summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-stm32.c
blob: 392c9453c2e6455ce540101c86ad980429185d3d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
/*
 * STMicroelectronics STM32 SPI Controller driver (master mode only)
 *
 * Copyright (C) 2017, STMicroelectronics - All Rights Reserved
 * Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.
 *
 * License terms: GPL V2.0.
 *
 * spi_stm32 driver is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published by
 * the Free Software Foundation.
 *
 * spi_stm32 driver is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
 * details.
 *
 * You should have received a copy of the GNU General Public License along with
 * spi_stm32 driver. If not, see <http://www.gnu.org/licenses/>.
 */
#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/gpio.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>

#define DRIVER_NAME "spi_stm32"

/* STM32 SPI registers */
#define STM32_SPI_CR1		0x00
#define STM32_SPI_CR2		0x04
#define STM32_SPI_CFG1		0x08
#define STM32_SPI_CFG2		0x0C
#define STM32_SPI_IER		0x10
#define STM32_SPI_SR		0x14
#define STM32_SPI_IFCR		0x18
#define STM32_SPI_TXDR		0x20
#define STM32_SPI_RXDR		0x30
#define STM32_SPI_I2SCFGR	0x50

/* STM32_SPI_CR1 bit fields */
#define SPI_CR1_SPE		BIT(0)
#define SPI_CR1_MASRX		BIT(8)
#define SPI_CR1_CSTART		BIT(9)
#define SPI_CR1_CSUSP		BIT(10)
#define SPI_CR1_HDDIR		BIT(11)
#define SPI_CR1_SSI		BIT(12)

/* STM32_SPI_CR2 bit fields */
#define SPI_CR2_TSIZE_SHIFT	0
#define SPI_CR2_TSIZE		GENMASK(15, 0)

/* STM32_SPI_CFG1 bit fields */
#define SPI_CFG1_DSIZE_SHIFT	0
#define SPI_CFG1_DSIZE		GENMASK(4, 0)
#define SPI_CFG1_FTHLV_SHIFT	5
#define SPI_CFG1_FTHLV		GENMASK(8, 5)
#define SPI_CFG1_RXDMAEN	BIT(14)
#define SPI_CFG1_TXDMAEN	BIT(15)
#define SPI_CFG1_MBR_SHIFT	28
#define SPI_CFG1_MBR		GENMASK(30, 28)
#define SPI_CFG1_MBR_MIN	0
#define SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)

/* STM32_SPI_CFG2 bit fields */
#define SPI_CFG2_MIDI_SHIFT	4
#define SPI_CFG2_MIDI		GENMASK(7, 4)
#define SPI_CFG2_COMM_SHIFT	17
#define SPI_CFG2_COMM		GENMASK(18, 17)
#define SPI_CFG2_SP_SHIFT	19
#define SPI_CFG2_SP		GENMASK(21, 19)
#define SPI_CFG2_MASTER		BIT(22)
#define SPI_CFG2_LSBFRST	BIT(23)
#define SPI_CFG2_CPHA		BIT(24)
#define SPI_CFG2_CPOL		BIT(25)
#define SPI_CFG2_SSM		BIT(26)
#define SPI_CFG2_AFCNTR		BIT(31)

/* STM32_SPI_IER bit fields */
#define SPI_IER_RXPIE		BIT(0)
#define SPI_IER_TXPIE		BIT(1)
#define SPI_IER_DXPIE		BIT(2)
#define SPI_IER_EOTIE		BIT(3)
#define SPI_IER_TXTFIE		BIT(4)
#define SPI_IER_OVRIE		BIT(6)
#define SPI_IER_MODFIE		BIT(9)
#define SPI_IER_ALL		GENMASK(10, 0)

/* STM32_SPI_SR bit fields */
#define SPI_SR_RXP		BIT(0)
#define SPI_SR_TXP		BIT(1)
#define SPI_SR_EOT		BIT(3)
#define SPI_SR_OVR		BIT(6)
#define SPI_SR_MODF		BIT(9)
#define SPI_SR_SUSP		BIT(11)
#define SPI_SR_RXPLVL_SHIFT	13
#define SPI_SR_RXPLVL		GENMASK(14, 13)
#define SPI_SR_RXWNE		BIT(15)

/* STM32_SPI_IFCR bit fields */
#define SPI_IFCR_ALL		GENMASK(11, 3)

/* STM32_SPI_I2SCFGR bit fields */
#define SPI_I2SCFGR_I2SMOD	BIT(0)

