1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2020 Linaro Limited
*
* Based on original driver:
* Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
*/
#include <linux/bitfield.h>
#include <linux/iio/adc/qcom-vadc-common.h>
#include <linux/iio/consumer.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/thermal.h>
/*
* Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each
* channel is programmed to use one of ADC channels for voltage comparison.
* Voltages are programmed using ADC codes, so we have to convert temp to
* voltage and then to ADC code value.
*
* Configuration of TM channels must match configuration of corresponding ADC
* channels.
*/
#define ADC5_MAX_CHANNEL 0xc0
#define ADC_TM5_NUM_CHANNELS 8
#define ADC_TM5_STATUS_LOW 0x0a
#define ADC_TM5_STATUS_HIGH 0x0b
#define ADC_TM5_NUM_BTM 0x0f
#define ADC_TM5_ADC_DIG_PARAM 0x42
#define ADC_TM5_FAST_AVG_CTL (ADC_TM5_ADC_DIG_PARAM + 1)
#define ADC_TM5_FAST_AVG_EN BIT(7)
#define ADC_TM5_MEAS_INTERVAL_CTL (ADC_TM5_ADC_DIG_PARAM + 2)
#define ADC_TM5_TIMER1 3 /* 3.9ms */
#define ADC_TM5_MEAS_INTERVAL_CTL2 (ADC_TM5_ADC_DIG_PARAM + 3)
#define ADC_TM5_MEAS_INTERVAL_CTL2_MASK 0xf0
#define ADC_TM5_TIMER2 10 /* 1 second */
#define ADC_TM5_MEAS_INTERVAL_CTL3_MASK 0xf
#define ADC_TM5_TIMER3 4 /* 4 second */
#define ADC_TM_EN_CTL1 0x46
#define ADC_TM_EN BIT(7)
#define ADC_TM_CONV_REQ 0x47
#define ADC_TM_CONV_REQ_EN BIT(7)
#define ADC_TM5_M_CHAN_BASE 0x60
#define ADC_TM5_M_ADC_CH_SEL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0)
#define ADC_TM5_M_LOW_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1)
#define ADC_TM5_M_LOW_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2)
#define ADC_TM5_M_HIGH_THR0(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3)
#define ADC_TM5_M_HIGH_THR1(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4)
#define ADC_TM5_M_MEAS_INTERVAL_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5)
#define ADC_TM5_M_CTL(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6)
#define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK 0xf
#define ADC_TM5_M_CTL_CAL_SEL_MASK 0x30
#define ADC_TM5_M_CTL_CAL_VAL 0x40
#define ADC_TM5_M_EN(n) (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7)
#define ADC_TM5_M_MEAS_EN BIT(7)
#define ADC_TM5_M_HIGH_THR_INT_EN BIT(1)
#define ADC_TM5_M_LOW_THR_INT_EN BIT(0)
enum adc5_timer_select {
ADC5_TIMER_SEL_1 = 0,
ADC5_TIMER_SEL_2,
ADC5_TIMER_SEL_3,
ADC5_TIMER_SEL_NONE,
};
struct adc_tm5_data {
const u32 full_scale_code_volt;
unsigned int *decimation;
unsigned int *hw_settle;
};
enum adc_tm5_cal_method {
ADC_TM5_NO_CAL = 0,
ADC_TM5_RATIOMETRIC_CAL,
ADC_TM5_ABSOLUTE_CAL
};
struct adc_tm5_chip;
/**
* struct adc_tm5_channel - ADC Thermal Monitoring channel data.
* @channel: channel number.
* @adc_channel: corresponding ADC channel number.
* @cal_method: calibration method.
* @prescale: channel scaling performed on the input signal.
* @hw_settle_time: the time between AMUX being configured and the
* start of conversion.
* @iio: IIO channel instance used by this channel.
* @chip: ADC TM chip instance.
* @tzd: thermal zone device used by this channel.
