summaryrefslogtreecommitdiff
path: root/drivers/spi/spi-nxp-fspi.c
blob: ab9035662717a3b0464bdefb6bb3ca4d10376401 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
// SPDX-License-Identifier: GPL-2.0+

/*
 * NXP FlexSPI(FSPI) controller driver.
 *
 * Copyright 2019-2020 NXP
 * Copyright 2020 Puresoftware Ltd.
 *
 * FlexSPI is a flexsible SPI host controller which supports two SPI
 * channels and up to 4 external devices. Each channel supports
 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
 * data lines).
 *
 * FlexSPI controller is driven by the LUT(Look-up Table) registers
 * LUT registers are a look-up-table for sequences of instructions.
 * A valid sequence consists of four LUT registers.
 * Maximum 32 LUT sequences can be programmed simultaneously.
 *
 * LUTs are being created at run-time based on the commands passed
 * from the spi-mem framework, thus using single LUT index.
 *
 * Software triggered Flash read/write access by IP Bus.
 *
 * Memory mapped read access by AHB Bus.
 *
 * Based on SPI MEM interface and spi-fsl-qspi.c driver.
 *
 * Author:
 *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
 *     Boris Brezillon <bbrezillon@kernel.org>
 *     Frieder Schrempf <frieder.schrempf@kontron.de>
 */

#include <linux/acpi.h>
#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/jiffies.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/pm_qos.h>
#include <linux/sizes.h>

#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>

/*
 * The driver only uses one single LUT entry, that is updated on
 * each call of exec_op(). Index 0 is preset at boot with a basic
 * read operation, so let's use the last entry (31).
 */
#define	SEQID_LUT			31

/* Registers used by the driver */
#define FSPI_MCR0			0x00
#define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
#define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
#define FSPI_MCR0_LEARN_EN		BIT(15)
#define FSPI_MCR0_SCRFRUN_EN		BIT(14)
#define FSPI_MCR0_OCTCOMB_EN		BIT(13)
#define FSPI_MCR0_DOZE_EN		BIT(12)
#define FSPI_MCR0_HSEN			BIT(11)
#define FSPI_MCR0_SERCLKDIV		BIT(8)
#define FSPI_MCR0_ATDF_EN		BIT(7)
#define FSPI_MCR0_ARDF_EN		BIT(6)
#define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
#define FSPI_MCR0_END_CFG(x)		((x) << 2)
#define FSPI_MCR0_MDIS			BIT(1)
#define FSPI_MCR0_SWRST			BIT(0)

#define FSPI_MCR1			0x04
#define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
#define FSPI_MCR1_AHB_TIMEOUT(x)	(x)

#define FSPI_MCR2			0x08
#define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
#define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
#define FSPI_MCR2_CLRLRPHS		BIT(14)
#define FSPI_MCR2_ABRDATSZ		BIT(8)
#define FSPI_MCR2_ABRLEARN		BIT(7)
#define FSPI_MCR2_ABR_READ		BIT(6)
#define FSPI_MCR2_ABRWRITE		BIT(5)
#define FSPI_MCR2_ABRDUMMY		BIT(4)
#define FSPI_MCR2_ABR_MODE		BIT(3)
#define FSPI_MCR2_ABRCADDR		BIT(2)
#define FSPI_MCR2_ABRRADDR		BIT(1)
#define FSPI_MCR2_ABR_CMD		BIT(0)

#define FSPI_AHBCR			0x0c
#define FSPI_AHBCR_RDADDROPT		BIT(6)
#define FSPI_AHBCR_PREF_EN		BIT(5)
#define FSPI_AHBCR_BUFF_EN		BIT(4)
#define FSPI_AHBCR_CACH_EN		BIT(3)
#define FSPI_AHBCR_CLRTXBUF		BIT(2)
#define FSPI_AHBCR_CLRRXBUF		BIT(1)
#define FSPI_AHBCR_PAR_EN		BIT(0)

