#include <linux/slab.h>
#include <linux/sched.h>
#include <linux/rmap.h>		/* anon_vma_prepare */
#include <linux/mmu_notifier.h>	/* set_pte_at_notify */
#include <linux/swap.h>		/* try_to_free_swap */

#include <linux/uprobes.h>

static struct rb_root uprobes_tree = RB_ROOT;

static DEFINE_SPINLOCK(uprobes_treelock);	/* serialize rbtree access */

#define UPROBES_HASH_SZ	13

/* serialize (un)register */
static struct mutex uprobes_mutex[UPROBES_HASH_SZ];

#define uprobes_hash(v)		(&uprobes_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])

/* serialize uprobe->pending_list */
static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
#define uprobes_mmap_hash(v)	(&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])

/*
 * uprobe_events allows us to skip the uprobe_mmap if there are no uprobe
 * events active at this time.  Probably a fine grained per inode count is
 * better?
 */
static atomic_t uprobe_events = ATOMIC_INIT(0);

/*
 * Maintain a temporary per vma info that can be used to search if a vma
 * has already been handled. This structure is introduced since extending
 * vm_area_struct wasnt recommended.
 */
struct vma_info {
	struct list_head	probe_list;
	struct mm_struct	*mm;
	loff_t			vaddr;
};

struct uprobe {
	struct rb_node		rb_node;	/* node in the rb tree */
	atomic_t		ref;
	struct rw_semaphore	consumer_rwsem;
	struct list_head	pending_list;
	struct uprobe_consumer	*consumers;
	struct inode		*inode;		/* Also hold a ref to inode */
	loff_t			offset;
	int			flags;
	struct arch_uprobe	arch;
};

/*
 * valid_vma: Verify if the specified vma is an executable vma
 * Relax restrictions while unregistering: vm_flags might have
 * changed after breakpoint was inserted.
 *	- is_register: indicates if we are in register context.
 *	- Return 1 if the specified virtual address is in an
 *	  executable vma.
 */
static bool valid_vma(struct vm_area_struct *vma, bool is_register)
{
	if (!vma->vm_file)
		return false;

	if (!is_register)
		return true;

	if ((vma->vm_flags & (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)) == (VM_READ|VM_EXEC))
		return true;

	return false;
}

static loff_t vma_address(struct vm_area_struct *vma, loff_t offset)
{
	loff_t vaddr;

	vaddr = vma->vm_start + offset;
	vaddr -= vma->vm_pgoff << PAGE_SHIFT;

	return vaddr;
}

/**
 * __replace_page - replace page in vma by new page.
 * based on replace_page in mm/ksm.c
 *
 * @vma:      vma that holds the pte pointing to page
 * @page:     the cowed page we are replacing by kpage
 * @kpage:    the modified page we replace page by
 *
 * Returns 0 on success, -EFAULT on failure.
 */
static int __replace_page(struct vm_area_struct *vma, struct page *page, struct page *kpage)
{
	struct mm_struct *mm = vma->vm_mm;
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *ptep;
	spinlock_t *ptl;
	unsigned long addr;
	int err = -EFAULT;

	addr = page_address_in_vma(page, vma);
	if (addr == -EFAULT)
		goto out;

	pgd = pgd_offset(mm, addr);
	if (!pgd_present(*pgd))
		goto out;

	pud = pud_offset(pgd, addr);
	if (!pud_present(*pud))
		goto out;

	pmd = pmd_offset(pud, addr);
	if (!pmd_present(*pmd))
		goto out;