/* SPI Master Baud Rate min/max divisor */
#define SPI_MBR_DIV_MIN		(2 << SPI_CFG1_MBR_MIN)
#define SPI_MBR_DIV_MAX		(2 << SPI_CFG1_MBR_MAX)

/* SPI Communication mode */
#define SPI_FULL_DUPLEX		0
#define SPI_SIMPLEX_TX		1
#define SPI_SIMPLEX_RX		2
#define SPI_HALF_DUPLEX		3

#define SPI_1HZ_NS		1000000000

/**
 * struct stm32_spi - private data of the SPI controller
 * @dev: driver model representation of the controller
 * @master: controller master interface
 * @base: virtual memory area
 * @clk: hw kernel clock feeding the SPI clock generator
 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 * @rst: SPI controller reset line
 * @lock: prevent I/O concurrent access
 * @irq: SPI controller interrupt line
 * @fifo_size: size of the embedded fifo in bytes
 * @cur_midi: master inter-data idleness in ns
 * @cur_speed: speed configured in Hz
 * @cur_bpw: number of bits in a single SPI data frame
 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 * @cur_comm: SPI communication mode
 * @cur_xferlen: current transfer length in bytes
 * @cur_usedma: boolean to know if dma is used in current transfer
 * @tx_buf: data to be written, or NULL
 * @rx_buf: data to be read, or NULL
 * @tx_len: number of data to be written in bytes
 * @rx_len: number of data to be read in bytes
 * @dma_tx: dma channel for TX transfer
 * @dma_rx: dma channel for RX transfer
 * @phys_addr: SPI registers physical base address
 */
struct stm32_spi {
	struct device *dev;
	struct spi_master *master;
	void __iomem *base;
	struct clk *clk;
	u32 clk_rate;
	struct reset_control *rst;
	spinlock_t lock; /* prevent I/O concurrent access */
	int irq;
	unsigned int fifo_size;

	unsigned int cur_midi;
	unsigned int cur_speed;
	unsigned int cur_bpw;
	unsigned int cur_fthlv;
	unsigned int cur_comm;
	unsigned int cur_xferlen;
	bool cur_usedma;

	const void *tx_buf;
	void *rx_buf;
	int tx_len;
	int rx_len;
	struct dma_chan *dma_tx;
	struct dma_chan *dma_rx;
	dma_addr_t phys_addr;
};

static inline void stm32_spi_set_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
		       spi->base + offset);
}

static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
		       spi->base + offset);
}

/**
 * stm32_spi_get_fifo_size - Return fifo size
 * @spi: pointer to the spi controller data structure
 */
static int stm32_spi_get_fifo_size(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 count = 0;

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);

	while (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)
		writeb_relaxed(++count, spi->base + STM32_SPI_TXDR);

	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);

	return count;
}

/**
 * stm32_spi_get_bpw_mask - Return bits per word mask
 * @spi: pointer to the spi controller data structure
 */
static int stm32_spi_get_bpw_mask(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cfg1, max_bpw;

	spin_lock_irqsave(&spi->lock, flags);

	/*
	 * The most significant bit at DSIZE bit field is reserved when the
	 * maximum data size of periperal instances is limited to 16-bit
	 */
	stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_DSIZE);

	cfg1 = readl_relaxed(spi->base + STM32_SPI_CFG1);
	max_bpw = (cfg1 & SPI_CFG1_DSIZE) >> SPI_CFG1_DSIZE_SHIFT;
	max_bpw += 1;

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);

	return SPI_BPW_RANGE_MASK(4, max_bpw);
}

/**
 * stm32_spi_prepare_mbr - Determine SPI_CFG1.MBR value
 * @spi: pointer to the spi controller data structure
 * @speed_hz: requested speed
 *
 * Return SPI_CFG1.MBR value in case of success or -EINVAL
 */
static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz)
{
	u32 div, mbrdiv;

	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);

	/*
	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
	 * no need to check it there.
	 * However, we need to ensure the following calculations.
	 */
	if ((div < SPI_MBR_DIV_MIN) &&
	    (div > SPI_MBR_DIV_MAX))
		return -EINVAL;

	/* Determine the first power of 2 greater than or equal to div */
	if (div & (div - 1))
		mbrdiv = fls(div);
	else
		mbrdiv = fls(div) - 1;