#define FSPI_INTEN			0x10
#define FSPI_INTEN_SCLKSBWR		BIT(9)
#define FSPI_INTEN_SCLKSBRD		BIT(8)
#define FSPI_INTEN_DATALRNFL		BIT(7)
#define FSPI_INTEN_IPTXWE		BIT(6)
#define FSPI_INTEN_IPRXWA		BIT(5)
#define FSPI_INTEN_AHBCMDERR		BIT(4)
#define FSPI_INTEN_IPCMDERR		BIT(3)
#define FSPI_INTEN_AHBCMDGE		BIT(2)
#define FSPI_INTEN_IPCMDGE		BIT(1)
#define FSPI_INTEN_IPCMDDONE		BIT(0)

#define FSPI_INTR			0x14
#define FSPI_INTR_SCLKSBWR		BIT(9)
#define FSPI_INTR_SCLKSBRD		BIT(8)
#define FSPI_INTR_DATALRNFL		BIT(7)
#define FSPI_INTR_IPTXWE		BIT(6)
#define FSPI_INTR_IPRXWA		BIT(5)
#define FSPI_INTR_AHBCMDERR		BIT(4)
#define FSPI_INTR_IPCMDERR		BIT(3)
#define FSPI_INTR_AHBCMDGE		BIT(2)
#define FSPI_INTR_IPCMDGE		BIT(1)
#define FSPI_INTR_IPCMDDONE		BIT(0)

#define FSPI_LUTKEY			0x18
#define FSPI_LUTKEY_VALUE		0x5AF05AF0

#define FSPI_LCKCR			0x1C

#define FSPI_LCKER_LOCK			0x1
#define FSPI_LCKER_UNLOCK		0x2

#define FSPI_BUFXCR_INVALID_MSTRID	0xE
#define FSPI_AHBRX_BUF0CR0		0x20
#define FSPI_AHBRX_BUF1CR0		0x24
#define FSPI_AHBRX_BUF2CR0		0x28
#define FSPI_AHBRX_BUF3CR0		0x2C
#define FSPI_AHBRX_BUF4CR0		0x30
#define FSPI_AHBRX_BUF5CR0		0x34
#define FSPI_AHBRX_BUF6CR0		0x38
#define FSPI_AHBRX_BUF7CR0		0x3C
#define FSPI_AHBRXBUF0CR7_PREF		BIT(31)

#define FSPI_AHBRX_BUF0CR1		0x40
#define FSPI_AHBRX_BUF1CR1		0x44
#define FSPI_AHBRX_BUF2CR1		0x48
#define FSPI_AHBRX_BUF3CR1		0x4C
#define FSPI_AHBRX_BUF4CR1		0x50
#define FSPI_AHBRX_BUF5CR1		0x54
#define FSPI_AHBRX_BUF6CR1		0x58
#define FSPI_AHBRX_BUF7CR1		0x5C

#define FSPI_FLSHA1CR0			0x60
#define FSPI_FLSHA2CR0			0x64
#define FSPI_FLSHB1CR0			0x68
#define FSPI_FLSHB2CR0			0x6C
#define FSPI_FLSHXCR0_SZ_KB		10
#define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)

#define FSPI_FLSHA1CR1			0x70
#define FSPI_FLSHA2CR1			0x74
#define FSPI_FLSHB1CR1			0x78
#define FSPI_FLSHB2CR1			0x7C
#define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
#define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
#define FSPI_FLSHXCR1_WA		BIT(10)
#define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
#define FSPI_FLSHXCR1_TCSS(x)		(x)

#define FSPI_FLSHA1CR2			0x80
#define FSPI_FLSHA2CR2			0x84
#define FSPI_FLSHB1CR2			0x88
#define FSPI_FLSHB2CR2			0x8C
#define FSPI_FLSHXCR2_CLRINSP		BIT(24)
#define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
#define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
#define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
#define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
#define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0

#define FSPI_IPCR0			0xA0

#define FSPI_IPCR1			0xA4
#define FSPI_IPCR1_IPAREN		BIT(31)
#define FSPI_IPCR1_SEQNUM_SHIFT		24
#define FSPI_IPCR1_SEQID_SHIFT		16
#define FSPI_IPCR1_IDATSZ(x)		(x)

#define FSPI_IPCMD			0xB0
#define FSPI_IPCMD_TRG			BIT(0)

