summaryrefslogtreecommitdiff
path: root/fs/xfs/xfs_rmap_item.c
blob: 7f903de481df5868c6d74c1f7142725d200ed4d2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
// SPDX-License-Identifier: GPL-2.0+
/*
 * Copyright (C) 2016 Oracle.  All Rights Reserved.
 * Author: Darrick J. Wong <darrick.wong@oracle.com>
 */
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_bit.h"
#include "xfs_shared.h"
#include "xfs_mount.h"
#include "xfs_defer.h"
#include "xfs_trans.h"
#include "xfs_trans_priv.h"
#include "xfs_buf_item.h"
#include "xfs_rmap_item.h"
#include "xfs_log.h"
#include "xfs_rmap.h"


kmem_zone_t	*xfs_rui_zone;
kmem_zone_t	*xfs_rud_zone;

static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
{
	return container_of(lip, struct xfs_rui_log_item, rui_item);
}

void
xfs_rui_item_free(
	struct xfs_rui_log_item	*ruip)
{
	if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
		kmem_free(ruip);
	else
		kmem_zone_free(xfs_rui_zone, ruip);
}

/*
 * Freeing the RUI requires that we remove it from the AIL if it has already
 * been placed there. However, the RUI may not yet have been placed in the AIL
 * when called by xfs_rui_release() from RUD processing due to the ordering of
 * committed vs unpin operations in bulk insert operations. Hence the reference
 * count to ensure only the last caller frees the RUI.
 */
void
xfs_rui_release(
	struct xfs_rui_log_item	*ruip)
{
	ASSERT(atomic_read(&ruip->rui_refcount) > 0);
	if (atomic_dec_and_test(&ruip->rui_refcount)) {
		xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
		xfs_rui_item_free(ruip);
	}
}

STATIC void
xfs_rui_item_size(
	struct xfs_log_item	*lip,
	int			*nvecs,
	int			*nbytes)
{
	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);

	*nvecs += 1;
	*nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
}

/*
 * This is called to fill in the vector of log iovecs for the
 * given rui log item. We use only 1 iovec, and we point that
 * at the rui_log_format structure embedded in the rui item.
 * It is at this point that we assert that all of the extent
 * slots in the rui item have been filled.
 */
STATIC void
xfs_rui_item_format(
	struct xfs_log_item	*lip,
	struct xfs_log_vec	*lv)
{
	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);
	struct xfs_log_iovec	*vecp = NULL;

	ASSERT(atomic_read(&ruip->rui_next_extent) ==
			ruip->rui_format.rui_nextents);

	ruip->rui_format.rui_type = XFS_LI_RUI;
	ruip->rui_format.rui_size = 1;

	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
			xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
}

/*
 * The unpin operation is the last place an RUI is manipulated in the log. It is
 * either inserted in the AIL or aborted in the event of a log I/O error. In
 * either case, the RUI transaction has been successfully committed to make it
 * this far. Therefore, we expect whoever committed the RUI to either construct
 * and commit the RUD or drop the RUD's reference in the event of error. Simply
 * drop the log's RUI reference now that the log is done with it.
 */
STATIC void
xfs_rui_item_unpin(
	struct xfs_log_item	*lip,
	int			remove)
{
	struct xfs_rui_log_item	*ruip = RUI_ITEM(lip);

	xfs_rui_release(ruip);
}

/*
 * The RUI has been either committed or aborted if the transaction has been
 * cancelled. If the transaction was cancelled, an RUD isn't going to be
 * constructed and thus we free the RUI here directly.
 */
STATIC void
xfs_rui_item_release(
	struct xfs_log_item	*lip)
{
	xfs_rui_release(RUI_ITEM(lip));
}

static const struct xfs_item_ops xfs_rui_item_ops = {
	.iop_size	= xfs_rui_item_size,
	.iop_format	= xfs_rui_item_format,
	.iop_unpin	= xfs_rui_item_unpin,
	.iop_release	= xfs_rui_item_release,
};

/*
 * Allocate and initialize an rui item with the given number of extents.
 */
struct xfs_rui_log_item *
xfs_rui_init(
	struct xfs_mount		*mp,
	uint				nextents)

{
	struct xfs_rui_log_item		*ruip;

	ASSERT(nextents > 0);
	if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
		ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
	else
		ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);

	xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
	ruip->rui_format.rui_nextents = nextents;
	ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
	atomic_set(&ruip->rui_next_extent, 0);
	atomic_set(&ruip->rui_refcount, 2);

	return ruip;
}

/*
 * Copy an RUI format buffer from the given buf, and into the destination
 * RUI format structure.  The RUI/RUD items were designed not to need any
 * special alignment handling.
 */
int
xfs_rui_copy_format(
	struct xfs_log_iovec		*buf,
	struct xfs_rui_log_format	*dst_rui_fmt)
{
	struct xfs_rui_log_format	*src_rui_fmt;
	uint				len;

	src_rui_fmt = buf->i_addr;
	len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);

	if (buf->i_len != len)
		return -EFSCORRUPTED;

	memcpy(dst_rui_fmt, src_rui_fmt, len);
	return 0;
}

static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
{
	return container_of(lip, struct xfs_rud_log_item, rud_item);
}

STATIC void
xfs_rud_item_size(
	struct xfs_log_item	*lip,
	int			*nvecs,
	int			*nbytes)
{
	*nvecs += 1;
	*nbytes += sizeof(struct xfs_rud_log_format);
}