	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
	if (!ptep)
		goto out;

	get_page(kpage);
	page_add_new_anon_rmap(kpage, vma, addr);

	flush_cache_page(vma, addr, pte_pfn(*ptep));
	ptep_clear_flush(vma, addr, ptep);
	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));

	page_remove_rmap(page);
	if (!page_mapped(page))
		try_to_free_swap(page);
	put_page(page);
	pte_unmap_unlock(ptep, ptl);
	err = 0;

out:
	return err;
}

/**
 * is_bkpt_insn - check if instruction is breakpoint instruction.
 * @insn: instruction to be checked.
 * Default implementation of is_bkpt_insn
 * Returns true if @insn is a breakpoint instruction.
 */
bool __weak is_bkpt_insn(uprobe_opcode_t *insn)
{
	return *insn == UPROBE_BKPT_INSN;
}

/*
 * NOTE:
 * Expect the breakpoint instruction to be the smallest size instruction for
 * the architecture. If an arch has variable length instruction and the
 * breakpoint instruction is not of the smallest length instruction
 * supported by that architecture then we need to modify read_opcode /
 * write_opcode accordingly. This would never be a problem for archs that
 * have fixed length instructions.
 */

/*
 * write_opcode - write the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @arch_uprobe: the breakpointing information.
 * @vaddr: the virtual address to store the opcode.
 * @opcode: opcode to be written at @vaddr.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm).
 *
 * For mm @mm, write the opcode at @vaddr.
 * Return 0 (success) or a negative errno.
 */
static int write_opcode(struct mm_struct *mm, struct arch_uprobe *auprobe,
			unsigned long vaddr, uprobe_opcode_t opcode)
{
	struct page *old_page, *new_page;
	struct address_space *mapping;
	void *vaddr_old, *vaddr_new;
	struct vm_area_struct *vma;
	struct uprobe *uprobe;
	loff_t addr;
	int ret;

	/* Read the page with vaddr into memory */
	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &old_page, &vma);
	if (ret <= 0)
		return ret;

	ret = -EINVAL;

	/*
	 * We are interested in text pages only. Our pages of interest
	 * should be mapped for read and execute only. We desist from
	 * adding probes in write mapped pages since the breakpoints
	 * might end up in the file copy.
	 */
	if (!valid_vma(vma, is_bkpt_insn(&opcode)))
		goto put_out;

	uprobe = container_of(auprobe, struct uprobe, arch);
	mapping = uprobe->inode->i_mapping;
	if (mapping != vma->vm_file->f_mapping)
		goto put_out;

	addr = vma_address(vma, uprobe->offset);
	if (vaddr != (unsigned long)addr)
		goto put_out;

	ret = -ENOMEM;
	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
	if (!new_page)
		goto put_out;

	__SetPageUptodate(new_page);

	/*
	 * lock page will serialize against do_wp_page()'s
	 * PageAnon() handling
	 */
	lock_page(old_page);
	/* copy the page now that we've got it stable */
	vaddr_old = kmap_atomic(old_page);
	vaddr_new = kmap_atomic(new_page);

	memcpy(vaddr_new, vaddr_old, PAGE_SIZE);

	/* poke the new insn in, ASSUMES we don't cross page boundary */
	vaddr &= ~PAGE_MASK;
	BUG_ON(vaddr + UPROBE_BKPT_INSN_SIZE > PAGE_SIZE);
	memcpy(vaddr_new + vaddr, &opcode, UPROBE_BKPT_INSN_SIZE);

	kunmap_atomic(vaddr_new);
	kunmap_atomic(vaddr_old);

	ret = anon_vma_prepare(vma);
	if (ret)
		goto unlock_out;

	lock_page(new_page);
	ret = __replace_page(vma, old_page, new_page);
	unlock_page(new_page);

unlock_out:
	unlock_page(old_page);
	page_cache_release(new_page);

put_out:
	put_page(old_page);

	return ret;
}

/**
 * read_opcode - read the opcode at a given virtual address.
 * @mm: the probed process address space.
 * @vaddr: the virtual address to read the opcode.
 * @opcode: location to store the read opcode.
 *
 * Called with mm->mmap_sem held (for read and with a reference to
 * mm.
 *
 * For mm @mm, read the opcode at @vaddr and store it in @opcode.
 * Return 0 (success) or a negative errno.
 */
static int read_opcode(struct mm_struct *mm, unsigned long vaddr, uprobe_opcode_t *opcode)
{
	struct page *page;
	void *vaddr_new;
	int ret;