#define FSPI_DLPR			0xB4

#define FSPI_IPRXFCR			0xB8
#define FSPI_IPRXFCR_CLR		BIT(0)
#define FSPI_IPRXFCR_DMA_EN		BIT(1)
#define FSPI_IPRXFCR_WMRK(x)		((x) << 2)

#define FSPI_IPTXFCR			0xBC
#define FSPI_IPTXFCR_CLR		BIT(0)
#define FSPI_IPTXFCR_DMA_EN		BIT(1)
#define FSPI_IPTXFCR_WMRK(x)		((x) << 2)

#define FSPI_DLLACR			0xC0
#define FSPI_DLLACR_OVRDEN		BIT(8)

#define FSPI_DLLBCR			0xC4
#define FSPI_DLLBCR_OVRDEN		BIT(8)

#define FSPI_STS0			0xE0
#define FSPI_STS0_DLPHB(x)		((x) << 8)
#define FSPI_STS0_DLPHA(x)		((x) << 4)
#define FSPI_STS0_CMD_SRC(x)		((x) << 2)
#define FSPI_STS0_ARB_IDLE		BIT(1)
#define FSPI_STS0_SEQ_IDLE		BIT(0)

#define FSPI_STS1			0xE4
#define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
#define FSPI_STS1_IP_ERRID(x)		((x) << 16)
#define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
#define FSPI_STS1_AHB_ERRID(x)		(x)

#define FSPI_AHBSPNST			0xEC
#define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
#define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
#define FSPI_AHBSPNST_ACTIVE		BIT(0)

#define FSPI_IPRXFSTS			0xF0
#define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
#define FSPI_IPRXFSTS_FILL(x)		(x)

#define FSPI_IPTXFSTS			0xF4
#define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
#define FSPI_IPTXFSTS_FILL(x)		(x)

#define FSPI_RFDR			0x100
#define FSPI_TFDR			0x180

#define FSPI_LUT_BASE			0x200
#define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
#define FSPI_LUT_REG(idx) \
	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)

/* register map end */

/* Instruction set for the LUT register. */
#define LUT_STOP			0x00
#define LUT_CMD				0x01
#define LUT_ADDR			0x02
#define LUT_CADDR_SDR			0x03
#define LUT_MODE			0x04
#define LUT_MODE2			0x05
#define LUT_MODE4			0x06
#define LUT_MODE8			0x07
#define LUT_NXP_WRITE			0x08
#define LUT_NXP_READ			0x09
#define LUT_LEARN_SDR			0x0A
#define LUT_DATSZ_SDR			0x0B
#define LUT_DUMMY			0x0C
#define LUT_DUMMY_RWDS_SDR		0x0D
#define LUT_JMP_ON_CS			0x1F
#define LUT_CMD_DDR			0x21
#define LUT_ADDR_DDR			0x22
#define LUT_CADDR_DDR			0x23
#define LUT_MODE_DDR			0x24
#define LUT_MODE2_DDR			0x25
#define LUT_MODE4_DDR			0x26
#define LUT_MODE8_DDR			0x27
#define LUT_WRITE_DDR			0x28
#define LUT_READ_DDR			0x29
#define LUT_LEARN_DDR			0x2A
#define LUT_DATSZ_DDR			0x2B
#define LUT_DUMMY_DDR			0x2C
#define LUT_DUMMY_RWDS_DDR		0x2D

/*
 * Calculate number of required PAD bits for LUT register.
 *
 * The pad stands for the number of IO lines [0:7].
 * For example, the octal read needs eight IO lines,
 * so you should use LUT_PAD(8). This macro
 * returns 3 i.e. use eight (2^3) IP lines for read.
 */
#define LUT_PAD(x) (fls(x) - 1)

/*
 * Macro for constructing the LUT entries with the following
 * register layout:
 *
 *  ---------------------------------------------------
 *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
 *  ---------------------------------------------------
 */
#define PAD_SHIFT		8
#define INSTR_SHIFT		10
#define OPRND_SHIFT		16

