summaryrefslogtreecommitdiff
path: root/drivers/rtc/interface.c
blob: 7e3ad4f3b3432aa89c8a7d9a4d9902453f9adbbf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/*
 * RTC subsystem, interface functions
 *
 * Copyright (C) 2005 Tower Technologies
 * Author: Alessandro Zummo <a.zummo@towertech.it>
 *
 * based on arch/arm/common/rtctime.c
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
*/

#include <linux/rtc.h>
#include <linux/log2.h>

int rtc_read_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return -EBUSY;

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->read_time)
		err = -EINVAL;
	else {
		memset(tm, 0, sizeof(struct rtc_time));
		err = rtc->ops->read_time(rtc->dev.parent, tm);
	}

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_read_time);

int rtc_set_time(struct rtc_device *rtc, struct rtc_time *tm)
{
	int err;

	err = rtc_valid_tm(tm);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return -EBUSY;

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->set_time)
		err = -EINVAL;
	else
		err = rtc->ops->set_time(rtc->dev.parent, tm);

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_time);

int rtc_set_mmss(struct rtc_device *rtc, unsigned long secs)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return -EBUSY;

	if (!rtc->ops)
		err = -ENODEV;
	else if (rtc->ops->set_mmss)
		err = rtc->ops->set_mmss(rtc->dev.parent, secs);
	else if (rtc->ops->read_time && rtc->ops->set_time) {
		struct rtc_time new, old;

		err = rtc->ops->read_time(rtc->dev.parent, &old);
		if (err == 0) {
			rtc_time_to_tm(secs, &new);

			/*
			 * avoid writing when we're going to change the day of
			 * the month. We will retry in the next minute. This
			 * basically means that if the RTC must not drift
			 * by more than 1 minute in 11 minutes.
			 */
			if (!((old.tm_hour == 23 && old.tm_min == 59) ||
				(new.tm_hour == 23 && new.tm_min == 59)))
				err = rtc->ops->set_time(rtc->dev.parent,
						&new);
		}
	}
	else
		err = -EINVAL;

	mutex_unlock(&rtc->ops_lock);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_mmss);

static int rtc_read_alarm_internal(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return -EBUSY;

	if (rtc->ops == NULL)
		err = -ENODEV;
	else if (!rtc->ops->read_alarm)
		err = -EINVAL;
	else {
		memset(alarm, 0, sizeof(struct rtc_wkalrm));
		err = rtc->ops->read_alarm(rtc->dev.parent, alarm);
	}

	mutex_unlock(&rtc->ops_lock);
	return err;
}

int rtc_read_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;
	struct rtc_time before, now;
	int first_time = 1;

	/* The lower level RTC driver may not be capable of filling
	 * in all fields of the rtc_time struct (eg. rtc-cmos),
	 * and so might instead return -1 in some fields.
	 * We deal with that here by grabbing a current RTC timestamp
	 * and using values from that for any missing (-1) values.
	 *
	 * But this can be racey, because some fields of the RTC timestamp
	 * may have wrapped in the interval since we read the RTC alarm,
	 * which would lead to us inserting inconsistent values in place
	 * of the -1 fields.
	 *
	 * Reading the alarm and timestamp in the reverse sequence
	 * would have the same race condition, and not solve the issue.
	 *
	 * So, we must first read the RTC timestamp,
	 * then read the RTC alarm value,
	 * and then read a second RTC timestamp.
	 *
	 * If any fields of the second timestamp have changed
	 * when compared with the first timestamp, then we know
	 * our timestamp may be inconsistent with that used by
	 * the low-level rtc_read_alarm_internal() function.
	 *
	 * So, when the two timestamps disagree, we just loop and do
	 * the process again to get a fully consistent set of values.
	 *
	 * This could all instead be done in the lower level driver,
	 * but since more than one lower level RTC implementation needs it,
	 * then it's probably best best to do it here instead of there..
	 */

	/* Get the "before" timestamp */
	err = rtc_read_time(rtc, &before);
	if (err < 0)
		return err;
	do {
		if (!first_time)
			memcpy(&before, &now, sizeof(struct rtc_time));
		first_time = 0;

		/* get the RTC alarm values, which may be incomplete */
		err = rtc_read_alarm_internal(rtc, alarm);
		if (err)
			return err;
		if (!alarm->enabled)
			return 0;

		/* get the "after" timestamp, to detect wrapped fields */
		err = rtc_read_time(rtc, &now);
		if (err < 0)
			return err;

		/* note that tm_sec is a "don't care" value here: */
	} while (   before.tm_min   != now.tm_min
		 || before.tm_hour  != now.tm_hour
		 || before.tm_mon   != now.tm_mon
		 || before.tm_year  != now.tm_year
		 || before.tm_isdst != now.tm_isdst);

	/* Fill in any missing alarm fields using the timestamp */
	if (alarm->time.tm_sec == -1)
		alarm->time.tm_sec = now.tm_sec;
	if (alarm->time.tm_min == -1)
		alarm->time.tm_min = now.tm_min;
	if (alarm->time.tm_hour == -1)
		alarm->time.tm_hour = now.tm_hour;
	if (alarm->time.tm_mday == -1)
		alarm->time.tm_mday = now.tm_mday;
	if (alarm->time.tm_mon == -1)
		alarm->time.tm_mon = now.tm_mon;
	if (alarm->time.tm_year == -1)
		alarm->time.tm_year = now.tm_year;
	return 0;
}
EXPORT_SYMBOL_GPL(rtc_read_alarm);

int rtc_set_alarm(struct rtc_device *rtc, struct rtc_wkalrm *alarm)
{
	int err;

	err = rtc_valid_tm(&alarm->time);
	if (err != 0)
		return err;

	err = mutex_lock_interruptible(&rtc->ops_lock);
	if (err)
		return -EBUSY;

	if (!rtc->ops)
		err = -ENODEV;
	else if (!rtc->ops->set_alarm)
		err = -EINVAL;
	else
		err = rtc->ops->set_alarm(rtc->dev.parent, alarm);

	mutex_unlock(&rtc->ops_lock);
	return err;
}
EXPORT_SYMBOL_GPL(rtc_set_alarm);

