1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
|
/*
* In-kernel transcendent memory (generic implementation)
*
* Copyright (c) 2009-2011, Dan Magenheimer, Oracle Corp.
*
* The primary purpose of Transcedent Memory ("tmem") is to map object-oriented
* "handles" (triples containing a pool id, and object id, and an index), to
* pages in a page-accessible memory (PAM). Tmem references the PAM pages via
* an abstract "pampd" (PAM page-descriptor), which can be operated on by a
* set of functions (pamops). Each pampd contains some representation of
* PAGE_SIZE bytes worth of data. Tmem must support potentially millions of
* pages and must be able to insert, find, and delete these pages at a
* potential frequency of thousands per second concurrently across many CPUs,
* (and, if used with KVM, across many vcpus across many guests).
* Tmem is tracked with a hierarchy of data structures, organized by
* the elements in a handle-tuple: pool_id, object_id, and page index.
* One or more "clients" (e.g. guests) each provide one or more tmem_pools.
* Each pool, contains a hash table of rb_trees of tmem_objs. Each
* tmem_obj contains a radix-tree-like tree of pointers, with intermediate
* nodes called tmem_objnodes. Each leaf pointer in this tree points to
* a pampd, which is accessible only through a small set of callbacks
* registered by the PAM implementation (see tmem_register_pamops). Tmem
* does all memory allocation via a set of callbacks registered by the tmem
* host implementation (e.g. see tmem_register_hostops).
*/
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/atomic.h>
#include "tmem.h"
/* data structure sentinels used for debugging... see tmem.h */
#define POOL_SENTINEL 0x87658765
#define OBJ_SENTINEL 0x12345678
#define OBJNODE_SENTINEL 0xfedcba09
/*
* A tmem host implementation must use this function to register callbacks
* for memory allocation.
*/
static struct tmem_hostops tmem_hostops;
static void tmem_objnode_tree_init(void);
void tmem_register_hostops(struct tmem_hostops *m)
{
tmem_objnode_tree_init();
tmem_hostops = *m;
}
/*
* A tmem host implementation must use this function to register
* callbacks for a page-accessible memory (PAM) implementation
*/
static struct tmem_pamops tmem_pamops;
void tmem_register_pamops(struct tmem_pamops *m)
{
tmem_pamops = *m;
}
/*
* Oid's are potentially very sparse and tmem_objs may have an indeterminately
* short life, being added and deleted at a relatively high frequency.
* So an rb_tree is an ideal data structure to manage tmem_objs. But because
* of the potentially huge number of tmem_objs, each pool manages a hashtable
* of rb_trees to reduce search, insert, delete, and rebalancing time.
* Each hashbucket also has a lock to manage concurrent access.
*
* The following routines manage tmem_objs. When any tmem_obj is accessed,
* the hashbucket lock must be held.
*/
/* searches for object==oid in pool, returns locked object if found */
static struct tmem_obj *tmem_obj_find(struct tmem_hashbucket *hb,
struct tmem_oid *oidp)
{
struct rb_node *rbnode;
struct tmem_obj *obj;
rbnode = hb->obj_rb_root.rb_node;
while (rbnode) {
BUG_ON(RB_EMPTY_NODE(rbnode));
obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
switch (tmem_oid_compare(oidp, &obj->oid)) {