*/
struct adc_tm5_channel {
unsigned int channel;
unsigned int adc_channel;
enum adc_tm5_cal_method cal_method;
unsigned int prescale;
unsigned int hw_settle_time;
struct iio_channel *iio;
struct adc_tm5_chip *chip;
struct thermal_zone_device *tzd;
};
/**
* struct adc_tm5_chip - ADC Thermal Monitoring properties
* @regmap: SPMI ADC5 Thermal Monitoring peripheral register map field.
* @dev: SPMI ADC5 device.
* @data: software configuration data.
* @channels: array of ADC TM channel data.
* @nchannels: amount of channels defined/allocated
* @decimation: sampling rate supported for the channel.
* @avg_samples: ability to provide single result from the ADC
* that is an average of multiple measurements.
* @base: base address of TM registers.
*/
struct adc_tm5_chip {
struct regmap *regmap;
struct device *dev;
const struct adc_tm5_data *data;
struct adc_tm5_channel *channels;
unsigned int nchannels;
unsigned int decimation;
unsigned int avg_samples;
u16 base;
};
static const struct adc_tm5_data adc_tm5_data_pmic = {
.full_scale_code_volt = 0x70e4,
.decimation = (unsigned int []) { 250, 420, 840 },
.hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
1000, 2000, 4000, 8000, 16000, 32000,
64000, 128000 },
};
static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
{
return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len);
}
static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
{
return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len);
}
static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val)
{
return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val);
}
static irqreturn_t adc_tm5_isr(int irq, void *data)
{
struct adc_tm5_chip *chip = data;
u8 status_low, status_high, ctl;
int ret, i;
ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low));
if (unlikely(ret)) {
dev_err(chip->dev, "read status low failed: %d\n", ret);
return IRQ_HANDLED;
}
ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high));
if (unlikely(ret)) {
dev_err(chip->dev, "read status high failed: %d\n", ret);
return IRQ_HANDLED;
}
for (i = 0; i < chip->nchannels; i++) {
bool upper_set = false, lower_set = false;
unsigned int ch = chip->channels[i].channel;
/* No TZD, we warned at the boot time */
if (!chip->channels[i].tzd)
continue;
ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl));
if (unlikely(ret)) {
dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i);
continue;
}
if (!(ctl & ADC_TM5_M_MEAS_EN))
continue;
lower_set = (status_low & BIT(ch)) &&
(ctl & ADC_TM5_M_LOW_THR_INT_EN);
upper_set = (status_high & BIT(ch)) &&
(ctl & ADC_TM5_M_HIGH_THR_INT_EN);
if (upper_set || lower_set)
thermal_zone_device_update(chip->channels[i].tzd,
THERMAL_EVENT_UNSPECIFIED);
}
return IRQ_HANDLED;
}
static int adc_tm5_get_temp(void *data, int *temp)
{
struct adc_tm5_channel *channel = data;
int ret;
if (!channel || !channel->iio)
return -EINVAL;
ret = iio_read_channel_processed(channel->iio, temp);
if (ret < 0)
return ret;
if (ret != IIO_VAL_INT)
return -EINVAL;
return 0;
}
static int adc_tm5_disable_channel(struct adc_tm5_channel *channel)
{
struct adc_tm5_chip *chip = channel->chip;
unsigned int reg = ADC_TM5_M_EN(channel->channel);
return adc_tm5_reg_update(chip, reg,
ADC_TM5_M_MEAS_EN |
ADC_TM5_M_HIGH_THR_INT_EN |
ADC_TM5_M_LOW_THR_INT_EN,
0);
}
static int adc_tm5_enable(struct adc_tm5_chip *chip)
{
int ret;
u8 data;
data = ADC_TM_EN;
ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data));
if (ret < 0) {
dev_err(chip->dev, "adc-tm enable failed\n");
return ret;
}
data = ADC_TM_CONV_REQ_EN;
ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data));
if (ret < 0) {
dev_err(chip->dev, "adc-tm request conversion failed\n");
return ret;
}
return 0;
}
static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high)
{
struct adc_tm5_chip *chip = channel->chip;
u8 buf[8];
u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel);