	ret = get_user_pages(NULL, mm, vaddr, 1, 0, 0, &page, NULL);
	if (ret <= 0)
		return ret;

	lock_page(page);
	vaddr_new = kmap_atomic(page);
	vaddr &= ~PAGE_MASK;
	memcpy(opcode, vaddr_new + vaddr, UPROBE_BKPT_INSN_SIZE);
	kunmap_atomic(vaddr_new);
	unlock_page(page);

	put_page(page);

	return 0;
}

static int is_bkpt_at_addr(struct mm_struct *mm, unsigned long vaddr)
{
	uprobe_opcode_t opcode;
	int result;

	result = read_opcode(mm, vaddr, &opcode);
	if (result)
		return result;

	if (is_bkpt_insn(&opcode))
		return 1;

	return 0;
}

/**
 * set_bkpt - store breakpoint at a given address.
 * @mm: the probed process address space.
 * @uprobe: the probepoint information.
 * @vaddr: the virtual address to insert the opcode.
 *
 * For mm @mm, store the breakpoint instruction at @vaddr.
 * Return 0 (success) or a negative errno.
 */
int __weak set_bkpt(struct mm_struct *mm, struct arch_uprobe *auprobe, unsigned long vaddr)
{
	int result;

	result = is_bkpt_at_addr(mm, vaddr);
	if (result == 1)
		return -EEXIST;

	if (result)
		return result;

	return write_opcode(mm, auprobe, vaddr, UPROBE_BKPT_INSN);
}

/**
 * set_orig_insn - Restore the original instruction.
 * @mm: the probed process address space.
 * @uprobe: the probepoint information.
 * @vaddr: the virtual address to insert the opcode.
 * @verify: if true, verify existance of breakpoint instruction.
 *
 * For mm @mm, restore the original opcode (opcode) at @vaddr.
 * Return 0 (success) or a negative errno.
 */
int __weak
set_orig_insn(struct mm_struct *mm, struct arch_uprobe *auprobe, unsigned long vaddr, bool verify)
{
	if (verify) {
		int result;

		result = is_bkpt_at_addr(mm, vaddr);
		if (!result)
			return -EINVAL;

		if (result != 1)
			return result;
	}
	return write_opcode(mm, auprobe, vaddr, *(uprobe_opcode_t *)auprobe->insn);
}

static int match_uprobe(struct uprobe *l, struct uprobe *r)
{
	if (l->inode < r->inode)
		return -1;

	if (l->inode > r->inode)
		return 1;

	if (l->offset < r->offset)
		return -1;

	if (l->offset > r->offset)
		return 1;

	return 0;
}

static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe u = { .inode = inode, .offset = offset };
	struct rb_node *n = uprobes_tree.rb_node;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);
		if (!match) {
			atomic_inc(&uprobe->ref);
			return uprobe;
		}

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}
	return NULL;
}

/*
 * Find a uprobe corresponding to a given inode:offset
 * Acquires uprobes_treelock
 */
static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe;
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	uprobe = __find_uprobe(inode, offset);
	spin_unlock_irqrestore(&uprobes_treelock, flags);

	return uprobe;
}

static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
{
	struct rb_node **p = &uprobes_tree.rb_node;
	struct rb_node *parent = NULL;
	struct uprobe *u;
	int match;

	while (*p) {
		parent = *p;
		u = rb_entry(parent, struct uprobe, rb_node);
		match = match_uprobe(uprobe, u);
		if (!match) {
			atomic_inc(&u->ref);
			return u;
		}

		if (match < 0)
			p = &parent->rb_left;
		else
			p = &parent->rb_right;