	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);

	return mbrdiv - 1;
}

/**
 * stm32_spi_prepare_fthlv - Determine FIFO threshold level
 * @spi: pointer to the spi controller data structure
 */
static u32 stm32_spi_prepare_fthlv(struct stm32_spi *spi)
{
	u32 fthlv, half_fifo;

	/* data packet should not exceed 1/2 of fifo space */
	half_fifo = (spi->fifo_size / 2);

	if (spi->cur_bpw <= 8)
		fthlv = half_fifo;
	else if (spi->cur_bpw <= 16)
		fthlv = half_fifo / 2;
	else
		fthlv = half_fifo / 4;

	/* align packet size with data registers access */
	if (spi->cur_bpw > 8)
		fthlv -= (fthlv % 2); /* multiple of 2 */
	else
		fthlv -= (fthlv % 4); /* multiple of 4 */

	return fthlv;
}

/**
 * stm32_spi_write_txfifo - Write bytes in Transmit Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
static void stm32_spi_write_txfifo(struct stm32_spi *spi)
{
	while ((spi->tx_len > 0) &&
	       (readl_relaxed(spi->base + STM32_SPI_SR) & SPI_SR_TXP)) {
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->tx_len >= sizeof(u32)) {
			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);

			writel_relaxed(*tx_buf32, spi->base + STM32_SPI_TXDR);
			spi->tx_len -= sizeof(u32);
		} else if (spi->tx_len >= sizeof(u16)) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

			writew_relaxed(*tx_buf16, spi->base + STM32_SPI_TXDR);
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

			writeb_relaxed(*tx_buf8, spi->base + STM32_SPI_TXDR);
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

/**
 * stm32_spi_read_rxfifo - Read bytes in Receive Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
static void stm32_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
{
	u32 sr = readl_relaxed(spi->base + STM32_SPI_SR);
	u32 rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;

	while ((spi->rx_len > 0) &&
	       ((sr & SPI_SR_RXP) ||
		(flush && ((sr & SPI_SR_RXWNE) || (rxplvl > 0))))) {
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if ((spi->rx_len >= sizeof(u32)) ||
		    (flush && (sr & SPI_SR_RXWNE))) {
			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);

			*rx_buf32 = readl_relaxed(spi->base + STM32_SPI_RXDR);
			spi->rx_len -= sizeof(u32);
		} else if ((spi->rx_len >= sizeof(u16)) ||
			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

			*rx_buf16 = readw_relaxed(spi->base + STM32_SPI_RXDR);
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

			*rx_buf8 = readb_relaxed(spi->base + STM32_SPI_RXDR);
			spi->rx_len -= sizeof(u8);
		}

		sr = readl_relaxed(spi->base + STM32_SPI_SR);
		rxplvl = (sr & SPI_SR_RXPLVL) >> SPI_SR_RXPLVL_SHIFT;
	}

	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
		flush ? "(flush)" : "", spi->rx_len);
}

/**
 * stm32_spi_enable - Enable SPI controller
 * @spi: pointer to the spi controller data structure
 *
 * SPI data transfer is enabled but spi_ker_ck is idle.
 * SPI_CFG1 and SPI_CFG2 are now write protected.
 */
static void stm32_spi_enable(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "enable controller\n");

	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);
}

/**
 * stm32_spi_disable - Disable SPI controller
 * @spi: pointer to the spi controller data structure
 *
 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 * loss, use stm32_spi_read_rxfifo(flush) to read the remaining bytes in
 * RX-Fifo.
 */
static void stm32_spi_disable(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cr1, sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

	cr1 = readl_relaxed(spi->base + STM32_SPI_CR1);

	if (!(cr1 & SPI_CR1_SPE)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Wait on EOT or suspend the flow */
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32_SPI_SR,
					      sr, !(sr & SPI_SR_EOT),
					      10, 100000) < 0) {
		if (cr1 & SPI_CR1_CSTART) {
			writel_relaxed(cr1 | SPI_CR1_CSUSP,
				       spi->base + STM32_SPI_CR1);
			if (readl_relaxed_poll_timeout_atomic(
						spi->base + STM32_SPI_SR,
						sr, !(sr & SPI_SR_SUSP),
						10, 100000) < 0)
				dev_warn(spi->dev,
					 "Suspend request timeout\n");
		}
	}

	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
		stm32_spi_read_rxfifo(spi, true);

	if (spi->cur_usedma && spi->tx_buf)
		dmaengine_terminate_all(spi->dma_tx);
	if (spi->cur_usedma && spi->rx_buf)
		dmaengine_terminate_all(spi->dma_rx);

	stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_SPE);