int ret;
ret = adc_tm5_read(chip, reg, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret);
return ret;
}
buf[0] = channel->adc_channel;
/* High temperature corresponds to low voltage threshold */
if (high != INT_MAX) {
u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
chip->data->full_scale_code_volt, high);
buf[1] = adc_code & 0xff;
buf[2] = adc_code >> 8;
buf[7] |= ADC_TM5_M_LOW_THR_INT_EN;
} else {
buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN;
}
/* Low temperature corresponds to high voltage threshold */
if (low != -INT_MAX) {
u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
chip->data->full_scale_code_volt, low);
buf[3] = adc_code & 0xff;
buf[4] = adc_code >> 8;
buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN;
} else {
buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN;
}
buf[5] = ADC5_TIMER_SEL_2;
/* Set calibration select, hw_settle delay */
buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK;
buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time);
buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK;
buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method);
buf[7] |= ADC_TM5_M_MEAS_EN;
ret = adc_tm5_write(chip, reg, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
return ret;
}
return adc_tm5_enable(chip);
}
static int adc_tm5_set_trips(void *data, int low, int high)
{
struct adc_tm5_channel *channel = data;
struct adc_tm5_chip *chip;
int ret;
if (!channel)
return -EINVAL;
chip = channel->chip;
dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n",
channel->channel, low, high);
if (high == INT_MAX && low <= -INT_MAX)
ret = adc_tm5_disable_channel(channel);
else
ret = adc_tm5_configure(channel, low, high);
return ret;
}
static struct thermal_zone_of_device_ops adc_tm5_ops = {
.get_temp = adc_tm5_get_temp,
.set_trips = adc_tm5_set_trips,
};
static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm)
{
unsigned int i;
struct thermal_zone_device *tzd;
for (i = 0; i < adc_tm->nchannels; i++) {
adc_tm->channels[i].chip = adc_tm;
tzd = devm_thermal_zone_of_sensor_register(adc_tm->dev,
adc_tm->channels[i].channel,
&adc_tm->channels[i],
&adc_tm5_ops);
if (IS_ERR(tzd)) {
dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n",
adc_tm->channels[i].channel, PTR_ERR(tzd));
return PTR_ERR(tzd);
}
adc_tm->channels[i].tzd = tzd;
}
return 0;
}
static int adc_tm5_init(struct adc_tm5_chip *chip)
{
u8 buf[4], channels_available;
int ret;
unsigned int i;
ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
&channels_available, sizeof(channels_available));
if (ret) {
dev_err(chip->dev, "read failed for BTM channels\n");
return ret;
}
for (i = 0; i < chip->nchannels; i++) {
if (chip->channels[i].channel >= channels_available) {
dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
return -EINVAL;
}
}
buf[0] = chip->decimation;
buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
buf[2] = ADC_TM5_TIMER1;
buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) |
FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3);
ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
if (ret) {
dev_err(chip->dev, "block write failed: %d\n", ret);
return ret;
}
return ret;
}
static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm,
struct adc_tm5_channel *channel,
struct device_node *node)
{
const char *name = node->name;
u32 chan, value, varr[2];
int ret;
struct device *dev = adc_tm->dev;
struct of_phandle_args args;
ret = of_property_read_u32(node, "reg", &chan);
if (ret) {
dev_err(dev, "%s: invalid channel number %d\n", name, ret);
return ret;
}
if (chan >= ADC_TM5_NUM_CHANNELS) {
dev_err(dev, "%s: channel number too big: %d\n", name, chan);
return -EINVAL;
}
channel->channel = chan;
/*
* We are tied to PMIC's ADC controller, which always use single
* argument for channel number. So don't bother parsing
* #io-channel-cells, just enforce cell_count = 1.