	}

	u = NULL;
	rb_link_node(&uprobe->rb_node, parent, p);
	rb_insert_color(&uprobe->rb_node, &uprobes_tree);
	/* get access + creation ref */
	atomic_set(&uprobe->ref, 2);

	return u;
}

/*
 * Acquire uprobes_treelock.
 * Matching uprobe already exists in rbtree;
 *	increment (access refcount) and return the matching uprobe.
 *
 * No matching uprobe; insert the uprobe in rb_tree;
 *	get a double refcount (access + creation) and return NULL.
 */
static struct uprobe *insert_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;
	struct uprobe *u;

	spin_lock_irqsave(&uprobes_treelock, flags);
	u = __insert_uprobe(uprobe);
	spin_unlock_irqrestore(&uprobes_treelock, flags);

	return u;
}

static void put_uprobe(struct uprobe *uprobe)
{
	if (atomic_dec_and_test(&uprobe->ref))
		kfree(uprobe);
}

static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
{
	struct uprobe *uprobe, *cur_uprobe;

	uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
	if (!uprobe)
		return NULL;

	uprobe->inode = igrab(inode);
	uprobe->offset = offset;
	init_rwsem(&uprobe->consumer_rwsem);
	INIT_LIST_HEAD(&uprobe->pending_list);

	/* add to uprobes_tree, sorted on inode:offset */
	cur_uprobe = insert_uprobe(uprobe);

	/* a uprobe exists for this inode:offset combination */
	if (cur_uprobe) {
		kfree(uprobe);
		uprobe = cur_uprobe;
		iput(inode);
	} else {
		atomic_inc(&uprobe_events);
	}

	return uprobe;
}

/* Returns the previous consumer */
static struct uprobe_consumer *
consumer_add(struct uprobe *uprobe, struct uprobe_consumer *consumer)
{
	down_write(&uprobe->consumer_rwsem);
	consumer->next = uprobe->consumers;
	uprobe->consumers = consumer;
	up_write(&uprobe->consumer_rwsem);

	return consumer->next;
}

/*
 * For uprobe @uprobe, delete the consumer @consumer.
 * Return true if the @consumer is deleted successfully
 * or return false.
 */
static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *consumer)
{
	struct uprobe_consumer **con;
	bool ret = false;

	down_write(&uprobe->consumer_rwsem);
	for (con = &uprobe->consumers; *con; con = &(*con)->next) {
		if (*con == consumer) {
			*con = consumer->next;
			ret = true;
			break;
		}
	}
	up_write(&uprobe->consumer_rwsem);

	return ret;
}

static int __copy_insn(struct address_space *mapping,
			struct vm_area_struct *vma, char *insn,
			unsigned long nbytes, unsigned long offset)
{
	struct file *filp = vma->vm_file;
	struct page *page;
	void *vaddr;
	unsigned long off1;
	unsigned long idx;

	if (!filp)
		return -EINVAL;

	idx = (unsigned long)(offset >> PAGE_CACHE_SHIFT);
	off1 = offset &= ~PAGE_MASK;

	/*
	 * Ensure that the page that has the original instruction is
	 * populated and in page-cache.
	 */
	page = read_mapping_page(mapping, idx, filp);
	if (IS_ERR(page))
		return PTR_ERR(page);

	vaddr = kmap_atomic(page);
	memcpy(insn, vaddr + off1, nbytes);
	kunmap_atomic(vaddr);
	page_cache_release(page);

	return 0;
}

static int copy_insn(struct uprobe *uprobe, struct vm_area_struct *vma, unsigned long addr)
{
	struct address_space *mapping;
	unsigned long nbytes;
	int bytes;

	addr &= ~PAGE_MASK;
	nbytes = PAGE_SIZE - addr;
	mapping = uprobe->inode->i_mapping;

	/* Instruction at end of binary; copy only available bytes */
	if (uprobe->offset + MAX_UINSN_BYTES > uprobe->inode->i_size)
		bytes = uprobe->inode->i_size - uprobe->offset;
	else
		bytes = MAX_UINSN_BYTES;

