1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
* Copyright (C) 2018-2021 Linaro Ltd.
*/
#include <linux/refcount.h>
#include <linux/mutex.h>
#include <linux/clk.h>
#include <linux/device.h>
#include <linux/interconnect.h>
#include "ipa.h"
#include "ipa_clock.h"
#include "ipa_modem.h"
#include "ipa_data.h"
/**
* DOC: IPA Clocking
*
* The "IPA Clock" manages both the IPA core clock and the interconnects
* (buses) the IPA depends on as a single logical entity. A reference count
* is incremented by "get" operations and decremented by "put" operations.
* Transitions of that count from 0 to 1 result in the clock and interconnects
* being enabled, and transitions of the count from 1 to 0 cause them to be
* disabled. We currently operate the core clock at a fixed clock rate, and
* all buses at a fixed average and peak bandwidth. As more advanced IPA
* features are enabled, we can make better use of clock and bus scaling.
*
* An IPA clock reference must be held for any access to IPA hardware.
*/
/**
* struct ipa_interconnect - IPA interconnect information
* @path: Interconnect path
* @average_bandwidth: Average interconnect bandwidth (KB/second)
* @peak_bandwidth: Peak interconnect bandwidth (KB/second)
*/
struct ipa_interconnect {
struct icc_path *path;
u32 average_bandwidth;
u32 peak_bandwidth;
};
/**
* struct ipa_clock - IPA clocking information
* @count: Clocking reference count
* @mutex: Protects clock enable/disable
* @core: IPA core clock
* @interconnect_count: Number of elements in interconnect[]
* @interconnect: Interconnect array
*/
struct ipa_clock {
refcount_t count;
struct mutex mutex; /* protects clock enable/disable */
struct clk *core;
u32 interconnect_count;
struct ipa_interconnect *interconnect;
};
static int ipa_interconnect_init_one(struct device *dev,
struct ipa_interconnect *interconnect,
const struct ipa_interconnect_data *data)
{
struct icc_path *path;
path = of_icc_get(dev, data->name);
if (IS_ERR(path)) {
int ret = PTR_ERR(path);
dev_err_probe(dev, ret, "error getting %s interconnect\n",
data->name);
return ret;
}
interconnect->path = path;
interconnect->average_bandwidth = data->average_bandwidth;
interconnect->peak_bandwidth = data->peak_bandwidth;
return 0;
}
static void ipa_interconnect_exit_one(struct ipa_interconnect *interconnect)
{
icc_put(interconnect->path);
memset(interconnect, 0, sizeof(*interconnect));
}
/* Initialize interconnects required for IPA operation */
static int ipa_interconnect_init(struct ipa_clock *clock, struct device *dev,
const struct ipa_interconnect_data *data)
{
struct ipa_interconnect *interconnect;
u32 count;
int ret;
count = clock->interconnect_count;
interconnect = kcalloc(count, sizeof(*interconnect), GFP_KERNEL);
if (!interconnect)
return -ENOMEM;
clock->interconnect = interconnect;
while (count--) {
ret = ipa_interconnect_init_one(dev, interconnect, data++);
if (ret)
goto out_unwind;
interconnect++;
}
return 0;
out_unwind:
while (interconnect-- > clock->interconnect)
ipa_interconnect_exit_one(interconnect);
kfree(clock->interconnect);
clock->interconnect = NULL;
return ret;
}
/* Inverse of ipa_interconnect_init() */
static void ipa_interconnect_exit(struct ipa_clock *clock)
{
struct ipa_interconnect *interconnect;
interconnect = clock->interconnect + clock->interconnect_count;
while (interconnect-- > clock->interconnect)
ipa_interconnect_exit_one(interconnect);
kfree(clock->interconnect);
clock->interconnect = NULL;
}
/* Currently we only use one bandwidth level, so just "enable" interconnects */
static int ipa_interconnect_enable(struct ipa *ipa)
{
struct ipa_interconnect *interconnect;
struct ipa_clock *clock = ipa->clock;
int ret;
u32 i;
interconnect = clock->interconnect;
for (i = 0; i < clock->interconnect_count; i++) {
ret = icc_set_bw(interconnect->path,
interconnect->average_bandwidth,
interconnect->peak_bandwidth);
if (ret)
goto out_unwind;
interconnect++;
}
return 0;
out_unwind:
while (interconnect-- > clock->interconnect)
(void)icc_set_bw(interconnect->path, 0, 0);
return ret;
}
/* To disable an interconnect, we just its bandwidth to 0 */
static void ipa_interconnect_disable(struct ipa *ipa)
{
struct ipa_interconnect *interconnect;
struct ipa_clock *clock = ipa->clock;
int result = 0;
u32 count;
int ret;
count = clock->interconnect_count;
interconnect = clock->interconnect + count;
while (count--) {
interconnect--;
ret = icc_set_bw(interconnect->path, 0, 0);
if (ret && !result)
result = ret;
}
if (result)
dev_err(&ipa->pdev->dev,
"error %d disabling IPA interconnects\n", ret);
}
/* Turn on IPA clocks, including interconnects */
static int ipa_clock_enable(struct ipa *ipa)
{
int ret;
ret = ipa_interconnect_enable(ipa);
if (ret)
return ret;
ret = clk_prepare_enable(ipa->clock->core);
if (ret)
ipa_interconnect_disable(ipa);
return ret;
}
/* Inverse of ipa_clock_enable() */
static void ipa_clock_disable(struct ipa *ipa)
{
clk_disable_unprepare(ipa->clock->core);
ipa_interconnect_disable(ipa);
}
/* Get an IPA clock reference, but only if the reference count is
* already non-zero. Returns true if the additional reference was
* added successfully, or false otherwise.