*/
ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args);
if (ret < 0) {
dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret);
return ret;
}
of_node_put(args.np);
if (args.args_count != 1 || args.args[0] >= ADC5_MAX_CHANNEL) {
dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan);
return ret;
}
channel->adc_channel = args.args[0];
channel->iio = devm_of_iio_channel_get_by_name(adc_tm->dev, node, NULL);
if (IS_ERR(channel->iio)) {
ret = PTR_ERR(channel->iio);
if (ret != -EPROBE_DEFER)
dev_err(dev, "%s: error getting channel: %d\n", name, ret);
return ret;
}
ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
if (!ret) {
ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
if (ret < 0) {
dev_err(dev, "%s: invalid pre-scaling <%d %d>\n",
name, varr[0], varr[1]);
return ret;
}
channel->prescale = ret;
} else {
/* 1:1 prescale is index 0 */
channel->prescale = 0;
}
ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value);
if (!ret) {
ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle);
if (ret < 0) {
dev_err(dev, "%s invalid hw-settle-time-us %d us\n",
name, value);
return ret;
}
channel->hw_settle_time = ret;
} else {
channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
}
if (of_property_read_bool(node, "qcom,ratiometric"))
channel->cal_method = ADC_TM5_RATIOMETRIC_CAL;
else
channel->cal_method = ADC_TM5_ABSOLUTE_CAL;
return 0;
}
static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node)
{
struct adc_tm5_channel *channels;
struct device_node *child;
u32 value;
int ret;
struct device *dev = adc_tm->dev;
adc_tm->nchannels = of_get_available_child_count(node);
if (!adc_tm->nchannels)
return -EINVAL;
adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels,
sizeof(*adc_tm->channels), GFP_KERNEL);
if (!adc_tm->channels)
return -ENOMEM;
channels = adc_tm->channels;
adc_tm->data = of_device_get_match_data(dev);
if (!adc_tm->data)
adc_tm->data = &adc_tm5_data_pmic;
ret = of_property_read_u32(node, "qcom,decimation", &value);
if (!ret) {
ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
if (ret < 0) {
dev_err(dev, "invalid decimation %d\n", value);
return ret;
}
adc_tm->decimation = ret;
} else {
adc_tm->decimation = ADC5_DECIMATION_DEFAULT;
}
ret = of_property_read_u32(node, "qcom,avg-samples", &value);
if (!ret) {
ret = qcom_adc5_avg_samples_from_dt(value);
if (ret < 0) {
dev_err(dev, "invalid avg-samples %d\n", value);
return ret;
}
adc_tm->avg_samples = ret;
} else {
adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES;
}
for_each_available_child_of_node(node, child) {
ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child);
if (ret) {
of_node_put(child);
return ret;
}
channels++;
}
return 0;
}
static int adc_tm5_probe(struct platform_device *pdev)
{
struct device_node *node = pdev->dev.of_node;
struct device *dev = &pdev->dev;
struct adc_tm5_chip *adc_tm;
struct regmap *regmap;
int ret, irq;
u32 reg;
regmap = dev_get_regmap(dev->parent, NULL);
if (!regmap)
return -ENODEV;
ret = of_property_read_u32(node, "reg", ®);
if (ret)
return ret;
adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL);
if (!adc_tm)
return -ENOMEM;
adc_tm->regmap = regmap;
adc_tm->dev = dev;
adc_tm->base = reg;
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "get_irq failed: %d\n", irq);
return irq;
}
ret = adc_tm5_get_dt_data(adc_tm, node);
if (ret) {
dev_err(dev, "get dt data failed: %d\n", ret);
return ret;
}
ret = adc_tm5_init(adc_tm);
if (ret) {
dev_err(dev, "adc-tm init failed\n");
return ret;
}
ret = adc_tm5_register_tzd(adc_tm);
if (ret) {
dev_err(dev, "tzd register failed\n");
return ret;
}
return devm_request_threaded_irq(dev, irq, NULL, adc_tm5_isr,
IRQF_ONESHOT, "pm-adc-tm5", adc_tm);
}
static const struct of_device_id adc_tm5_match_table[] = {
{
.compatible = "qcom,spmi-adc-tm5",
.data = &adc_tm5_data_pmic,
},
{ }
};
MODULE_DEVICE_TABLE(of, adc_tm5_match_table);
static struct platform_driver adc_tm5_driver = {
.driver = {
.name = "qcom-spmi-adc-tm5",
.of_match_table = adc_tm5_match_table,
},
.probe = adc_tm5_probe,
};
module_platform_driver(adc_tm5_driver);
MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver");
MODULE_LICENSE("GPL v2");
|