/* Macros for constructing the LUT register. */
#define LUT_DEF(idx, ins, pad, opr)			  \
	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
	(opr)) << (((idx) % 2) * OPRND_SHIFT))

#define POLL_TOUT		5000
#define NXP_FSPI_MAX_CHIPSELECT		4
#define NXP_FSPI_MIN_IOMAP	SZ_4M

struct nxp_fspi_devtype_data {
	unsigned int rxfifo;
	unsigned int txfifo;
	unsigned int ahb_buf_size;
	unsigned int quirks;
	bool little_endian;
};

static const struct nxp_fspi_devtype_data lx2160a_data = {
	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
	.quirks = 0,
	.little_endian = true,  /* little-endian    */
};

static const struct nxp_fspi_devtype_data imx8mm_data = {
	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
	.quirks = 0,
	.little_endian = true,  /* little-endian    */
};

static const struct nxp_fspi_devtype_data imx8qxp_data = {
	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
	.quirks = 0,
	.little_endian = true,  /* little-endian    */
};

struct nxp_fspi {
	void __iomem *iobase;
	void __iomem *ahb_addr;
	u32 memmap_phy;
	u32 memmap_phy_size;
	u32 memmap_start;
	u32 memmap_len;
	struct clk *clk, *clk_en;
	struct device *dev;
	struct completion c;
	const struct nxp_fspi_devtype_data *devtype_data;
	struct mutex lock;
	struct pm_qos_request pm_qos_req;
	int selected;
};

/*
 * R/W functions for big- or little-endian registers:
 * The FSPI controller's endianness is independent of
 * the CPU core's endianness. So far, although the CPU
 * core is little-endian the FSPI controller can use
 * big-endian or little-endian.
 */
static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
{
	if (f->devtype_data->little_endian)
		iowrite32(val, addr);
	else
		iowrite32be(val, addr);
}

static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
{
	if (f->devtype_data->little_endian)
		return ioread32(addr);
	else
		return ioread32be(addr);
}

static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
{
	struct nxp_fspi *f = dev_id;
	u32 reg;

	/* clear interrupt */
	reg = fspi_readl(f, f->iobase + FSPI_INTR);
	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);

	if (reg & FSPI_INTR_IPCMDDONE)
		complete(&f->c);

	return IRQ_HANDLED;
}

static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
{
	switch (width) {
	case 1:
	case 2:
	case 4:
	case 8:
		return 0;
	}

	return -ENOTSUPP;
}

static bool nxp_fspi_supports_op(struct spi_mem *mem,
				 const struct spi_mem_op *op)
{
	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
	int ret;

	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);

	if (op->addr.nbytes)
		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);

	if (op->dummy.nbytes)
		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);

	if (op->data.nbytes)
		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);

	if (ret)
		return false;

	/*
	 * The number of address bytes should be equal to or less than 4 bytes.
	 */
	if (op->addr.nbytes > 4)
		return false;

	/*
	 * If requested address value is greater than controller assigned
	 * memory mapped space, return error as it didn't fit in the range
	 * of assigned address space.
	 */
	if (op->addr.val >= f->memmap_phy_size)
		return false;

	/* Max 64 dummy clock cycles supported */
	if (op->dummy.buswidth &&
	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
		return false;

	/* Max data length, check controller limits and alignment */
	if (op->data.dir == SPI_MEM_DATA_IN &&
	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
	      !IS_ALIGNED(op->data.nbytes, 8))))
		return false;

	if (op->data.dir == SPI_MEM_DATA_OUT &&
	    op->data.nbytes > f->devtype_data->txfifo)
		return false;

	return spi_mem_default_supports_op(mem, op);
}

/* Instead of busy looping invoke readl_poll_timeout functionality. */
static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
				u32 mask, u32 delay_us,
				u32 timeout_us, bool c)
{
	u32 reg;

	if (!f->devtype_data->little_endian)
		mask = (u32)cpu_to_be32(mask);

	if (c)
		return readl_poll_timeout(base, reg, (reg & mask),
					  delay_us, timeout_us);
	else
		return readl_poll_timeout(base, reg, !(reg & mask),
					  delay_us, timeout_us);
}