case 0: /* equal */
goto out;
case -1:
rbnode = rbnode->rb_left;
break;
case 1:
rbnode = rbnode->rb_right;
break;
}
}
obj = NULL;
out:
return obj;
}
static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *);
/* free an object that has no more pampds in it */
static void tmem_obj_free(struct tmem_obj *obj, struct tmem_hashbucket *hb)
{
struct tmem_pool *pool;
BUG_ON(obj == NULL);
ASSERT_SENTINEL(obj, OBJ);
BUG_ON(obj->pampd_count > 0);
pool = obj->pool;
BUG_ON(pool == NULL);
if (obj->objnode_tree_root != NULL) /* may be "stump" with no leaves */
tmem_pampd_destroy_all_in_obj(obj);
BUG_ON(obj->objnode_tree_root != NULL);
BUG_ON((long)obj->objnode_count != 0);
atomic_dec(&pool->obj_count);
BUG_ON(atomic_read(&pool->obj_count) < 0);
INVERT_SENTINEL(obj, OBJ);
obj->pool = NULL;
tmem_oid_set_invalid(&obj->oid);
rb_erase(&obj->rb_tree_node, &hb->obj_rb_root);
}
/*
* initialize, and insert an tmem_object_root (called only if find failed)
*/
static void tmem_obj_init(struct tmem_obj *obj, struct tmem_hashbucket *hb,
struct tmem_pool *pool,
struct tmem_oid *oidp)
{
struct rb_root *root = &hb->obj_rb_root;
struct rb_node **new = &(root->rb_node), *parent = NULL;
struct tmem_obj *this;
BUG_ON(pool == NULL);
atomic_inc(&pool->obj_count);
obj->objnode_tree_height = 0;
obj->objnode_tree_root = NULL;
obj->pool = pool;
obj->oid = *oidp;
obj->objnode_count = 0;
obj->pampd_count = 0;
(*tmem_pamops.new_obj)(obj);
SET_SENTINEL(obj, OBJ);
while (*new) {
BUG_ON(RB_EMPTY_NODE(*new));
this = rb_entry(*new, struct tmem_obj, rb_tree_node);
parent = *new;
switch (tmem_oid_compare(oidp, &this->oid)) {
case 0:
BUG(); /* already present; should never happen! */
break;
case -1:
new = &(*new)->rb_left;
break;
case 1:
new = &(*new)->rb_right;
break;
}
}
rb_link_node(&obj->rb_tree_node, parent, new);
rb_insert_color(&obj->rb_tree_node, root);
}
/*
* Tmem is managed as a set of tmem_pools with certain attributes, such as
* "ephemeral" vs "persistent". These attributes apply to all tmem_objs
* and all pampds that belong to a tmem_pool. A tmem_pool is created
* or deleted relatively rarely (for example, when a filesystem is
* mounted or unmounted.
*/
/* flush all data from a pool and, optionally, free it */
static void tmem_pool_flush(struct tmem_pool *pool, bool destroy)
{
struct rb_node *rbnode;
struct tmem_obj *obj;
struct tmem_hashbucket *hb = &pool->hashbucket[0];
int i;
BUG_ON(pool == NULL);
for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
spin_lock(&hb->lock);
rbnode = rb_first(&hb->obj_rb_root);
while (rbnode != NULL) {
obj = rb_entry(rbnode, struct tmem_obj, rb_tree_node);
rbnode = rb_next(rbnode);
tmem_pampd_destroy_all_in_obj(obj);
tmem_obj_free(obj, hb);
(*tmem_hostops.obj_free)(obj, pool);
}
spin_unlock(&hb->lock);
}
if (destroy)
list_del(&pool->pool_list);
}
/*
* A tmem_obj contains a radix-tree-like tree in which the intermediate
* nodes are called tmem_objnodes. (The kernel lib/radix-tree.c implementation
* is very specialized and tuned for specific uses and is not particularly
* suited for use from this code, though some code from the core algorithms has
* been reused, thus the copyright notices below). Each tmem_objnode contains
* a set of pointers which point to either a set of intermediate tmem_objnodes
* or a set of of pampds.
