summaryrefslogtreecommitdiff
path: root/drivers/pwm/pwm-sifive.c
blob: 2a7cd2deaeea2e0071fc2f8f283814c9c55a9242 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2017-2018 SiFive
 * For SiFive's PWM IP block documentation please refer Chapter 14 of
 * Reference Manual : https://static.dev.sifive.com/FU540-C000-v1.0.pdf
 *
 * Limitations:
 * - When changing both duty cycle and period, we cannot prevent in
 *   software that the output might produce a period with mixed
 *   settings (new period length and old duty cycle).
 * - The hardware cannot generate a 100% duty cycle.
 * - The hardware generates only inverted output.
 */
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/slab.h>
#include <linux/bitfield.h>

/* Register offsets */
#define PWM_SIFIVE_PWMCFG		0x0
#define PWM_SIFIVE_PWMCOUNT		0x8
#define PWM_SIFIVE_PWMS			0x10
#define PWM_SIFIVE_PWMCMP0		0x20

/* PWMCFG fields */
#define PWM_SIFIVE_PWMCFG_SCALE		GENMASK(3, 0)
#define PWM_SIFIVE_PWMCFG_STICKY	BIT(8)
#define PWM_SIFIVE_PWMCFG_ZERO_CMP	BIT(9)
#define PWM_SIFIVE_PWMCFG_DEGLITCH	BIT(10)
#define PWM_SIFIVE_PWMCFG_EN_ALWAYS	BIT(12)
#define PWM_SIFIVE_PWMCFG_EN_ONCE	BIT(13)
#define PWM_SIFIVE_PWMCFG_CENTER	BIT(16)
#define PWM_SIFIVE_PWMCFG_GANG		BIT(24)
#define PWM_SIFIVE_PWMCFG_IP		BIT(28)

/* PWM_SIFIVE_SIZE_PWMCMP is used to calculate offset for pwmcmpX registers */
#define PWM_SIFIVE_SIZE_PWMCMP		4
#define PWM_SIFIVE_CMPWIDTH		16
#define PWM_SIFIVE_DEFAULT_PERIOD	10000000

struct pwm_sifive_ddata {
	struct pwm_chip	chip;
	struct mutex lock; /* lock to protect user_count */
	struct notifier_block notifier;
	struct clk *clk;
	void __iomem *regs;
	unsigned int real_period;
	unsigned int approx_period;
	int user_count;
};

static inline
struct pwm_sifive_ddata *pwm_sifive_chip_to_ddata(struct pwm_chip *c)
{
	return container_of(c, struct pwm_sifive_ddata, chip);
}

static int pwm_sifive_request(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);

	mutex_lock(&ddata->lock);
	ddata->user_count++;
	mutex_unlock(&ddata->lock);

	return 0;
}

static void pwm_sifive_free(struct pwm_chip *chip, struct pwm_device *pwm)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);

	mutex_lock(&ddata->lock);
	ddata->user_count--;
	mutex_unlock(&ddata->lock);
}

static void pwm_sifive_update_clock(struct pwm_sifive_ddata *ddata,
				    unsigned long rate)
{
	unsigned long long num;
	unsigned long scale_pow;
	int scale;
	u32 val;
	/*
	 * The PWM unit is used with pwmzerocmp=0, so the only way to modify the
	 * period length is using pwmscale which provides the number of bits the
	 * counter is shifted before being feed to the comparators. A period
	 * lasts (1 << (PWM_SIFIVE_CMPWIDTH + pwmscale)) clock ticks.
	 * (1 << (PWM_SIFIVE_CMPWIDTH + scale)) * 10^9/rate = period
	 */
	scale_pow = div64_ul(ddata->approx_period * (u64)rate, NSEC_PER_SEC);
	scale = clamp(ilog2(scale_pow) - PWM_SIFIVE_CMPWIDTH, 0, 0xf);

	val = PWM_SIFIVE_PWMCFG_EN_ALWAYS |
	      FIELD_PREP(PWM_SIFIVE_PWMCFG_SCALE, scale);
	writel(val, ddata->regs + PWM_SIFIVE_PWMCFG);

	/* As scale <= 15 the shift operation cannot overflow. */
	num = (unsigned long long)NSEC_PER_SEC << (PWM_SIFIVE_CMPWIDTH + scale);
	ddata->real_period = div64_ul(num, rate);
	dev_dbg(ddata->chip.dev,
		"New real_period = %u ns\n", ddata->real_period);
}

static void pwm_sifive_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
				 struct pwm_state *state)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	u32 duty, val;

	duty = readl(ddata->regs + PWM_SIFIVE_PWMCMP0 +
		     pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);

	state->enabled = duty > 0;

	val = readl(ddata->regs + PWM_SIFIVE_PWMCFG);
	if (!(val & PWM_SIFIVE_PWMCFG_EN_ALWAYS))
		state->enabled = false;

	state->period = ddata->real_period;
	state->duty_cycle =
		(u64)duty * ddata->real_period >> PWM_SIFIVE_CMPWIDTH;
	state->polarity = PWM_POLARITY_INVERSED;
}

static int pwm_sifive_enable(struct pwm_chip *chip, bool enable)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	int ret;

	if (enable) {
		ret = clk_enable(ddata->clk);
		if (ret) {
			dev_err(ddata->chip.dev, "Enable clk failed\n");
			return ret;
		}
	}

	if (!enable)
		clk_disable(ddata->clk);

	return 0;
}

static int pwm_sifive_apply(struct pwm_chip *chip, struct pwm_device *pwm,
			    const struct pwm_state *state)
{
	struct pwm_sifive_ddata *ddata = pwm_sifive_chip_to_ddata(chip);
	struct pwm_state cur_state;
	unsigned int duty_cycle;
	unsigned long long num;
	bool enabled;
	int ret = 0;
	u32 frac;

	if (state->polarity != PWM_POLARITY_INVERSED)
		return -EINVAL;

	ret = clk_enable(ddata->clk);
	if (ret) {
		dev_err(ddata->chip.dev, "Enable clk failed\n");
		return ret;
	}

	mutex_lock(&ddata->lock);
	cur_state = pwm->state;
	enabled = cur_state.enabled;

	duty_cycle = state->duty_cycle;
	if (!state->enabled)
		duty_cycle = 0;