/*
 * If the slave device content being changed by Write/Erase, need to
 * invalidate the AHB buffer. This can be achieved by doing the reset
 * of controller after setting MCR0[SWRESET] bit.
 */
static inline void nxp_fspi_invalid(struct nxp_fspi *f)
{
	u32 reg;
	int ret;

	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);

	/* w1c register, wait unit clear */
	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
	WARN_ON(ret);
}

static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
				 const struct spi_mem_op *op)
{
	void __iomem *base = f->iobase;
	u32 lutval[4] = {};
	int lutidx = 1, i;

	/* cmd */
	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
			     op->cmd.opcode);

	/* addr bytes */
	if (op->addr.nbytes) {
		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
					      LUT_PAD(op->addr.buswidth),
					      op->addr.nbytes * 8);
		lutidx++;
	}

	/* dummy bytes, if needed */
	if (op->dummy.nbytes) {
		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
		/*
		 * Due to FlexSPI controller limitation number of PAD for dummy
		 * buswidth needs to be programmed as equal to data buswidth.
		 */
					      LUT_PAD(op->data.buswidth),
					      op->dummy.nbytes * 8 /
					      op->dummy.buswidth);
		lutidx++;
	}

	/* read/write data bytes */
	if (op->data.nbytes) {
		lutval[lutidx / 2] |= LUT_DEF(lutidx,
					      op->data.dir == SPI_MEM_DATA_IN ?
					      LUT_NXP_READ : LUT_NXP_WRITE,
					      LUT_PAD(op->data.buswidth),
					      0);
		lutidx++;
	}

	/* stop condition. */
	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);

	/* unlock LUT */
	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);

	/* fill LUT */
	for (i = 0; i < ARRAY_SIZE(lutval); i++)
		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));

	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n",
		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]);

	/* lock LUT */
	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
}

static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
{
	int ret;

	if (is_acpi_node(f->dev->fwnode))
		return 0;

	ret = clk_prepare_enable(f->clk_en);
	if (ret)
		return ret;

	ret = clk_prepare_enable(f->clk);
	if (ret) {
		clk_disable_unprepare(f->clk_en);
		return ret;
	}

	return 0;
}

static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
{
	if (is_acpi_node(f->dev->fwnode))
		return 0;

	clk_disable_unprepare(f->clk);
	clk_disable_unprepare(f->clk_en);

	return 0;
}

/*
 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
 * register and start base address of the slave device.
 *
 *							    (Higher address)
 *				--------    <-- FLSHB2CR0
 *				|  B2  |
 *				|      |
 *	B2 start address -->	--------    <-- FLSHB1CR0
 *				|  B1  |
 *				|      |
 *	B1 start address -->	--------    <-- FLSHA2CR0
 *				|  A2  |
 *				|      |
 *	A2 start address -->	--------    <-- FLSHA1CR0
 *				|  A1  |
 *				|      |
 *	A1 start address -->	--------		    (Lower address)
 *
 *
 * Start base address defines the starting address range for given CS and
 * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
 *
 * But, different targets are having different combinations of number of CS,
 * some targets only have single CS or two CS covering controller's full
 * memory mapped space area.
 * Thus, implementation is being done as independent of the size and number
 * of the connected slave device.
 * Assign controller memory mapped space size as the size to the connected
 * slave device.
 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
 * chip-select Flash configuration register.
 *
 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
 * memory mapped size of the controller.
 * Value for rest of the CS FLSHxxCR0 register would be zero.
 *
 */
static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
{
	unsigned long rate = spi->max_speed_hz;
	int ret;
	uint64_t size_kb;

	/*
	 * Return, if previously selected slave device is same as current
	 * requested slave device.
	 */
	if (f->selected == spi->chip_select)
		return;

	/* Reset FLSHxxCR0 registers */
	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);

	/* Assign controller memory mapped space as size, KBytes, of flash. */
	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);

	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
		    4 * spi->chip_select);

	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);

	nxp_fspi_clk_disable_unprep(f);

	ret = clk_set_rate(f->clk, rate);
	if (ret)
		return;

	ret = nxp_fspi_clk_prep_enable(f);
	if (ret)
		return;

	f->selected = spi->chip_select;
}

static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
{
	u32 start = op->addr.val;
	u32 len = op->data.nbytes;

