summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/sfc/ef100_tx.c
blob: ef9c2e87949917e8a00c1223e8bade13e3b75526 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
// SPDX-License-Identifier: GPL-2.0-only
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2018 Solarflare Communications Inc.
 * Copyright 2019-2020 Xilinx Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include <net/ip6_checksum.h>

#include "net_driver.h"
#include "tx_common.h"
#include "nic_common.h"
#include "mcdi_functions.h"
#include "ef100_regs.h"
#include "io.h"
#include "ef100_tx.h"
#include "ef100_nic.h"

int ef100_tx_probe(struct efx_tx_queue *tx_queue)
{
	/* Allocate an extra descriptor for the QMDA status completion entry */
	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
				    (tx_queue->ptr_mask + 2) *
				    sizeof(efx_oword_t),
				    GFP_KERNEL);
}

void ef100_tx_init(struct efx_tx_queue *tx_queue)
{
	/* must be the inverse of lookup in efx_get_tx_channel */
	tx_queue->core_txq =
		netdev_get_tx_queue(tx_queue->efx->net_dev,
				    tx_queue->channel->channel -
				    tx_queue->efx->tx_channel_offset);

	if (efx_mcdi_tx_init(tx_queue, false))
		netdev_WARN(tx_queue->efx->net_dev,
			    "failed to initialise TXQ %d\n", tx_queue->queue);
}

static bool ef100_tx_can_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
	struct efx_nic *efx = tx_queue->efx;
	struct ef100_nic_data *nic_data;
	struct efx_tx_buffer *buffer;
	struct tcphdr *tcphdr;
	struct iphdr *iphdr;
	size_t header_len;
	u32 mss;

	nic_data = efx->nic_data;

	if (!skb_is_gso_tcp(skb))
		return false;
	if (!(efx->net_dev->features & NETIF_F_TSO))
		return false;

	mss = skb_shinfo(skb)->gso_size;
	if (unlikely(mss < 4)) {
		WARN_ONCE(1, "MSS of %u is too small for TSO\n", mss);
		return false;
	}

	header_len = efx_tx_tso_header_length(skb);
	if (header_len > nic_data->tso_max_hdr_len)
		return false;

	if (skb_shinfo(skb)->gso_segs > nic_data->tso_max_payload_num_segs) {
		/* net_dev->gso_max_segs should've caught this */
		WARN_ON_ONCE(1);
		return false;
	}

	if (skb->data_len / mss > nic_data->tso_max_frames)
		return false;

	/* net_dev->gso_max_size should've caught this */
	if (WARN_ON_ONCE(skb->data_len > nic_data->tso_max_payload_len))
		return false;

	/* Reserve an empty buffer for the TSO V3 descriptor.
	 * Convey the length of the header since we already know it.
	 */
	buffer = efx_tx_queue_get_insert_buffer(tx_queue);
	buffer->flags = EFX_TX_BUF_TSO_V3 | EFX_TX_BUF_CONT;
	buffer->len = header_len;
	buffer->unmap_len = 0;
	buffer->skb = skb;
	++tx_queue->insert_count;

	/* Adjust the TCP checksum to exclude the total length, since we set
	 * ED_INNER_IP_LEN in the descriptor.
	 */
	tcphdr = tcp_hdr(skb);
	if (skb_is_gso_v6(skb)) {
		tcphdr->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
						 &ipv6_hdr(skb)->daddr,
						 0, IPPROTO_TCP, 0);
	} else {
		iphdr = ip_hdr(skb);
		tcphdr->check = ~csum_tcpudp_magic(iphdr->saddr, iphdr->daddr,
						   0, IPPROTO_TCP, 0);
	}
	return true;
}

static efx_oword_t *ef100_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
{
	if (likely(tx_queue->txd.buf.addr))
		return ((efx_oword_t *)tx_queue->txd.buf.addr) + index;
	else
		return NULL;
}

static void ef100_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned int write_ptr;
	efx_dword_t reg;

	tx_queue->xmit_pending = false;

	if (unlikely(tx_queue->notify_count == tx_queue->write_count))
		return;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	/* The write pointer goes into the high word */
	EFX_POPULATE_DWORD_1(reg, ERF_GZ_TX_RING_PIDX, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			ER_GZ_TX_RING_DOORBELL, tx_queue->queue);
	tx_queue->notify_count = tx_queue->write_count;
}

static void ef100_tx_push_buffers(struct efx_tx_queue *tx_queue)
{
	ef100_notify_tx_desc(tx_queue);
	++tx_queue->pushes;
}

static void ef100_set_tx_csum_partial(const struct sk_buff *skb,
				      struct efx_tx_buffer *buffer, efx_oword_t *txd)
{
	efx_oword_t csum;
	int csum_start;

	if (!skb || skb->ip_summed != CHECKSUM_PARTIAL)
		return;