/*
 * This is called to fill in the vector of log iovecs for the
 * given rud log item. We use only 1 iovec, and we point that
 * at the rud_log_format structure embedded in the rud item.
 * It is at this point that we assert that all of the extent
 * slots in the rud item have been filled.
 */
STATIC void
xfs_rud_item_format(
	struct xfs_log_item	*lip,
	struct xfs_log_vec	*lv)
{
	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);
	struct xfs_log_iovec	*vecp = NULL;

	rudp->rud_format.rud_type = XFS_LI_RUD;
	rudp->rud_format.rud_size = 1;

	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
			sizeof(struct xfs_rud_log_format));
}

/*
 * The RUD is either committed or aborted if the transaction is cancelled. If
 * the transaction is cancelled, drop our reference to the RUI and free the
 * RUD.
 */
STATIC void
xfs_rud_item_release(
	struct xfs_log_item	*lip)
{
	struct xfs_rud_log_item	*rudp = RUD_ITEM(lip);

	xfs_rui_release(rudp->rud_ruip);
	kmem_zone_free(xfs_rud_zone, rudp);
}

static const struct xfs_item_ops xfs_rud_item_ops = {
	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
	.iop_size	= xfs_rud_item_size,
	.iop_format	= xfs_rud_item_format,
	.iop_release	= xfs_rud_item_release,
};

struct xfs_rud_log_item *
xfs_trans_get_rud(
	struct xfs_trans		*tp,
	struct xfs_rui_log_item		*ruip)
{
	struct xfs_rud_log_item		*rudp;

	rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
	xfs_log_item_init(tp->t_mountp, &rudp->rud_item, XFS_LI_RUD,
			  &xfs_rud_item_ops);
	rudp->rud_ruip = ruip;
	rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;

	xfs_trans_add_item(tp, &rudp->rud_item);
	return rudp;
}

/*
 * Process an rmap update intent item that was recovered from the log.
 * We need to update the rmapbt.
 */
int
xfs_rui_recover(
	struct xfs_mount		*mp,
	struct xfs_rui_log_item		*ruip)
{
	int				i;
	int				error = 0;
	struct xfs_map_extent		*rmap;
	xfs_fsblock_t			startblock_fsb;
	bool				op_ok;
	struct xfs_rud_log_item		*rudp;
	enum xfs_rmap_intent_type	type;
	int				whichfork;
	xfs_exntst_t			state;
	struct xfs_trans		*tp;
	struct xfs_btree_cur		*rcur = NULL;

	ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));

	/*
	 * First check the validity of the extents described by the
	 * RUI.  If any are bad, then assume that all are bad and
	 * just toss the RUI.
	 */
	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
		rmap = &ruip->rui_format.rui_extents[i];
		startblock_fsb = XFS_BB_TO_FSB(mp,
				   XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
		case XFS_RMAP_EXTENT_MAP:
		case XFS_RMAP_EXTENT_MAP_SHARED:
		case XFS_RMAP_EXTENT_UNMAP:
		case XFS_RMAP_EXTENT_UNMAP_SHARED:
		case XFS_RMAP_EXTENT_CONVERT:
		case XFS_RMAP_EXTENT_CONVERT_SHARED:
		case XFS_RMAP_EXTENT_ALLOC:
		case XFS_RMAP_EXTENT_FREE:
			op_ok = true;
			break;
		default:
			op_ok = false;
			break;
		}
		if (!op_ok || startblock_fsb == 0 ||
		    rmap->me_len == 0 ||
		    startblock_fsb >= mp->m_sb.sb_dblocks ||
		    rmap->me_len >= mp->m_sb.sb_agblocks ||
		    (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
			/*
			 * This will pull the RUI from the AIL and
			 * free the memory associated with it.
			 */
			set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
			xfs_rui_release(ruip);
			return -EIO;
		}
	}

	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
			mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
	if (error)
		return error;
	rudp = xfs_trans_get_rud(tp, ruip);

	for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
		rmap = &ruip->rui_format.rui_extents[i];
		state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
				XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
		whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
				XFS_ATTR_FORK : XFS_DATA_FORK;
		switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
		case XFS_RMAP_EXTENT_MAP:
			type = XFS_RMAP_MAP;
			break;
		case XFS_RMAP_EXTENT_MAP_SHARED:
			type = XFS_RMAP_MAP_SHARED;
			break;
		case XFS_RMAP_EXTENT_UNMAP:
			type = XFS_RMAP_UNMAP;
			break;
		case XFS_RMAP_EXTENT_UNMAP_SHARED:
			type = XFS_RMAP_UNMAP_SHARED;
			break;
		case XFS_RMAP_EXTENT_CONVERT:
			type = XFS_RMAP_CONVERT;
			break;
		case XFS_RMAP_EXTENT_CONVERT_SHARED:
			type = XFS_RMAP_CONVERT_SHARED;
			break;
		case XFS_RMAP_EXTENT_ALLOC:
			type = XFS_RMAP_ALLOC;
			break;
		case XFS_RMAP_EXTENT_FREE:
			type = XFS_RMAP_FREE;
			break;
		default:
			error = -EFSCORRUPTED;
			goto abort_error;
		}
		error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
				rmap->me_owner, whichfork,
				rmap->me_startoff, rmap->me_startblock,
				rmap->me_len, state, &rcur);
		if (error)
			goto abort_error;

	}

	xfs_rmap_finish_one_cleanup(tp, rcur, error);
	set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
	error = xfs_trans_commit(tp);
	return error;

abort_error:
	xfs_rmap_finish_one_cleanup(tp, rcur, error);
	xfs_trans_cancel(tp);
	return error;
}