	/* if necessary, ioremap before AHB read */
	if ((!f->ahb_addr) || start < f->memmap_start ||
	     start + len > f->memmap_start + f->memmap_len) {
		if (f->ahb_addr)
			iounmap(f->ahb_addr);

		f->memmap_start = start;
		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
				len : NXP_FSPI_MIN_IOMAP;

		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
					 f->memmap_len);

		if (!f->ahb_addr) {
			dev_err(f->dev, "failed to alloc memory\n");
			return -ENOMEM;
		}
	}

	/* Read out the data directly from the AHB buffer. */
	memcpy_fromio(op->data.buf.in,
		      f->ahb_addr + start - f->memmap_start, len);

	return 0;
}

static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
				 const struct spi_mem_op *op)
{
	void __iomem *base = f->iobase;
	int i, ret;
	u8 *buf = (u8 *) op->data.buf.out;

	/* clear the TX FIFO. */
	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);

	/*
	 * Default value of water mark level is 8 bytes, hence in single
	 * write request controller can write max 8 bytes of data.
	 */

	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
		/* Wait for TXFIFO empty */
		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
					   FSPI_INTR_IPTXWE, 0,
					   POLL_TOUT, true);
		WARN_ON(ret);

		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
	}

	if (i < op->data.nbytes) {
		u32 data = 0;
		int j;
		/* Wait for TXFIFO empty */
		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
					   FSPI_INTR_IPTXWE, 0,
					   POLL_TOUT, true);
		WARN_ON(ret);

		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
			memcpy(&data, buf + i + j, 4);
			fspi_writel(f, data, base + FSPI_TFDR + j);
		}
		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
	}
}

static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
			  const struct spi_mem_op *op)
{
	void __iomem *base = f->iobase;
	int i, ret;
	int len = op->data.nbytes;
	u8 *buf = (u8 *) op->data.buf.in;

	/*
	 * Default value of water mark level is 8 bytes, hence in single
	 * read request controller can read max 8 bytes of data.
	 */
	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
		/* Wait for RXFIFO available */
		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
					   FSPI_INTR_IPRXWA, 0,
					   POLL_TOUT, true);
		WARN_ON(ret);

		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
		/* move the FIFO pointer */
		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
	}

	if (i < len) {
		u32 tmp;
		int size, j;

		buf = op->data.buf.in + i;
		/* Wait for RXFIFO available */
		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
					   FSPI_INTR_IPRXWA, 0,
					   POLL_TOUT, true);
		WARN_ON(ret);

		len = op->data.nbytes - i;
		for (j = 0; j < op->data.nbytes - i; j += 4) {
			tmp = fspi_readl(f, base + FSPI_RFDR + j);
			size = min(len, 4);
			memcpy(buf + j, &tmp, size);
			len -= size;
		}
	}

	/* invalid the RXFIFO */
	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
	/* move the FIFO pointer */
	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
}

static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
{
	void __iomem *base = f->iobase;
	int seqnum = 0;
	int err = 0;
	u32 reg;

	reg = fspi_readl(f, base + FSPI_IPRXFCR);
	/* invalid RXFIFO first */
	reg &= ~FSPI_IPRXFCR_DMA_EN;
	reg = reg | FSPI_IPRXFCR_CLR;
	fspi_writel(f, reg, base + FSPI_IPRXFCR);

	init_completion(&f->c);

	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
	/*
	 * Always start the sequence at the same index since we update
	 * the LUT at each exec_op() call. And also specify the DATA
	 * length, since it's has not been specified in the LUT.
	 */
	fspi_writel(f, op->data.nbytes |
		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
		 base + FSPI_IPCR1);

	/* Trigger the LUT now. */
	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);

	/* Wait for the interrupt. */
	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
		err = -ETIMEDOUT;

	/* Invoke IP data read, if request is of data read. */
	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
		nxp_fspi_read_rxfifo(f, op);

	return err;
}

static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
	int err = 0;

	mutex_lock(&f->lock);