*
* Portions Copyright (C) 2001 Momchil Velikov
* Portions Copyright (C) 2001 Christoph Hellwig
* Portions Copyright (C) 2005 SGI, Christoph Lameter <clameter@sgi.com>
*/
struct tmem_objnode_tree_path {
struct tmem_objnode *objnode;
int offset;
};
/* objnode height_to_maxindex translation */
static unsigned long tmem_objnode_tree_h2max[OBJNODE_TREE_MAX_PATH + 1];
static void tmem_objnode_tree_init(void)
{
unsigned int ht, tmp;
for (ht = 0; ht < ARRAY_SIZE(tmem_objnode_tree_h2max); ht++) {
tmp = ht * OBJNODE_TREE_MAP_SHIFT;
if (tmp >= OBJNODE_TREE_INDEX_BITS)
tmem_objnode_tree_h2max[ht] = ~0UL;
else
tmem_objnode_tree_h2max[ht] =
(~0UL >> (OBJNODE_TREE_INDEX_BITS - tmp - 1)) >> 1;
}
}
static struct tmem_objnode *tmem_objnode_alloc(struct tmem_obj *obj)
{
struct tmem_objnode *objnode;
ASSERT_SENTINEL(obj, OBJ);
BUG_ON(obj->pool == NULL);
ASSERT_SENTINEL(obj->pool, POOL);
objnode = (*tmem_hostops.objnode_alloc)(obj->pool);
if (unlikely(objnode == NULL))
goto out;
objnode->obj = obj;
SET_SENTINEL(objnode, OBJNODE);
memset(&objnode->slots, 0, sizeof(objnode->slots));
objnode->slots_in_use = 0;
obj->objnode_count++;
out:
return objnode;
}
static void tmem_objnode_free(struct tmem_objnode *objnode)
{
struct tmem_pool *pool;
int i;
BUG_ON(objnode == NULL);
for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++)
BUG_ON(objnode->slots[i] != NULL);
ASSERT_SENTINEL(objnode, OBJNODE);
INVERT_SENTINEL(objnode, OBJNODE);
BUG_ON(objnode->obj == NULL);
ASSERT_SENTINEL(objnode->obj, OBJ);
pool = objnode->obj->pool;
BUG_ON(pool == NULL);
ASSERT_SENTINEL(pool, POOL);
objnode->obj->objnode_count--;
objnode->obj = NULL;
(*tmem_hostops.objnode_free)(objnode, pool);
}
/*
* lookup index in object and return associated pampd (or NULL if not found)
*/
static void **__tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
{
unsigned int height, shift;
struct tmem_objnode **slot = NULL;
BUG_ON(obj == NULL);
ASSERT_SENTINEL(obj, OBJ);
BUG_ON(obj->pool == NULL);
ASSERT_SENTINEL(obj->pool, POOL);
height = obj->objnode_tree_height;
if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height])
goto out;
if (height == 0 && obj->objnode_tree_root) {
slot = &obj->objnode_tree_root;
goto out;
}
shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
slot = &obj->objnode_tree_root;
while (height > 0) {
if (*slot == NULL)
goto out;
slot = (struct tmem_objnode **)
((*slot)->slots +
((index >> shift) & OBJNODE_TREE_MAP_MASK));
shift -= OBJNODE_TREE_MAP_SHIFT;
height--;
}
out:
return slot != NULL ? (void **)slot : NULL;
}
static void *tmem_pampd_lookup_in_obj(struct tmem_obj *obj, uint32_t index)
{
struct tmem_objnode **slot;
slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
return slot != NULL ? *slot : NULL;
}
static void *tmem_pampd_replace_in_obj(struct tmem_obj *obj, uint32_t index,
void *new_pampd)
{
struct tmem_objnode **slot;
void *ret = NULL;
slot = (struct tmem_objnode **)__tmem_pampd_lookup_in_obj(obj, index);
if ((slot != NULL) && (*slot != NULL)) {
void *old_pampd = *(void **)slot;
*(void **)slot = new_pampd;
(*tmem_pamops.free)(old_pampd, obj->pool, NULL, 0);
ret = new_pampd;
}
return ret;
}
static int tmem_pampd_add_to_obj(struct tmem_obj *obj, uint32_t index,
void *pampd)
{
int ret = 0;
struct tmem_objnode *objnode = NULL, *newnode, *slot;
unsigned int height, shift;
int offset = 0;
/* if necessary, extend the tree to be higher */
if (index > tmem_objnode_tree_h2max[obj->objnode_tree_height]) {
height = obj->objnode_tree_height + 1;
if (index > tmem_objnode_tree_h2max[height])
while (index > tmem_objnode_tree_h2max[height])
height++;
if (obj->objnode_tree_root == NULL) {
obj->objnode_tree_height = height;
goto insert;
}
do {
newnode = tmem_objnode_alloc(obj);
if (!newnode) {