	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN |
						SPI_CFG1_RXDMAEN);

	/* Disable interrupts and clear status flags */
	writel_relaxed(0, spi->base + STM32_SPI_IER);
	writel_relaxed(SPI_IFCR_ALL, spi->base + STM32_SPI_IFCR);

	spin_unlock_irqrestore(&spi->lock, flags);
}

/**
 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 *
 * If the current transfer size is greater than fifo size, use DMA.
 */
static bool stm32_spi_can_dma(struct spi_master *master,
			      struct spi_device *spi_dev,
			      struct spi_transfer *transfer)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);

	dev_dbg(spi->dev, "%s: %s\n", __func__,
		(transfer->len > spi->fifo_size) ? "true" : "false");

	return (transfer->len > spi->fifo_size);
}

/**
 * stm32_spi_irq - Interrupt handler for SPI controller events
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32_spi_irq(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, ier, mask;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32_SPI_SR);
	ier = readl_relaxed(spi->base + STM32_SPI_IER);

	mask = ier;
	/* EOTIE is triggered on EOT, SUSP and TXC events. */
	mask |= SPI_SR_SUSP;
	/*
	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
	 * Full-Duplex, need to poll RXP event to know if there are remaining
	 * data, before disabling SPI.
	 */
	if (spi->rx_buf && !spi->cur_usedma)
		mask |= SPI_SR_RXP;

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
			sr, ier);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

	if (sr & SPI_SR_SUSP) {
		dev_warn(spi->dev, "Communication suspended\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32_spi_read_rxfifo(spi, false);
	}

	if (sr & SPI_SR_MODF) {
		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
		end = true;
	}

	if (sr & SPI_SR_OVR) {
		dev_warn(spi->dev, "Overrun: received value discarded\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32_spi_read_rxfifo(spi, false);
	}

	if (sr & SPI_SR_EOT) {
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32_spi_read_rxfifo(spi, true);
		end = true;
	}

	if (sr & SPI_SR_TXP)
		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
			stm32_spi_write_txfifo(spi);

	if (sr & SPI_SR_RXP)
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32_spi_read_rxfifo(spi, false);

	writel_relaxed(mask, spi->base + STM32_SPI_IFCR);

	spin_unlock_irqrestore(&spi->lock, flags);

	if (end) {
		spi_finalize_current_transfer(master);
		stm32_spi_disable(spi);
	}

	return IRQ_HANDLED;
}

/**
 * stm32_spi_setup - setup device chip select
 */
static int stm32_spi_setup(struct spi_device *spi_dev)
{
	int ret = 0;

	if (!gpio_is_valid(spi_dev->cs_gpio)) {
		dev_err(&spi_dev->dev, "%d is not a valid gpio\n",
			spi_dev->cs_gpio);
		return -EINVAL;
	}

	dev_dbg(&spi_dev->dev, "%s: set gpio%d output %s\n", __func__,
		spi_dev->cs_gpio,
		(spi_dev->mode & SPI_CS_HIGH) ? "low" : "high");

	ret = gpio_direction_output(spi_dev->cs_gpio,
				    !(spi_dev->mode & SPI_CS_HIGH));

	return ret;
}

/**
 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 */
static int stm32_spi_prepare_msg(struct spi_master *master,
				 struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	struct spi_device *spi_dev = msg->spi;
	struct device_node *np = spi_dev->dev.of_node;
	unsigned long flags;
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	/* SPI slave device may need time between data frames */
	spi->cur_midi = 0;
	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);

	if (spi_dev->mode & SPI_CPOL)
		cfg2_setb |= SPI_CFG2_CPOL;
	else
		cfg2_clrb |= SPI_CFG2_CPOL;

	if (spi_dev->mode & SPI_CPHA)
		cfg2_setb |= SPI_CFG2_CPHA;
	else
		cfg2_clrb |= SPI_CFG2_CPHA;

	if (spi_dev->mode & SPI_LSB_FIRST)
		cfg2_setb |= SPI_CFG2_LSBFRST;
	else
		cfg2_clrb |= SPI_CFG2_LSBFRST;