	/* Wait for controller being ready. */
	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
	WARN_ON(err);

	nxp_fspi_select_mem(f, mem->spi);

	nxp_fspi_prepare_lut(f, op);
	/*
	 * If we have large chunks of data, we read them through the AHB bus
	 * by accessing the mapped memory. In all other cases we use
	 * IP commands to access the flash.
	 */
	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
	    op->data.dir == SPI_MEM_DATA_IN) {
		err = nxp_fspi_read_ahb(f, op);
	} else {
		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
			nxp_fspi_fill_txfifo(f, op);

		err = nxp_fspi_do_op(f, op);
	}

	/* Invalidate the data in the AHB buffer. */
	nxp_fspi_invalid(f);

	mutex_unlock(&f->lock);

	return err;
}

static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);

	if (op->data.dir == SPI_MEM_DATA_OUT) {
		if (op->data.nbytes > f->devtype_data->txfifo)
			op->data.nbytes = f->devtype_data->txfifo;
	} else {
		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
			op->data.nbytes = f->devtype_data->ahb_buf_size;
		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
	}

	return 0;
}

static int nxp_fspi_default_setup(struct nxp_fspi *f)
{
	void __iomem *base = f->iobase;
	int ret, i;
	u32 reg;

	/* disable and unprepare clock to avoid glitch pass to controller */
	nxp_fspi_clk_disable_unprep(f);

	/* the default frequency, we will change it later if necessary. */
	ret = clk_set_rate(f->clk, 20000000);
	if (ret)
		return ret;

	ret = nxp_fspi_clk_prep_enable(f);
	if (ret)
		return ret;

	/* Reset the module */
	/* w1c register, wait unit clear */
	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
	WARN_ON(ret);

	/* Disable the module */
	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);

	/* Reset the DLL register to default value */
	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);

	/* enable module */
	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
		    base + FSPI_MCR0);

	/*
	 * Disable same device enable bit and configure all slave devices
	 * independently.
	 */
	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
	fspi_writel(f, reg, base + FSPI_MCR2);

	/* AHB configuration for access buffer 0~7. */
	for (i = 0; i < 7; i++)
		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);

	/*
	 * Set ADATSZ with the maximum AHB buffer size to improve the read
	 * performance.
	 */
	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);

	/* prefetch and no start address alignment limitation */
	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
		 base + FSPI_AHBCR);

	/* AHB Read - Set lut sequence ID for all CS. */
	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);

	f->selected = -1;

	/* enable the interrupt */
	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);

	return 0;
}

static const char *nxp_fspi_get_name(struct spi_mem *mem)
{
	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
	struct device *dev = &mem->spi->dev;
	const char *name;

	// Set custom name derived from the platform_device of the controller.
	if (of_get_available_child_count(f->dev->of_node) == 1)
		return dev_name(f->dev);

	name = devm_kasprintf(dev, GFP_KERNEL,
			      "%s-%d", dev_name(f->dev),
			      mem->spi->chip_select);

	if (!name) {
		dev_err(dev, "failed to get memory for custom flash name\n");
		return ERR_PTR(-ENOMEM);
	}

	return name;
}

static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
	.adjust_op_size = nxp_fspi_adjust_op_size,
	.supports_op = nxp_fspi_supports_op,
	.exec_op = nxp_fspi_exec_op,
	.get_name = nxp_fspi_get_name,
};

static int nxp_fspi_probe(struct platform_device *pdev)
{
	struct spi_controller *ctlr;
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	struct resource *res;
	struct nxp_fspi *f;
	int ret;
	u32 reg;

	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
	if (!ctlr)
		return -ENOMEM;

	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;

	f = spi_controller_get_devdata(ctlr);
	f->dev = dev;
	f->devtype_data = device_get_match_data(dev);
	if (!f->devtype_data) {
		ret = -ENODEV;
		goto err_put_ctrl;
	}

	platform_set_drvdata(pdev, f);