	/* Instruction at the page-boundary; copy bytes in second page */
	if (nbytes < bytes) {
		if (__copy_insn(mapping, vma, uprobe->arch.insn + nbytes,
				bytes - nbytes, uprobe->offset + nbytes))
			return -ENOMEM;

		bytes = nbytes;
	}
	return __copy_insn(mapping, vma, uprobe->arch.insn, bytes, uprobe->offset);
}

static int install_breakpoint(struct mm_struct *mm, struct uprobe *uprobe,
				struct vm_area_struct *vma, loff_t vaddr)
{
	unsigned long addr;
	int ret;

	/*
	 * If probe is being deleted, unregister thread could be done with
	 * the vma-rmap-walk through. Adding a probe now can be fatal since
	 * nobody will be able to cleanup. Also we could be from fork or
	 * mremap path, where the probe might have already been inserted.
	 * Hence behave as if probe already existed.
	 */
	if (!uprobe->consumers)
		return -EEXIST;

	addr = (unsigned long)vaddr;

	if (!(uprobe->flags & UPROBE_COPY_INSN)) {
		ret = copy_insn(uprobe, vma, addr);
		if (ret)
			return ret;

		if (is_bkpt_insn((uprobe_opcode_t *)uprobe->arch.insn))
			return -EEXIST;

		ret = arch_uprobes_analyze_insn(mm, &uprobe->arch);
		if (ret)
			return ret;

		uprobe->flags |= UPROBE_COPY_INSN;
	}
	ret = set_bkpt(mm, &uprobe->arch, addr);

	return ret;
}

static void remove_breakpoint(struct mm_struct *mm, struct uprobe *uprobe, loff_t vaddr)
{
	set_orig_insn(mm, &uprobe->arch, (unsigned long)vaddr, true);
}

static void delete_uprobe(struct uprobe *uprobe)
{
	unsigned long flags;

	spin_lock_irqsave(&uprobes_treelock, flags);
	rb_erase(&uprobe->rb_node, &uprobes_tree);
	spin_unlock_irqrestore(&uprobes_treelock, flags);
	iput(uprobe->inode);
	put_uprobe(uprobe);
	atomic_dec(&uprobe_events);
}

static struct vma_info *__find_next_vma_info(struct list_head *head,
			loff_t offset, struct address_space *mapping,
			struct vma_info *vi, bool is_register)
{
	struct prio_tree_iter iter;
	struct vm_area_struct *vma;
	struct vma_info *tmpvi;
	unsigned long pgoff;
	int existing_vma;
	loff_t vaddr;

	pgoff = offset >> PAGE_SHIFT;

	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
		if (!valid_vma(vma, is_register))
			continue;

		existing_vma = 0;
		vaddr = vma_address(vma, offset);

		list_for_each_entry(tmpvi, head, probe_list) {
			if (tmpvi->mm == vma->vm_mm && tmpvi->vaddr == vaddr) {
				existing_vma = 1;
				break;
			}
		}

		/*
		 * Another vma needs a probe to be installed. However skip
		 * installing the probe if the vma is about to be unlinked.
		 */
		if (!existing_vma && atomic_inc_not_zero(&vma->vm_mm->mm_users)) {
			vi->mm = vma->vm_mm;
			vi->vaddr = vaddr;
			list_add(&vi->probe_list, head);

			return vi;
		}
	}

	return NULL;
}

/*
 * Iterate in the rmap prio tree  and find a vma where a probe has not
 * yet been inserted.
 */
static struct vma_info *
find_next_vma_info(struct list_head *head, loff_t offset, struct address_space *mapping,
		   bool is_register)
{
	struct vma_info *vi, *retvi;

	vi = kzalloc(sizeof(struct vma_info), GFP_KERNEL);
	if (!vi)
		return ERR_PTR(-ENOMEM);