	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
		spi_dev->mode & SPI_CPOL,
		spi_dev->mode & SPI_CPHA,
		spi_dev->mode & SPI_LSB_FIRST,
		spi_dev->mode & SPI_CS_HIGH);

	spin_lock_irqsave(&spi->lock, flags);

	if (cfg2_clrb || cfg2_setb)
		writel_relaxed(
			(readl_relaxed(spi->base + STM32_SPI_CFG2) &
				~cfg2_clrb) | cfg2_setb,
			       spi->base + STM32_SPI_CFG2);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

/**
 * stm32_spi_dma_cb - dma callback
 *
 * DMA callback is called when the transfer is complete or when an error
 * occurs. If the transfer is complete, EOT flag is raised.
 */
static void stm32_spi_dma_cb(void *data)
{
	struct stm32_spi *spi = data;
	unsigned long flags;
	u32 sr;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32_SPI_SR);

	spin_unlock_irqrestore(&spi->lock, flags);

	if (!(sr & SPI_SR_EOT)) {
		dev_warn(spi->dev, "DMA callback (sr=0x%08x)\n", sr);

		spi_finalize_current_transfer(spi->master);
		stm32_spi_disable(spi);
	}
}

/**
 * stm32_spi_dma_config - configure dma slave channel depending on current
 *			  transfer bits_per_word.
 */
static void stm32_spi_dma_config(struct stm32_spi *spi,
				 struct dma_slave_config *dma_conf,
				 enum dma_transfer_direction dir)
{
	enum dma_slave_buswidth buswidth;
	u32 maxburst;

	if (spi->cur_bpw <= 8)
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (spi->cur_bpw <= 16)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;

	/* Valid for DMA Half or Full Fifo threshold */
	if (spi->cur_fthlv == 2)
		maxburst = 1;
	else
		maxburst = spi->cur_fthlv;

	memset(dma_conf, 0, sizeof(struct dma_slave_config));
	dma_conf->direction = dir;
	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
		dma_conf->src_addr = spi->phys_addr + STM32_SPI_RXDR;
		dma_conf->src_addr_width = buswidth;
		dma_conf->src_maxburst = maxburst;

		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
		dma_conf->dst_addr = spi->phys_addr + STM32_SPI_TXDR;
		dma_conf->dst_addr_width = buswidth;
		dma_conf->dst_maxburst = maxburst;

		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	}
}

/**
 * stm32_spi_transfer_one_irq - transfer a single spi_transfer using
 *				interrupts
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one_irq(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 ier = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
		ier |= SPI_IER_DXPIE;
	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
		ier |= SPI_IER_TXPIE;
	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
		ier |= SPI_IER_RXPIE;

	/* Enable the interrupts relative to the end of transfer */
	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_enable(spi);

	/* Be sure to have data in fifo before starting data transfer */
	if (spi->tx_buf)
		stm32_spi_write_txfifo(spi);

	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);

	writel_relaxed(ier, spi->base + STM32_SPI_IER);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

/**
 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
				      struct spi_transfer *xfer)
{
	struct dma_slave_config tx_dma_conf, rx_dma_conf;
	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
	unsigned long flags;
	u32 ier = 0;

	spin_lock_irqsave(&spi->lock, flags);

	rx_dma_desc = NULL;
	if (spi->rx_buf) {
		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);

		/* Enable Rx DMA request */
		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);

		rx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_rx, xfer->rx_sg.sgl,
					xfer->rx_sg.nents,
					rx_dma_conf.direction,
					DMA_PREP_INTERRUPT);

		rx_dma_desc->callback = stm32_spi_dma_cb;
		rx_dma_desc->callback_param = spi;
	}

	tx_dma_desc = NULL;
	if (spi->tx_buf) {
		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);

		tx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_tx, xfer->tx_sg.sgl,
					xfer->tx_sg.nents,
					tx_dma_conf.direction,
					DMA_PREP_INTERRUPT);

		if (spi->cur_comm == SPI_SIMPLEX_TX) {
			tx_dma_desc->callback = stm32_spi_dma_cb;
			tx_dma_desc->callback_param = spi;
		}
	}

	if ((spi->tx_buf && !tx_dma_desc) ||
	    (spi->rx_buf && !rx_dma_desc))
		goto dma_desc_error;

	if (rx_dma_desc) {
		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
			dev_err(spi->dev, "Rx DMA submit failed\n");
			goto dma_desc_error;
		}
		/* Enable Rx DMA channel */
		dma_async_issue_pending(spi->dma_rx);
	}

	if (tx_dma_desc) {
		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
			dev_err(spi->dev, "Tx DMA submit failed\n");
			goto dma_submit_error;
		}
		/* Enable Tx DMA channel */
		dma_async_issue_pending(spi->dma_tx);