	/* find the resources - configuration register address space */
	if (is_acpi_node(f->dev->fwnode))
		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	else
		res = platform_get_resource_byname(pdev,
				IORESOURCE_MEM, "fspi_base");

	f->iobase = devm_ioremap_resource(dev, res);
	if (IS_ERR(f->iobase)) {
		ret = PTR_ERR(f->iobase);
		goto err_put_ctrl;
	}

	/* Clear potential interrupts */
	reg = fspi_readl(f, f->iobase + FSPI_INTR);
	if (reg)
		fspi_writel(f, reg, f->iobase + FSPI_INTR);


	/* find the resources - controller memory mapped space */
	if (is_acpi_node(f->dev->fwnode))
		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
	else
		res = platform_get_resource_byname(pdev,
				IORESOURCE_MEM, "fspi_mmap");

	if (!res) {
		ret = -ENODEV;
		goto err_put_ctrl;
	}

	/* assign memory mapped starting address and mapped size. */
	f->memmap_phy = res->start;
	f->memmap_phy_size = resource_size(res);

	/* find the clocks */
	if (dev_of_node(&pdev->dev)) {
		f->clk_en = devm_clk_get(dev, "fspi_en");
		if (IS_ERR(f->clk_en)) {
			ret = PTR_ERR(f->clk_en);
			goto err_put_ctrl;
		}

		f->clk = devm_clk_get(dev, "fspi");
		if (IS_ERR(f->clk)) {
			ret = PTR_ERR(f->clk);
			goto err_put_ctrl;
		}

		ret = nxp_fspi_clk_prep_enable(f);
		if (ret) {
			dev_err(dev, "can not enable the clock\n");
			goto err_put_ctrl;
		}
	}

	/* find the irq */
	ret = platform_get_irq(pdev, 0);
	if (ret < 0)
		goto err_disable_clk;

	ret = devm_request_irq(dev, ret,
			nxp_fspi_irq_handler, 0, pdev->name, f);
	if (ret) {
		dev_err(dev, "failed to request irq: %d\n", ret);
		goto err_disable_clk;
	}

	mutex_init(&f->lock);

	ctlr->bus_num = -1;
	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
	ctlr->mem_ops = &nxp_fspi_mem_ops;

	nxp_fspi_default_setup(f);

	ctlr->dev.of_node = np;

	ret = devm_spi_register_controller(&pdev->dev, ctlr);
	if (ret)
		goto err_destroy_mutex;

	return 0;

err_destroy_mutex:
	mutex_destroy(&f->lock);

err_disable_clk:
	nxp_fspi_clk_disable_unprep(f);

err_put_ctrl:
	spi_controller_put(ctlr);

	dev_err(dev, "NXP FSPI probe failed\n");
	return ret;
}

static int nxp_fspi_remove(struct platform_device *pdev)
{
	struct nxp_fspi *f = platform_get_drvdata(pdev);

	/* disable the hardware */
	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);

	nxp_fspi_clk_disable_unprep(f);

	mutex_destroy(&f->lock);

	if (f->ahb_addr)
		iounmap(f->ahb_addr);

	return 0;
}

static int nxp_fspi_suspend(struct device *dev)
{
	return 0;
}

static int nxp_fspi_resume(struct device *dev)
{
	struct nxp_fspi *f = dev_get_drvdata(dev);

	nxp_fspi_default_setup(f);

	return 0;
}

static const struct of_device_id nxp_fspi_dt_ids[] = {
	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
	{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);

#ifdef CONFIG_ACPI
static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
	{}
};
MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
#endif

static const struct dev_pm_ops nxp_fspi_pm_ops = {
	.suspend	= nxp_fspi_suspend,
	.resume		= nxp_fspi_resume,
};

static struct platform_driver nxp_fspi_driver = {
	.driver = {
		.name	= "nxp-fspi",
		.of_match_table = nxp_fspi_dt_ids,
		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
		.pm =   &nxp_fspi_pm_ops,
	},
	.probe          = nxp_fspi_probe,
	.remove		= nxp_fspi_remove,
};
module_platform_driver(nxp_fspi_driver);

MODULE_DESCRIPTION("NXP FSPI Controller Driver");
MODULE_AUTHOR("NXP Semiconductor");
MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
MODULE_LICENSE("GPL v2");