	mutex_lock(&mapping->i_mmap_mutex);
	retvi = __find_next_vma_info(head, offset, mapping, vi, is_register);
	mutex_unlock(&mapping->i_mmap_mutex);

	if (!retvi)
		kfree(vi);

	return retvi;
}

static int register_for_each_vma(struct uprobe *uprobe, bool is_register)
{
	struct list_head try_list;
	struct vm_area_struct *vma;
	struct address_space *mapping;
	struct vma_info *vi, *tmpvi;
	struct mm_struct *mm;
	loff_t vaddr;
	int ret;

	mapping = uprobe->inode->i_mapping;
	INIT_LIST_HEAD(&try_list);

	ret = 0;

	for (;;) {
		vi = find_next_vma_info(&try_list, uprobe->offset, mapping, is_register);
		if (!vi)
			break;

		if (IS_ERR(vi)) {
			ret = PTR_ERR(vi);
			break;
		}

		mm = vi->mm;
		down_read(&mm->mmap_sem);
		vma = find_vma(mm, (unsigned long)vi->vaddr);
		if (!vma || !valid_vma(vma, is_register)) {
			list_del(&vi->probe_list);
			kfree(vi);
			up_read(&mm->mmap_sem);
			mmput(mm);
			continue;
		}
		vaddr = vma_address(vma, uprobe->offset);
		if (vma->vm_file->f_mapping->host != uprobe->inode ||
						vaddr != vi->vaddr) {
			list_del(&vi->probe_list);
			kfree(vi);
			up_read(&mm->mmap_sem);
			mmput(mm);
			continue;
		}

		if (is_register)
			ret = install_breakpoint(mm, uprobe, vma, vi->vaddr);
		else
			remove_breakpoint(mm, uprobe, vi->vaddr);

		up_read(&mm->mmap_sem);
		mmput(mm);
		if (is_register) {
			if (ret && ret == -EEXIST)
				ret = 0;
			if (ret)
				break;
		}
	}

	list_for_each_entry_safe(vi, tmpvi, &try_list, probe_list) {
		list_del(&vi->probe_list);
		kfree(vi);
	}

	return ret;
}

static int __uprobe_register(struct uprobe *uprobe)
{
	return register_for_each_vma(uprobe, true);
}

static void __uprobe_unregister(struct uprobe *uprobe)
{
	if (!register_for_each_vma(uprobe, false))
		delete_uprobe(uprobe);

	/* TODO : cant unregister? schedule a worker thread */
}

/*
 * uprobe_register - register a probe
 * @inode: the file in which the probe has to be placed.
 * @offset: offset from the start of the file.
 * @consumer: information on howto handle the probe..
 *
 * Apart from the access refcount, uprobe_register() takes a creation
 * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
 * inserted into the rbtree (i.e first consumer for a @inode:@offset
 * tuple).  Creation refcount stops uprobe_unregister from freeing the
 * @uprobe even before the register operation is complete. Creation
 * refcount is released when the last @consumer for the @uprobe
 * unregisters.
 *
 * Return errno if it cannot successully install probes
 * else return 0 (success)
 */
int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
{
	struct uprobe *uprobe;
	int ret;

	if (!inode || !consumer || consumer->next)
		return -EINVAL;

	if (offset > i_size_read(inode))
		return -EINVAL;

	ret = 0;
	mutex_lock(uprobes_hash(inode));
	uprobe = alloc_uprobe(inode, offset);

	if (uprobe && !consumer_add(uprobe, consumer)) {
		ret = __uprobe_register(uprobe);
		if (ret) {
			uprobe->consumers = NULL;
			__uprobe_unregister(uprobe);
		} else {
			uprobe->flags |= UPROBE_RUN_HANDLER;
		}
	}

	mutex_unlock(uprobes_hash(inode));
	put_uprobe(uprobe);

