1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
|
// SPDX-License-Identifier: GPL-2.0+
/*
* Mellanox boot control driver
*
* This driver provides a sysfs interface for systems management
* software to manage reset-time actions.
*
* Copyright (C) 2019 Mellanox Technologies
*/
#include <linux/acpi.h>
#include <linux/arm-smccc.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "mlxbf-bootctl.h"
#define MLXBF_BOOTCTL_SB_SECURE_MASK 0x03
#define MLXBF_BOOTCTL_SB_TEST_MASK 0x0c
#define MLXBF_SB_KEY_NUM 4
/* UUID used to probe ATF service. */
static const char *mlxbf_bootctl_svc_uuid_str =
"89c036b4-e7d7-11e6-8797-001aca00bfc4";
struct mlxbf_bootctl_name {
u32 value;
const char *name;
};
static struct mlxbf_bootctl_name boot_names[] = {
{ MLXBF_BOOTCTL_EXTERNAL, "external" },
{ MLXBF_BOOTCTL_EMMC, "emmc" },
{ MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
{ MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
{ MLXBF_BOOTCTL_NONE, "none" },
};
static const char * const mlxbf_bootctl_lifecycle_states[] = {
[0] = "Production",
[1] = "GA Secured",
[2] = "GA Non-Secured",
[3] = "RMA",
};
/* ARM SMC call which is atomic and no need for lock. */
static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
{
struct arm_smccc_res res;
arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
return res.a0;
}
/* Return the action in integer or an error code. */
static int mlxbf_bootctl_reset_action_to_val(const char *action)
{
int i;
for (i = 0; i < ARRAY_SIZE(boot_names); i++)
if (sysfs_streq(boot_names[i].name, action))
return boot_names[i].value;
return -EINVAL;
}
/* Return the action in string. */
static const char *mlxbf_bootctl_action_to_string(int action)
{
int i;
for (i = 0; i < ARRAY_SIZE(boot_names); i++)
if (boot_names[i].value == action)
return boot_names[i].name;
return "invalid action";
}
static ssize_t post_reset_wdog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", ret);
}
static ssize_t post_reset_wdog_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long value;
int ret;
ret = kstrtoul(buf, 10, &value);
if (ret)
return ret;
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
{
int action;
action = mlxbf_bootctl_smc(smc_op, 0);
if (action < 0)
return action;
return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
}
static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
{
int ret, action;
action = mlxbf_bootctl_reset_action_to_val(buf);
if (action < 0)
return action;
ret = mlxbf_bootctl_smc(smc_op, action);
if (ret < 0)
return ret;
return count;
}
static ssize_t reset_action_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
}
static ssize_t reset_action_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
}
static ssize_t second_reset_action_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
}
static ssize_t second_reset_action_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
count);
}
static ssize_t lifecycle_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int lc_state;
lc_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
if (lc_state < 0)
return lc_state;
lc_state &=
MLXBF_BOOTCTL_SB_TEST_MASK | MLXBF_BOOTCTL_SB_SECURE_MASK;
/*
* If the test bits are set, we specify that the current state may be
* due to using the test bits.
*/
if (lc_state & MLXBF_BOOTCTL_SB_TEST_MASK) {
lc_state &= MLXBF_BOOTCTL_SB_SECURE_MASK;
return sprintf(buf, "%s(test)\n",
mlxbf_bootctl_lifecycle_states[lc_state]);
}
return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
}
static ssize_t secure_boot_fuse_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
const char *status;
key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
if (key_state < 0)
return key_state;
/*
* key_state contains the bits for 4 Key versions, loaded from eFuses
* after a hard reset. Lower 4 bits are a thermometer code indicating
* key programming has started for key n (0000 = none, 0001 = version 0,
* 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
* are a thermometer code indicating key programming has completed for
* key n (same encodings as the start bits). This allows for detection
* of an interruption in the progamming process which has left the key
* partially programmed (and thus invalid). The process is to burn the
* eFuse for the new key start bit, burn the key eFuses, then burn the
* eFuse for the new key complete bit.
*
* For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
* 0011_0011: key 1 version valid, 0011_0111: key version 2 started
* programming but did not complete, etc. The most recent key for which
* both start and complete bit is set is loaded. On soft reset, this
* register is not modified.
*/
for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
burnt = key_state & BIT(key);
valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
if (burnt && valid)
upper_key_used = 1;
if (upper_key_used) {
if (burnt)
status = valid ? "Used" : "Wasted";
else
status = valid ? "Invalid" : "Skipped";
} else {
if (burnt)
status = valid ? "InUse" : "Incomplete";
else
status = valid ? "Invalid" : "Free";
}
buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
}
buf_len += sprintf(buf + buf_len, "\n");
return buf_len;
}
static DEVICE_ATTR_RW(post_reset_wdog);
static DEVICE_ATTR_RW(reset_action);
static DEVICE_ATTR_RW(second_reset_action);
static DEVICE_ATTR_RO(lifecycle_state);
static DEVICE_ATTR_RO(secure_boot_fuse_state);
static struct attribute *mlxbf_bootctl_attrs[] = {
&dev_attr_post_reset_wdog.attr,
&dev_attr_reset_action.attr,
&dev_attr_second_reset_action.attr,
&dev_attr_lifecycle_state.attr,
&dev_attr_secure_boot_fuse_state.attr,
NULL
};
ATTRIBUTE_GROUPS(mlxbf_bootctl);
static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
{"MLNXBF04", 0},
{}
};
MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
static bool mlxbf_bootctl_guid_match(const guid_t *guid,
const struct arm_smccc_res *res)
{
guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
res->a2, res->a2 >> 8, res->a2 >> 16,
res->a2 >> 24, res->a3, res->a3 >> 8,
res->a3 >> 16, res->a3 >> 24);
return guid_equal(guid, &id);
}
static int mlxbf_bootctl_probe(struct platform_device *pdev)
{
struct arm_smccc_res res = { 0 };
guid_t guid;
int ret;
/* Ensure we have the UUID we expect for this service. */
arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
if (!mlxbf_bootctl_guid_match(&guid, &res))
return -ENODEV;
/*
* When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
* in case of boot failures. However it doesn't clear the state if there
* is no failure. Restore the default boot mode here to avoid any
* unnecessary boot partition swapping.
*/
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
MLXBF_BOOTCTL_EMMC);
if (ret < 0)
dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
return 0;
}
static struct platform_driver mlxbf_bootctl_driver = {
.probe = mlxbf_bootctl_probe,
.driver = {
.name = "mlxbf-bootctl",
.dev_groups = mlxbf_bootctl_groups,
.acpi_match_table = mlxbf_bootctl_acpi_ids,
}
};
module_platform_driver(mlxbf_bootctl_driver);
MODULE_DESCRIPTION("Mellanox boot control driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Mellanox Technologies");
|