		/* Enable Tx DMA request */
		stm32_spi_set_bits(spi, STM32_SPI_CFG1, SPI_CFG1_TXDMAEN);
	}

	/* Enable the interrupts relative to the end of transfer */
	ier |= SPI_IER_EOTIE | SPI_IER_TXTFIE |	SPI_IER_OVRIE |	SPI_IER_MODFIE;
	writel_relaxed(ier, spi->base + STM32_SPI_IER);

	stm32_spi_enable(spi);

	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_CSTART);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;

dma_submit_error:
	if (spi->rx_buf)
		dmaengine_terminate_all(spi->dma_rx);

dma_desc_error:
	stm32_spi_clr_bits(spi, STM32_SPI_CFG1, SPI_CFG1_RXDMAEN);

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");

	return stm32_spi_transfer_one_irq(spi);
}

/**
 * stm32_spi_transfer_one_setup - common setup to transfer a single
 *				  spi_transfer either using DMA or
 *				  interrupts.
 */
static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
					struct spi_device *spi_dev,
					struct spi_transfer *transfer)
{
	unsigned long flags;
	u32 cfg1_clrb = 0, cfg1_setb = 0, cfg2_clrb = 0, cfg2_setb = 0;
	u32 mode, nb_words;
	int ret = 0;

	spin_lock_irqsave(&spi->lock, flags);

	if (spi->cur_bpw != transfer->bits_per_word) {
		u32 bpw, fthlv;

		spi->cur_bpw = transfer->bits_per_word;
		bpw = spi->cur_bpw - 1;

		cfg1_clrb |= SPI_CFG1_DSIZE;
		cfg1_setb |= (bpw << SPI_CFG1_DSIZE_SHIFT) & SPI_CFG1_DSIZE;

		spi->cur_fthlv = stm32_spi_prepare_fthlv(spi);
		fthlv = spi->cur_fthlv - 1;

		cfg1_clrb |= SPI_CFG1_FTHLV;
		cfg1_setb |= (fthlv << SPI_CFG1_FTHLV_SHIFT) & SPI_CFG1_FTHLV;
	}

	if (spi->cur_speed != transfer->speed_hz) {
		int mbr;

		/* Update spi->cur_speed with real clock speed */
		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz);
		if (mbr < 0) {
			ret = mbr;
			goto out;
		}

		transfer->speed_hz = spi->cur_speed;

		cfg1_clrb |= SPI_CFG1_MBR;
		cfg1_setb |= ((u32)mbr << SPI_CFG1_MBR_SHIFT) & SPI_CFG1_MBR;
	}

	if (cfg1_clrb || cfg1_setb)
		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG1) &
				~cfg1_clrb) | cfg1_setb,
			       spi->base + STM32_SPI_CFG1);

	mode = SPI_FULL_DUPLEX;
	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
		/*
		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
		 * is forbidden und unvalidated by SPI subsystem so depending
		 * on the valid buffer, we can determine the direction of the
		 * transfer.
		 */
		mode = SPI_HALF_DUPLEX;
		if (!transfer->tx_buf)
			stm32_spi_clr_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
		else if (!transfer->rx_buf)
			stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_HDDIR);
	} else {
		if (!transfer->tx_buf)
			mode = SPI_SIMPLEX_RX;
		else if (!transfer->rx_buf)
			mode = SPI_SIMPLEX_TX;
	}
	if (spi->cur_comm != mode) {
		spi->cur_comm = mode;

		cfg2_clrb |= SPI_CFG2_COMM;
		cfg2_setb |= (mode << SPI_CFG2_COMM_SHIFT) & SPI_CFG2_COMM;
	}

	cfg2_clrb |= SPI_CFG2_MIDI;
	if ((transfer->len > 1) && (spi->cur_midi > 0)) {
		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
			       (u32)SPI_CFG2_MIDI >> SPI_CFG2_MIDI_SHIFT);