	return ret;
}

/*
 * uprobe_unregister - unregister a already registered probe.
 * @inode: the file in which the probe has to be removed.
 * @offset: offset from the start of the file.
 * @consumer: identify which probe if multiple probes are colocated.
 */
void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *consumer)
{
	struct uprobe *uprobe;

	if (!inode || !consumer)
		return;

	uprobe = find_uprobe(inode, offset);
	if (!uprobe)
		return;

	mutex_lock(uprobes_hash(inode));

	if (consumer_del(uprobe, consumer)) {
		if (!uprobe->consumers) {
			__uprobe_unregister(uprobe);
			uprobe->flags &= ~UPROBE_RUN_HANDLER;
		}
	}

	mutex_unlock(uprobes_hash(inode));
	if (uprobe)
		put_uprobe(uprobe);
}

/*
 * Of all the nodes that correspond to the given inode, return the node
 * with the least offset.
 */
static struct rb_node *find_least_offset_node(struct inode *inode)
{
	struct uprobe u = { .inode = inode, .offset = 0};
	struct rb_node *n = uprobes_tree.rb_node;
	struct rb_node *close_node = NULL;
	struct uprobe *uprobe;
	int match;

	while (n) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		match = match_uprobe(&u, uprobe);

		if (uprobe->inode == inode)
			close_node = n;

		if (!match)
			return close_node;

		if (match < 0)
			n = n->rb_left;
		else
			n = n->rb_right;
	}

	return close_node;
}

/*
 * For a given inode, build a list of probes that need to be inserted.
 */
static void build_probe_list(struct inode *inode, struct list_head *head)
{
	struct uprobe *uprobe;
	unsigned long flags;
	struct rb_node *n;

	spin_lock_irqsave(&uprobes_treelock, flags);

	n = find_least_offset_node(inode);

	for (; n; n = rb_next(n)) {
		uprobe = rb_entry(n, struct uprobe, rb_node);
		if (uprobe->inode != inode)
			break;

		list_add(&uprobe->pending_list, head);
		atomic_inc(&uprobe->ref);
	}

	spin_unlock_irqrestore(&uprobes_treelock, flags);
}

/*
 * Called from mmap_region.
 * called with mm->mmap_sem acquired.
 *
 * Return -ve no if we fail to insert probes and we cannot
 * bail-out.
 * Return 0 otherwise. i.e:
 *
 *	- successful insertion of probes
 *	- (or) no possible probes to be inserted.
 *	- (or) insertion of probes failed but we can bail-out.
 */
int uprobe_mmap(struct vm_area_struct *vma)
{
	struct list_head tmp_list;
	struct uprobe *uprobe, *u;
	struct inode *inode;
	int ret;

	if (!atomic_read(&uprobe_events) || !valid_vma(vma, true))
		return 0;

	inode = vma->vm_file->f_mapping->host;
	if (!inode)
		return 0;

	INIT_LIST_HEAD(&tmp_list);
	mutex_lock(uprobes_mmap_hash(inode));
	build_probe_list(inode, &tmp_list);

	ret = 0;

	list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
		loff_t vaddr;

		list_del(&uprobe->pending_list);
		if (!ret) {
			vaddr = vma_address(vma, uprobe->offset);
			if (vaddr >= vma->vm_start && vaddr < vma->vm_end) {
				ret = install_breakpoint(vma->vm_mm, uprobe, vma, vaddr);
				/* Ignore double add: */
				if (ret == -EEXIST)
					ret = 0;
			}
		}
		put_uprobe(uprobe);
	}

	mutex_unlock(uprobes_mmap_hash(inode));

	return ret;
}

static int __init init_uprobes(void)
{
	int i;

	for (i = 0; i < UPROBES_HASH_SZ; i++) {
		mutex_init(&uprobes_mutex[i]);
		mutex_init(&uprobes_mmap_mutex[i]);
	}
	return 0;
}

static void __exit exit_uprobes(void)
{
}

module_init(init_uprobes);
module_exit(exit_uprobes);