/**
 * rtc_update_irq - report RTC periodic, alarm, and/or update irqs
 * @rtc: the rtc device
 * @num: how many irqs are being reported (usually one)
 * @events: mask of RTC_IRQF with one or more of RTC_PF, RTC_AF, RTC_UF
 * Context: in_interrupt(), irqs blocked
 */
void rtc_update_irq(struct rtc_device *rtc,
		unsigned long num, unsigned long events)
{
	spin_lock(&rtc->irq_lock);
	rtc->irq_data = (rtc->irq_data + (num << 8)) | events;
	spin_unlock(&rtc->irq_lock);

	spin_lock(&rtc->irq_task_lock);
	if (rtc->irq_task)
		rtc->irq_task->func(rtc->irq_task->private_data);
	spin_unlock(&rtc->irq_task_lock);

	wake_up_interruptible(&rtc->irq_queue);
	kill_fasync(&rtc->async_queue, SIGIO, POLL_IN);
}
EXPORT_SYMBOL_GPL(rtc_update_irq);

static int __rtc_match(struct device *dev, void *data)
{
	char *name = (char *)data;

	if (strncmp(dev->bus_id, name, BUS_ID_SIZE) == 0)
		return 1;
	return 0;
}

struct rtc_device *rtc_class_open(char *name)
{
	struct device *dev;
	struct rtc_device *rtc = NULL;

	dev = class_find_device(rtc_class, name, __rtc_match);
	if (dev)
		rtc = to_rtc_device(dev);

	if (rtc) {
		if (!try_module_get(rtc->owner)) {
			put_device(dev);
			rtc = NULL;
		}
	}

	return rtc;
}
EXPORT_SYMBOL_GPL(rtc_class_open);

void rtc_class_close(struct rtc_device *rtc)
{
	module_put(rtc->owner);
	put_device(&rtc->dev);
}
EXPORT_SYMBOL_GPL(rtc_class_close);

int rtc_irq_register(struct rtc_device *rtc, struct rtc_task *task)
{
	int retval = -EBUSY;

	if (task == NULL || task->func == NULL)
		return -EINVAL;

	/* Cannot register while the char dev is in use */
	if (test_and_set_bit_lock(RTC_DEV_BUSY, &rtc->flags))
		return -EBUSY;

	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == NULL) {
		rtc->irq_task = task;
		retval = 0;
	}
	spin_unlock_irq(&rtc->irq_task_lock);

	clear_bit_unlock(RTC_DEV_BUSY, &rtc->flags);

	return retval;
}
EXPORT_SYMBOL_GPL(rtc_irq_register);

void rtc_irq_unregister(struct rtc_device *rtc, struct rtc_task *task)
{
	spin_lock_irq(&rtc->irq_task_lock);
	if (rtc->irq_task == task)
		rtc->irq_task = NULL;
	spin_unlock_irq(&rtc->irq_task_lock);
}
EXPORT_SYMBOL_GPL(rtc_irq_unregister);

/**
 * rtc_irq_set_state - enable/disable 2^N Hz periodic IRQs
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @enabled: true to enable periodic IRQs
 * Context: any
 *
 * Note that rtc_irq_set_freq() should previously have been used to
 * specify the desired frequency of periodic IRQ task->func() callbacks.
 */
int rtc_irq_set_state(struct rtc_device *rtc, struct rtc_task *task, int enabled)
{
	int err = 0;
	unsigned long flags;

	if (rtc->ops->irq_set_state == NULL)
		return -ENXIO;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	if (err == 0)
		err = rtc->ops->irq_set_state(rtc->dev.parent, enabled);

	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_state);

/**
 * rtc_irq_set_freq - set 2^N Hz periodic IRQ frequency for IRQ
 * @rtc: the rtc device
 * @task: currently registered with rtc_irq_register()
 * @freq: positive frequency with which task->func() will be called
 * Context: any
 *
 * Note that rtc_irq_set_state() is used to enable or disable the
 * periodic IRQs.
 */
int rtc_irq_set_freq(struct rtc_device *rtc, struct rtc_task *task, int freq)
{
	int err = 0;
	unsigned long flags;

	if (rtc->ops->irq_set_freq == NULL)
		return -ENXIO;

	if (!is_power_of_2(freq))
		return -EINVAL;

	spin_lock_irqsave(&rtc->irq_task_lock, flags);
	if (rtc->irq_task != NULL && task == NULL)
		err = -EBUSY;
	if (rtc->irq_task != task)
		err = -EACCES;
	spin_unlock_irqrestore(&rtc->irq_task_lock, flags);

	if (err == 0) {
		err = rtc->ops->irq_set_freq(rtc->dev.parent, freq);
		if (err == 0)
			rtc->irq_freq = freq;
	}
	return err;
}
EXPORT_SYMBOL_GPL(rtc_irq_set_freq);