		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
			sck_period_ns, midi, midi * sck_period_ns);

		cfg2_setb |= (midi << SPI_CFG2_MIDI_SHIFT) & SPI_CFG2_MIDI;
	}

	if (cfg2_clrb || cfg2_setb)
		writel_relaxed((readl_relaxed(spi->base + STM32_SPI_CFG2) &
				~cfg2_clrb) | cfg2_setb,
			       spi->base + STM32_SPI_CFG2);

	if (spi->cur_bpw <= 8)
		nb_words = transfer->len;
	else if (spi->cur_bpw <= 16)
		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
	else
		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);
	nb_words <<= SPI_CR2_TSIZE_SHIFT;

	if (nb_words <= SPI_CR2_TSIZE) {
		writel_relaxed(nb_words, spi->base + STM32_SPI_CR2);
	} else {
		ret = -EMSGSIZE;
		goto out;
	}

	spi->cur_xferlen = transfer->len;

	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
		spi->cur_comm);
	dev_dbg(spi->dev,
		"data frame of %d-bit, data packet of %d data frames\n",
		spi->cur_bpw, spi->cur_fthlv);
	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
		spi->cur_xferlen, nb_words);
	dev_dbg(spi->dev, "dma %s\n",
		(spi->cur_usedma) ? "enabled" : "disabled");

out:
	spin_unlock_irqrestore(&spi->lock, flags);

	return ret;
}

/**
 * stm32_spi_transfer_one - transfer a single spi_transfer
 *
 * It must return 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi_dev,
				  struct spi_transfer *transfer)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	spi->tx_buf = transfer->tx_buf;
	spi->rx_buf = transfer->rx_buf;
	spi->tx_len = spi->tx_buf ? transfer->len : 0;
	spi->rx_len = spi->rx_buf ? transfer->len : 0;

	spi->cur_usedma = stm32_spi_can_dma(master, spi_dev, transfer);

	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
	if (ret) {
		dev_err(spi->dev, "SPI transfer setup failed\n");
		return ret;
	}

	if (spi->cur_usedma)
		return stm32_spi_transfer_one_dma(spi, transfer);
	else
		return stm32_spi_transfer_one_irq(spi);
}

/**
 * stm32_spi_unprepare_msg - relax the hardware
 *
 * Normally, if TSIZE has been configured, we should relax the hardware at the
 * reception of the EOT interrupt. But in case of error, EOT will not be
 * raised. So the subsystem unprepare_message call allows us to properly
 * complete the transfer from an hardware point of view.
 */
static int stm32_spi_unprepare_msg(struct spi_master *master,
				   struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);

	stm32_spi_disable(spi);

	return 0;
}

/**
 * stm32_spi_config - Configure SPI controller as SPI master
 */
static int stm32_spi_config(struct stm32_spi *spi)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
	stm32_spi_clr_bits(spi, STM32_SPI_I2SCFGR, SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - automatic communication suspend when RX-Fifo is full
	 */
	stm32_spi_set_bits(spi, STM32_SPI_CR1, SPI_CR1_SSI |
					       SPI_CR1_HDDIR |
					       SPI_CR1_MASRX);

	/*
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 * - keep control of all associated GPIOs
	 */
	stm32_spi_set_bits(spi, STM32_SPI_CFG2, SPI_CFG2_MASTER |
						SPI_CFG2_SSM |
						SPI_CFG2_AFCNTR);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

static const struct of_device_id stm32_spi_of_match[] = {
	{ .compatible = "st,stm32h7-spi", },
	{},
};
MODULE_DEVICE_TABLE(of, stm32_spi_of_match);

static int stm32_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct stm32_spi *spi;
	struct resource *res;
	int i, ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
	if (!master) {
		dev_err(&pdev->dev, "spi master allocation failed\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	spi = spi_master_get_devdata(master);
	spi->dev = &pdev->dev;
	spi->master = master;
	spin_lock_init(&spi->lock);

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi->base)) {
		ret = PTR_ERR(spi->base);
		goto err_master_put;
	}
	spi->phys_addr = (dma_addr_t)res->start;

	spi->irq = platform_get_irq(pdev, 0);
	if (spi->irq <= 0) {
		dev_err(&pdev->dev, "no irq: %d\n", spi->irq);
		ret = -ENOENT;
		goto err_master_put;
	}
	ret = devm_request_threaded_irq(&pdev->dev, spi->irq, NULL,
					stm32_spi_irq, IRQF_ONESHOT,
					pdev->name, master);
	if (ret) {
		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
			ret);
		goto err_master_put;
	}

	spi->clk = devm_clk_get(&pdev->dev, 0);
	if (IS_ERR(spi->clk)) {
		ret = PTR_ERR(spi->clk);
		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
		goto err_master_put;
	}