	/*
	 * The problem of output producing mixed setting as mentioned at top,
	 * occurs here. To minimize the window for this problem, we are
	 * calculating the register values first and then writing them
	 * consecutively
	 */
	num = (u64)duty_cycle * (1U << PWM_SIFIVE_CMPWIDTH);
	frac = DIV64_U64_ROUND_CLOSEST(num, state->period);
	/* The hardware cannot generate a 100% duty cycle */
	frac = min(frac, (1U << PWM_SIFIVE_CMPWIDTH) - 1);

	if (state->period != ddata->approx_period) {
		if (ddata->user_count != 1) {
			ret = -EBUSY;
			goto exit;
		}
		ddata->approx_period = state->period;
		pwm_sifive_update_clock(ddata, clk_get_rate(ddata->clk));
	}

	writel(frac, ddata->regs + PWM_SIFIVE_PWMCMP0 +
	       pwm->hwpwm * PWM_SIFIVE_SIZE_PWMCMP);

	if (state->enabled != enabled)
		pwm_sifive_enable(chip, state->enabled);

exit:
	clk_disable(ddata->clk);
	mutex_unlock(&ddata->lock);
	return ret;
}

static const struct pwm_ops pwm_sifive_ops = {
	.request = pwm_sifive_request,
	.free = pwm_sifive_free,
	.get_state = pwm_sifive_get_state,
	.apply = pwm_sifive_apply,
	.owner = THIS_MODULE,
};

static int pwm_sifive_clock_notifier(struct notifier_block *nb,
				     unsigned long event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct pwm_sifive_ddata *ddata =
		container_of(nb, struct pwm_sifive_ddata, notifier);

	if (event == POST_RATE_CHANGE)
		pwm_sifive_update_clock(ddata, ndata->new_rate);

	return NOTIFY_OK;
}

static int pwm_sifive_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct pwm_sifive_ddata *ddata;
	struct pwm_chip *chip;
	int ret;

	ddata = devm_kzalloc(dev, sizeof(*ddata), GFP_KERNEL);
	if (!ddata)
		return -ENOMEM;

	mutex_init(&ddata->lock);
	chip = &ddata->chip;
	chip->dev = dev;
	chip->ops = &pwm_sifive_ops;
	chip->of_xlate = of_pwm_xlate_with_flags;
	chip->of_pwm_n_cells = 3;
	chip->base = -1;
	chip->npwm = 4;

	ddata->regs = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(ddata->regs))
		return PTR_ERR(ddata->regs);

	ddata->clk = devm_clk_get(dev, NULL);
	if (IS_ERR(ddata->clk))
		return dev_err_probe(dev, PTR_ERR(ddata->clk),
				     "Unable to find controller clock\n");

	ret = clk_prepare_enable(ddata->clk);
	if (ret) {
		dev_err(dev, "failed to enable clock for pwm: %d\n", ret);
		return ret;
	}

	/* Watch for changes to underlying clock frequency */
	ddata->notifier.notifier_call = pwm_sifive_clock_notifier;
	ret = clk_notifier_register(ddata->clk, &ddata->notifier);
	if (ret) {
		dev_err(dev, "failed to register clock notifier: %d\n", ret);
		goto disable_clk;
	}

	ret = pwmchip_add(chip);
	if (ret < 0) {
		dev_err(dev, "cannot register PWM: %d\n", ret);
		goto unregister_clk;
	}

	platform_set_drvdata(pdev, ddata);
	dev_dbg(dev, "SiFive PWM chip registered %d PWMs\n", chip->npwm);

	return 0;

unregister_clk:
	clk_notifier_unregister(ddata->clk, &ddata->notifier);
disable_clk:
	clk_disable_unprepare(ddata->clk);

	return ret;
}

static int pwm_sifive_remove(struct platform_device *dev)
{
	struct pwm_sifive_ddata *ddata = platform_get_drvdata(dev);
	bool is_enabled = false;
	struct pwm_device *pwm;
	int ret, ch;

	for (ch = 0; ch < ddata->chip.npwm; ch++) {
		pwm = &ddata->chip.pwms[ch];
		if (pwm->state.enabled) {
			is_enabled = true;
			break;
		}
	}
	if (is_enabled)
		clk_disable(ddata->clk);

	clk_disable_unprepare(ddata->clk);
	ret = pwmchip_remove(&ddata->chip);
	clk_notifier_unregister(ddata->clk, &ddata->notifier);

	return ret;
}

static const struct of_device_id pwm_sifive_of_match[] = {
	{ .compatible = "sifive,pwm0" },
	{},
};
MODULE_DEVICE_TABLE(of, pwm_sifive_of_match);

static struct platform_driver pwm_sifive_driver = {
	.probe = pwm_sifive_probe,
	.remove = pwm_sifive_remove,
	.driver = {
		.name = "pwm-sifive",
		.of_match_table = pwm_sifive_of_match,
	},
};
module_platform_driver(pwm_sifive_driver);

MODULE_DESCRIPTION("SiFive PWM driver");
MODULE_LICENSE("GPL v2");