ret = -ENOMEM;
goto out;
}
newnode->slots[0] = obj->objnode_tree_root;
newnode->slots_in_use = 1;
obj->objnode_tree_root = newnode;
obj->objnode_tree_height++;
} while (height > obj->objnode_tree_height);
}
insert:
slot = obj->objnode_tree_root;
height = obj->objnode_tree_height;
shift = (height-1) * OBJNODE_TREE_MAP_SHIFT;
while (height > 0) {
if (slot == NULL) {
/* add a child objnode. */
slot = tmem_objnode_alloc(obj);
if (!slot) {
ret = -ENOMEM;
goto out;
}
if (objnode) {
objnode->slots[offset] = slot;
objnode->slots_in_use++;
} else
obj->objnode_tree_root = slot;
}
/* go down a level */
offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
objnode = slot;
slot = objnode->slots[offset];
shift -= OBJNODE_TREE_MAP_SHIFT;
height--;
}
BUG_ON(slot != NULL);
if (objnode) {
objnode->slots_in_use++;
objnode->slots[offset] = pampd;
} else
obj->objnode_tree_root = pampd;
obj->pampd_count++;
out:
return ret;
}
static void *tmem_pampd_delete_from_obj(struct tmem_obj *obj, uint32_t index)
{
struct tmem_objnode_tree_path path[OBJNODE_TREE_MAX_PATH + 1];
struct tmem_objnode_tree_path *pathp = path;
struct tmem_objnode *slot = NULL;
unsigned int height, shift;
int offset;
BUG_ON(obj == NULL);
ASSERT_SENTINEL(obj, OBJ);
BUG_ON(obj->pool == NULL);
ASSERT_SENTINEL(obj->pool, POOL);
height = obj->objnode_tree_height;
if (index > tmem_objnode_tree_h2max[height])
goto out;
slot = obj->objnode_tree_root;
if (height == 0 && obj->objnode_tree_root) {
obj->objnode_tree_root = NULL;
goto out;
}
shift = (height - 1) * OBJNODE_TREE_MAP_SHIFT;
pathp->objnode = NULL;
do {
if (slot == NULL)
goto out;
pathp++;
offset = (index >> shift) & OBJNODE_TREE_MAP_MASK;
pathp->offset = offset;
pathp->objnode = slot;
slot = slot->slots[offset];
shift -= OBJNODE_TREE_MAP_SHIFT;
height--;
} while (height > 0);
if (slot == NULL)
goto out;
while (pathp->objnode) {
pathp->objnode->slots[pathp->offset] = NULL;
pathp->objnode->slots_in_use--;
if (pathp->objnode->slots_in_use) {
if (pathp->objnode == obj->objnode_tree_root) {
while (obj->objnode_tree_height > 0 &&
obj->objnode_tree_root->slots_in_use == 1 &&
obj->objnode_tree_root->slots[0]) {
struct tmem_objnode *to_free =
obj->objnode_tree_root;
obj->objnode_tree_root =
to_free->slots[0];
obj->objnode_tree_height--;
to_free->slots[0] = NULL;
to_free->slots_in_use = 0;
tmem_objnode_free(to_free);
}
}
goto out;
}
tmem_objnode_free(pathp->objnode); /* 0 slots used, free it */
pathp--;
}
obj->objnode_tree_height = 0;
obj->objnode_tree_root = NULL;
out:
if (slot != NULL)
obj->pampd_count--;
BUG_ON(obj->pampd_count < 0);
return slot;
}
/* recursively walk the objnode_tree destroying pampds and objnodes */
static void tmem_objnode_node_destroy(struct tmem_obj *obj,
struct tmem_objnode *objnode,
unsigned int ht)
{
int i;
if (ht == 0)
return;
for (i = 0; i < OBJNODE_TREE_MAP_SIZE; i++) {
if (objnode->slots[i]) {
if (ht == 1) {
obj->pampd_count--;
(*tmem_pamops.free)(objnode->slots[i],
obj->pool, NULL, 0);
objnode->slots[i] = NULL;
continue;
}
tmem_objnode_node_destroy(obj, objnode->slots[i], ht-1);
tmem_objnode_free(objnode->slots[i]);
objnode->slots[i] = NULL;
}
}
}
static void tmem_pampd_destroy_all_in_obj(struct tmem_obj *obj)
{
if (obj->objnode_tree_root == NULL)
return;
if (obj->objnode_tree_height == 0) {
obj->pampd_count--;
(*tmem_pamops.free)(obj->objnode_tree_root, obj->pool, NULL, 0);
} else {
tmem_objnode_node_destroy(obj, obj->objnode_tree_root,
obj->objnode_tree_height);
tmem_objnode_free(obj->objnode_tree_root);
obj->objnode_tree_height = 0;
}
obj->objnode_tree_root = NULL;
(*tmem_pamops.free_obj)(obj->pool, obj);
}
/*
* Tmem is operated on by a set of well-defined actions:
* "put", "get", "flush", "flush_object", "new pool" and "destroy pool".