	ret = clk_prepare_enable(spi->clk);
	if (ret) {
		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
		goto err_master_put;
	}
	spi->clk_rate = clk_get_rate(spi->clk);
	if (!spi->clk_rate) {
		dev_err(&pdev->dev, "clk rate = 0\n");
		ret = -EINVAL;
		goto err_master_put;
	}

	spi->rst = devm_reset_control_get(&pdev->dev, NULL);
	if (!IS_ERR(spi->rst)) {
		reset_control_assert(spi->rst);
		udelay(2);
		reset_control_deassert(spi->rst);
	}

	spi->fifo_size = stm32_spi_get_fifo_size(spi);

	ret = stm32_spi_config(spi);
	if (ret) {
		dev_err(&pdev->dev, "controller configuration failed: %d\n",
			ret);
		goto err_clk_disable;
	}

	master->dev.of_node = pdev->dev.of_node;
	master->auto_runtime_pm = true;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_MODE_3 | SPI_CS_HIGH | SPI_LSB_FIRST |
			    SPI_3WIRE | SPI_LOOP;
	master->bits_per_word_mask = stm32_spi_get_bpw_mask(spi);
	master->max_speed_hz = spi->clk_rate / SPI_MBR_DIV_MIN;
	master->min_speed_hz = spi->clk_rate / SPI_MBR_DIV_MAX;
	master->setup = stm32_spi_setup;
	master->prepare_message = stm32_spi_prepare_msg;
	master->transfer_one = stm32_spi_transfer_one;
	master->unprepare_message = stm32_spi_unprepare_msg;

	spi->dma_tx = dma_request_slave_channel(spi->dev, "tx");
	if (!spi->dma_tx)
		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
	else
		master->dma_tx = spi->dma_tx;

	spi->dma_rx = dma_request_slave_channel(spi->dev, "rx");
	if (!spi->dma_rx)
		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
	else
		master->dma_rx = spi->dma_rx;

	if (spi->dma_tx || spi->dma_rx)
		master->can_dma = stm32_spi_can_dma;

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "spi master registration failed: %d\n",
			ret);
		goto err_dma_release;
	}

	if (!master->cs_gpios) {
		dev_err(&pdev->dev, "no CS gpios available\n");
		ret = -EINVAL;
		goto err_dma_release;
	}

	for (i = 0; i < master->num_chipselect; i++) {
		if (!gpio_is_valid(master->cs_gpios[i])) {
			dev_err(&pdev->dev, "%i is not a valid gpio\n",
				master->cs_gpios[i]);
			ret = -EINVAL;
			goto err_dma_release;
		}

		ret = devm_gpio_request(&pdev->dev, master->cs_gpios[i],
					DRIVER_NAME);
		if (ret) {
			dev_err(&pdev->dev, "can't get CS gpio %i\n",
				master->cs_gpios[i]);
			goto err_dma_release;
		}
	}

	dev_info(&pdev->dev, "driver initialized\n");

	return 0;

err_dma_release:
	if (spi->dma_tx)
		dma_release_channel(spi->dma_tx);
	if (spi->dma_rx)
		dma_release_channel(spi->dma_rx);

	pm_runtime_disable(&pdev->dev);
err_clk_disable:
	clk_disable_unprepare(spi->clk);
err_master_put:
	spi_master_put(master);

	return ret;
}

static int stm32_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	stm32_spi_disable(spi);

	if (master->dma_tx)
		dma_release_channel(master->dma_tx);
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);

	clk_disable_unprepare(spi->clk);

	pm_runtime_disable(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM
static int stm32_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	clk_disable_unprepare(spi->clk);

	return 0;
}

static int stm32_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	return clk_prepare_enable(spi->clk);
}
#endif

#ifdef CONFIG_PM_SLEEP
static int stm32_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

	return pm_runtime_force_suspend(dev);
}

static int stm32_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	ret = pm_runtime_force_resume(dev);
	if (ret)
		return ret;

	ret = spi_master_resume(master);
	if (ret)
		clk_disable_unprepare(spi->clk);

	return ret;
}
#endif

static const struct dev_pm_ops stm32_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
			   stm32_spi_runtime_resume, NULL)
};

static struct platform_driver stm32_spi_driver = {
	.probe = stm32_spi_probe,
	.remove = stm32_spi_remove,
	.driver = {
		.name = DRIVER_NAME,
		.pm = &stm32_spi_pm_ops,
		.of_match_table = stm32_spi_of_match,
	},
};

module_platform_driver(stm32_spi_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");