1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) ST-Ericsson SA 2010
*
* Author: Rabin Vincent <rabin.vincent@stericsson.com> for ST-Ericsson
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/random.h>
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/sys_soc.h>
#include <asm/cputype.h>
#include <asm/tlbflush.h>
#include <asm/cacheflush.h>
#include <asm/mach/map.h>
/**
* struct dbx500_asic_id - fields of the ASIC ID
* @process: the manufacturing process, 0x40 is 40 nm 0x00 is "standard"
* @partnumber: hithereto 0x8500 for DB8500
* @revision: version code in the series
*/
struct dbx500_asic_id {
u16 partnumber;
u8 revision;
u8 process;
};
static struct dbx500_asic_id dbx500_id;
static unsigned int __init ux500_read_asicid(phys_addr_t addr)
{
void __iomem *virt = ioremap(addr, 4);
unsigned int asicid;
if (!virt)
return 0;
asicid = readl(virt);
iounmap(virt);
return asicid;
}
static void ux500_print_soc_info(unsigned int asicid)
{
unsigned int rev = dbx500_id.revision;
pr_info("DB%4x ", dbx500_id.partnumber);
if (rev == 0x01)
pr_cont("Early Drop");
else if (rev >= 0xA0)
pr_cont("v%d.%d" , (rev >> 4) - 0xA + 1, rev & 0xf);
else
pr_cont("Unknown");
pr_cont(" [%#010x]\n", asicid);
}
static unsigned int partnumber(unsigned int asicid)
{
return (asicid >> 8) & 0xffff;
}
/*
* SOC MIDR ASICID ADDRESS ASICID VALUE
* DB8500ed 0x410fc090 0x9001FFF4 0x00850001
* DB8500v1 0x411fc091 0x9001FFF4 0x008500A0
* DB8500v1.1 0x411fc091 0x9001FFF4 0x008500A1
* DB8500v2 0x412fc091 0x9001DBF4 0x008500B0
* DB8520v2.2 0x412fc091 0x9001DBF4 0x008500B2
* DB5500v1 0x412fc091 0x9001FFF4 0x005500A0
* DB9540 0x413fc090 0xFFFFDBF4 0x009540xx
*/
static void __init ux500_setup_id(void)
{
unsigned int cpuid = read_cpuid_id();
unsigned int asicid = 0;
phys_addr_t addr = 0;
switch (cpuid) {
case 0x410fc090: /* DB8500ed */
case 0x411fc091: /* DB8500v1 */
addr = 0x9001FFF4;
break;
case 0x412fc091: /* DB8520 / DB8500v2 / DB5500v1 */
asicid = ux500_read_asicid(0x9001DBF4);
if (partnumber(asicid) == 0x8500 ||
partnumber(asicid) == 0x8520)
/* DB8500v2 */
break;
/* DB5500v1 */
addr = 0x9001FFF4;
break;
case 0x413fc090: /* DB9540 */
addr = 0xFFFFDBF4;
break;
}
if (addr)
asicid = ux500_read_asicid(addr);
if (!asicid) {
pr_err("Unable to identify SoC\n");
BUG();
}
dbx500_id.process = asicid >> 24;
dbx500_id.partnumber = partnumber(asicid);
dbx500_id.revision = asicid & 0xff;
ux500_print_soc_info(asicid);
}
static const char * __init ux500_get_machine(void)
{
return kasprintf(GFP_KERNEL, "DB%4x", dbx500_id.partnumber);
}
static const char * __init ux500_get_family(void)
{
return kasprintf(GFP_KERNEL, "ux500");
}
static const char * __init ux500_get_revision(void)
{
unsigned int rev = dbx500_id.revision;
if (rev == 0x01)
return kasprintf(GFP_KERNEL, "%s", "ED");
else if (rev >= 0xA0)
return kasprintf(GFP_KERNEL, "%d.%d",
(rev >> 4) - 0xA + 1, rev & 0xf);
return kasprintf(GFP_KERNEL, "%s", "Unknown");
}
static ssize_t
process_show(struct device *dev, struct device_attribute *attr, char *buf)
{
if (dbx500_id.process == 0x00)
return sprintf(buf, "Standard\n");
return sprintf(buf, "%02xnm\n", dbx500_id.process);
}
static DEVICE_ATTR_RO(process);
static struct attribute *ux500_soc_attrs[] = {
&dev_attr_process.attr,
NULL
};
ATTRIBUTE_GROUPS(ux500_soc);
static const char *db8500_read_soc_id(struct device_node *backupram)
{
void __iomem *base;
void __iomem *uid;
const char *retstr;
base = of_iomap(backupram, 0);
if (!base)
return NULL;
uid = base + 0x1fc0;
/* Throw these device-specific numbers into the entropy pool */
add_device_randomness(uid, 0x14);
retstr = kasprintf(GFP_KERNEL, "%08x%08x%08x%08x%08x",
readl((u32 *)uid+0),
readl((u32 *)uid+1), readl((u32 *)uid+2),
readl((u32 *)uid+3), readl((u32 *)uid+4));
iounmap(base);
return retstr;
}
static void __init soc_info_populate(struct soc_device_attribute *soc_dev_attr,
struct device_node *backupram)
{
soc_dev_attr->soc_id = db8500_read_soc_id(backupram);
soc_dev_attr->machine = ux500_get_machine();
soc_dev_attr->family = ux500_get_family();
soc_dev_attr->revision = ux500_get_revision();
soc_dev_attr->custom_attr_group = ux500_soc_groups[0];
}
static int __init ux500_soc_device_init(void)
{
struct soc_device *soc_dev;
struct soc_device_attribute *soc_dev_attr;
struct device_node *backupram;
backupram = of_find_compatible_node(NULL, NULL, "ste,dbx500-backupram");
if (!backupram)
return 0;
ux500_setup_id();
soc_dev_attr = kzalloc(sizeof(*soc_dev_attr), GFP_KERNEL);
if (!soc_dev_attr) {
of_node_put(backupram);
return -ENOMEM;
}
soc_info_populate(soc_dev_attr, backupram);
of_node_put(backupram);
soc_dev = soc_device_register(soc_dev_attr);
if (IS_ERR(soc_dev)) {
kfree(soc_dev_attr);
return PTR_ERR(soc_dev);
}
return 0;
}
subsys_initcall(ux500_soc_device_init);
|