* (The tmem ABI allows for subpages and exchanges but these operations
* are not included in this implementation.)
*
* These "tmem core" operations are implemented in the following functions.
*/
/*
* "Put" a page, e.g. copy a page from the kernel into newly allocated
* PAM space (if such space is available). Tmem_put is complicated by
* a corner case: What if a page with matching handle already exists in
* tmem? To guarantee coherency, one of two actions is necessary: Either
* the data for the page must be overwritten, or the page must be
* "flushed" so that the data is not accessible to a subsequent "get".
* Since these "duplicate puts" are relatively rare, this implementation
* always flushes for simplicity.
*/
int tmem_put(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
char *data, size_t size, bool raw, bool ephemeral)
{
struct tmem_obj *obj = NULL, *objfound = NULL, *objnew = NULL;
void *pampd = NULL, *pampd_del = NULL;
int ret = -ENOMEM;
struct tmem_hashbucket *hb;
hb = &pool->hashbucket[tmem_oid_hash(oidp)];
spin_lock(&hb->lock);
obj = objfound = tmem_obj_find(hb, oidp);
if (obj != NULL) {
pampd = tmem_pampd_lookup_in_obj(objfound, index);
if (pampd != NULL) {
/* if found, is a dup put, flush the old one */
pampd_del = tmem_pampd_delete_from_obj(obj, index);
BUG_ON(pampd_del != pampd);
(*tmem_pamops.free)(pampd, pool, oidp, index);
if (obj->pampd_count == 0) {
objnew = obj;
objfound = NULL;
}
pampd = NULL;
}
} else {
obj = objnew = (*tmem_hostops.obj_alloc)(pool);
if (unlikely(obj == NULL)) {
ret = -ENOMEM;
goto out;
}
tmem_obj_init(obj, hb, pool, oidp);
}
BUG_ON(obj == NULL);
BUG_ON(((objnew != obj) && (objfound != obj)) || (objnew == objfound));
pampd = (*tmem_pamops.create)(data, size, raw, ephemeral,
obj->pool, &obj->oid, index);
if (unlikely(pampd == NULL))
goto free;
ret = tmem_pampd_add_to_obj(obj, index, pampd);
if (unlikely(ret == -ENOMEM))
/* may have partially built objnode tree ("stump") */
goto delete_and_free;
goto out;
delete_and_free:
(void)tmem_pampd_delete_from_obj(obj, index);
free:
if (pampd)
(*tmem_pamops.free)(pampd, pool, NULL, 0);
if (objnew) {
tmem_obj_free(objnew, hb);
(*tmem_hostops.obj_free)(objnew, pool);
}
out:
spin_unlock(&hb->lock);
return ret;
}
/*
* "Get" a page, e.g. if one can be found, copy the tmem page with the
* matching handle from PAM space to the kernel. By tmem definition,
* when a "get" is successful on an ephemeral page, the page is "flushed",
* and when a "get" is successful on a persistent page, the page is retained
* in tmem. Note that to preserve
* coherency, "get" can never be skipped if tmem contains the data.
* That is, if a get is done with a certain handle and fails, any
* subsequent "get" must also fail (unless of course there is a
* "put" done with the same handle).
*/
int tmem_get(struct tmem_pool *pool, struct tmem_oid *oidp, uint32_t index,
char *data, size_t *size, bool raw, int get_and_free)
{
struct tmem_obj *obj;
void *pampd;
bool ephemeral = is_ephemeral(pool);
int ret = -1;
struct tmem_hashbucket *hb;
bool free = (get_and_free == 1) || ((get_and_free == 0) && ephemeral);
bool lock_held = false;
hb = &pool->hashbucket[tmem_oid_hash(oidp)];
spin_lock(&hb->lock);
lock_held = true;
obj = tmem_obj_find(hb, oidp);
if (obj == NULL)
goto out;
if (free)
pampd = tmem_pampd_delete_from_obj(obj, index);
else
pampd = tmem_pampd_lookup_in_obj(obj, index);
if (pampd == NULL)
goto out;
if (free) {
if (obj->pampd_count == 0) {
tmem_obj_free(obj, hb);
(*tmem_hostops.obj_free)(obj, pool);
obj = NULL;
}
}
if (tmem_pamops.is_remote(pampd)) {
lock_held = false;
spin_unlock(&hb->lock);
}
if (free)
ret = (*tmem_pamops.get_data_and_free)(
data, size, raw, pampd, pool, oidp, index);
else
ret = (*tmem_pamops.get_data)(
data, size, raw, pampd, pool, oidp, index);
if (ret < 0)
goto out;
ret = 0;
out:
if (lock_held)
spin_unlock(&hb->lock);
return ret;
}
/*
* If a page in tmem matches the handle, "flush" this page from tmem such
* that any subsequent "get" does not succeed (unless, of course, there
* was another "put" with the same handle).