*/
bool ipa_clock_get_additional(struct ipa *ipa)
{
return refcount_inc_not_zero(&ipa->clock->count);
}
/* Get an IPA clock reference. If the reference count is non-zero, it is
* incremented and return is immediate. Otherwise it is checked again
* under protection of the mutex, and if appropriate the IPA clock
* is enabled.
*
* Incrementing the reference count is intentionally deferred until
* after the clock is running and endpoints are resumed.
*/
void ipa_clock_get(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
int ret;
/* If the clock is running, just bump the reference count */
if (ipa_clock_get_additional(ipa))
return;
/* Otherwise get the mutex and check again */
mutex_lock(&clock->mutex);
/* A reference might have been added before we got the mutex. */
if (ipa_clock_get_additional(ipa))
goto out_mutex_unlock;
ret = ipa_clock_enable(ipa);
if (ret) {
dev_err(&ipa->pdev->dev, "error %d enabling IPA clock\n", ret);
goto out_mutex_unlock;
}
refcount_set(&clock->count, 1);
out_mutex_unlock:
mutex_unlock(&clock->mutex);
}
/* Attempt to remove an IPA clock reference. If this represents the
* last reference, disable the IPA clock under protection of the mutex.
*/
void ipa_clock_put(struct ipa *ipa)
{
struct ipa_clock *clock = ipa->clock;
/* If this is not the last reference there's nothing more to do */
if (!refcount_dec_and_mutex_lock(&clock->count, &clock->mutex))
return;
ipa_clock_disable(ipa);
mutex_unlock(&clock->mutex);
}
/* Return the current IPA core clock rate */
u32 ipa_clock_rate(struct ipa *ipa)
{
return ipa->clock ? (u32)clk_get_rate(ipa->clock->core) : 0;
}
/* Initialize IPA clocking */
struct ipa_clock *
ipa_clock_init(struct device *dev, const struct ipa_clock_data *data)
{
struct ipa_clock *clock;
struct clk *clk;
int ret;
clk = clk_get(dev, "core");
if (IS_ERR(clk)) {
dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n");
return ERR_CAST(clk);
}
ret = clk_set_rate(clk, data->core_clock_rate);
if (ret) {
dev_err(dev, "error %d setting core clock rate to %u\n",
ret, data->core_clock_rate);
goto err_clk_put;
}
clock = kzalloc(sizeof(*clock), GFP_KERNEL);
if (!clock) {
ret = -ENOMEM;
goto err_clk_put;
}
clock->core = clk;
clock->interconnect_count = data->interconnect_count;
ret = ipa_interconnect_init(clock, dev, data->interconnect_data);
if (ret)
goto err_kfree;
mutex_init(&clock->mutex);
refcount_set(&clock->count, 0);
return clock;
err_kfree:
kfree(clock);
err_clk_put:
clk_put(clk);
return ERR_PTR(ret);
}
/* Inverse of ipa_clock_init() */
void ipa_clock_exit(struct ipa_clock *clock)
{
struct clk *clk = clock->core;
WARN_ON(refcount_read(&clock->count) != 0);
mutex_destroy(&clock->mutex);
ipa_interconnect_exit(clock);
kfree(clock);
clk_put(clk);
}
|