*/
int tmem_flush_page(struct tmem_pool *pool,
struct tmem_oid *oidp, uint32_t index)
{
struct tmem_obj *obj;
void *pampd;
int ret = -1;
struct tmem_hashbucket *hb;
hb = &pool->hashbucket[tmem_oid_hash(oidp)];
spin_lock(&hb->lock);
obj = tmem_obj_find(hb, oidp);
if (obj == NULL)
goto out;
pampd = tmem_pampd_delete_from_obj(obj, index);
if (pampd == NULL)
goto out;
(*tmem_pamops.free)(pampd, pool, oidp, index);
if (obj->pampd_count == 0) {
tmem_obj_free(obj, hb);
(*tmem_hostops.obj_free)(obj, pool);
}
ret = 0;
out:
spin_unlock(&hb->lock);
return ret;
}
/*
* If a page in tmem matches the handle, replace the page so that any
* subsequent "get" gets the new page. Returns 0 if
* there was a page to replace, else returns -1.
*/
int tmem_replace(struct tmem_pool *pool, struct tmem_oid *oidp,
uint32_t index, void *new_pampd)
{
struct tmem_obj *obj;
int ret = -1;
struct tmem_hashbucket *hb;
hb = &pool->hashbucket[tmem_oid_hash(oidp)];
spin_lock(&hb->lock);
obj = tmem_obj_find(hb, oidp);
if (obj == NULL)
goto out;
new_pampd = tmem_pampd_replace_in_obj(obj, index, new_pampd);
ret = (*tmem_pamops.replace_in_obj)(new_pampd, obj);
out:
spin_unlock(&hb->lock);
return ret;
}
/*
* "Flush" all pages in tmem matching this oid.
*/
int tmem_flush_object(struct tmem_pool *pool, struct tmem_oid *oidp)
{
struct tmem_obj *obj;
struct tmem_hashbucket *hb;
int ret = -1;
hb = &pool->hashbucket[tmem_oid_hash(oidp)];
spin_lock(&hb->lock);
obj = tmem_obj_find(hb, oidp);
if (obj == NULL)
goto out;
tmem_pampd_destroy_all_in_obj(obj);
tmem_obj_free(obj, hb);
(*tmem_hostops.obj_free)(obj, pool);
ret = 0;
out:
spin_unlock(&hb->lock);
return ret;
}
/*
* "Flush" all pages (and tmem_objs) from this tmem_pool and disable
* all subsequent access to this tmem_pool.
*/
int tmem_destroy_pool(struct tmem_pool *pool)
{
int ret = -1;
if (pool == NULL)
goto out;
tmem_pool_flush(pool, 1);
ret = 0;
out:
return ret;
}
static LIST_HEAD(tmem_global_pool_list);
/*
* Create a new tmem_pool with the provided flag and return
* a pool id provided by the tmem host implementation.
*/
void tmem_new_pool(struct tmem_pool *pool, uint32_t flags)
{
int persistent = flags & TMEM_POOL_PERSIST;
int shared = flags & TMEM_POOL_SHARED;
struct tmem_hashbucket *hb = &pool->hashbucket[0];
int i;
for (i = 0; i < TMEM_HASH_BUCKETS; i++, hb++) {
hb->obj_rb_root = RB_ROOT;
spin_lock_init(&hb->lock);
}
INIT_LIST_HEAD(&pool->pool_list);
atomic_set(&pool->obj_count, 0);
SET_SENTINEL(pool, POOL);
list_add_tail(&pool->pool_list, &tmem_global_pool_list);
pool->persistent = persistent;
pool->shared = shared;
}
|