	/* skb->csum_start has the offset from head, but we need the offset
	 * from data.
	 */
	csum_start = skb_checksum_start_offset(skb);
	EFX_POPULATE_OWORD_3(csum,
			     ESF_GZ_TX_SEND_CSO_PARTIAL_EN, 1,
			     ESF_GZ_TX_SEND_CSO_PARTIAL_START_W,
			     csum_start >> 1,
			     ESF_GZ_TX_SEND_CSO_PARTIAL_CSUM_W,
			     skb->csum_offset >> 1);
	EFX_OR_OWORD(*txd, *txd, csum);
}

static void ef100_set_tx_hw_vlan(const struct sk_buff *skb, efx_oword_t *txd)
{
	u16 vlan_tci = skb_vlan_tag_get(skb);
	efx_oword_t vlan;

	EFX_POPULATE_OWORD_2(vlan,
			     ESF_GZ_TX_SEND_VLAN_INSERT_EN, 1,
			     ESF_GZ_TX_SEND_VLAN_INSERT_TCI, vlan_tci);
	EFX_OR_OWORD(*txd, *txd, vlan);
}

static void ef100_make_send_desc(struct efx_nic *efx,
				 const struct sk_buff *skb,
				 struct efx_tx_buffer *buffer, efx_oword_t *txd,
				 unsigned int segment_count)
{
	/* TX send descriptor */
	EFX_POPULATE_OWORD_3(*txd,
			     ESF_GZ_TX_SEND_NUM_SEGS, segment_count,
			     ESF_GZ_TX_SEND_LEN, buffer->len,
			     ESF_GZ_TX_SEND_ADDR, buffer->dma_addr);

	if (likely(efx->net_dev->features & NETIF_F_HW_CSUM))
		ef100_set_tx_csum_partial(skb, buffer, txd);
	if (efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX &&
	    skb && skb_vlan_tag_present(skb))
		ef100_set_tx_hw_vlan(skb, txd);
}

static void ef100_make_tso_desc(struct efx_nic *efx,
				const struct sk_buff *skb,
				struct efx_tx_buffer *buffer, efx_oword_t *txd,
				unsigned int segment_count)
{
	u32 mangleid = (efx->net_dev->features & NETIF_F_TSO_MANGLEID) ||
		skb_shinfo(skb)->gso_type & SKB_GSO_TCP_FIXEDID ?
		ESE_GZ_TX_DESC_IP4_ID_NO_OP :
		ESE_GZ_TX_DESC_IP4_ID_INC_MOD16;
	u16 vlan_enable =  efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_TX ?
		skb_vlan_tag_present(skb) : 0;
	unsigned int len, ip_offset, tcp_offset, payload_segs;
	u16 vlan_tci = skb_vlan_tag_get(skb);
	u32 mss = skb_shinfo(skb)->gso_size;

	len = skb->len - buffer->len;
	/* We use 1 for the TSO descriptor and 1 for the header */
	payload_segs = segment_count - 2;
	ip_offset =  skb_network_offset(skb);
	tcp_offset = skb_transport_offset(skb);

	EFX_POPULATE_OWORD_13(*txd,
			      ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_TSO,
			      ESF_GZ_TX_TSO_MSS, mss,
			      ESF_GZ_TX_TSO_HDR_NUM_SEGS, 1,
			      ESF_GZ_TX_TSO_PAYLOAD_NUM_SEGS, payload_segs,
			      ESF_GZ_TX_TSO_HDR_LEN_W, buffer->len >> 1,
			      ESF_GZ_TX_TSO_PAYLOAD_LEN, len,
			      ESF_GZ_TX_TSO_CSO_INNER_L4, 1,
			      ESF_GZ_TX_TSO_INNER_L3_OFF_W, ip_offset >> 1,
			      ESF_GZ_TX_TSO_INNER_L4_OFF_W, tcp_offset >> 1,
			      ESF_GZ_TX_TSO_ED_INNER_IP4_ID, mangleid,
			      ESF_GZ_TX_TSO_ED_INNER_IP_LEN, 1,
			      ESF_GZ_TX_TSO_VLAN_INSERT_EN, vlan_enable,
			      ESF_GZ_TX_TSO_VLAN_INSERT_TCI, vlan_tci
		);
}

static void ef100_tx_make_descriptors(struct efx_tx_queue *tx_queue,
				      const struct sk_buff *skb,
				      unsigned int segment_count)
{
	unsigned int old_write_count = tx_queue->write_count;
	unsigned int new_write_count = old_write_count;
	struct efx_tx_buffer *buffer;
	unsigned int next_desc_type;
	unsigned int write_ptr;
	efx_oword_t *txd;
	unsigned int nr_descs = tx_queue->insert_count - old_write_count;

	if (unlikely(nr_descs == 0))
		return;

	if (segment_count)
		next_desc_type = ESE_GZ_TX_DESC_TYPE_TSO;
	else
		next_desc_type = ESE_GZ_TX_DESC_TYPE_SEND;

	/* if it's a raw write (such as XDP) then always SEND single frames */
	if (!skb)
		nr_descs = 1;

	do {
		write_ptr = new_write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = ef100_tx_desc(tx_queue, write_ptr);
		++new_write_count;

		/* Create TX descriptor ring entry */
		tx_queue->packet_write_count = new_write_count;

		switch (next_desc_type) {
		case ESE_GZ_TX_DESC_TYPE_SEND:
			ef100_make_send_desc(tx_queue->efx, skb,
					     buffer, txd, nr_descs);
			break;
		case ESE_GZ_TX_DESC_TYPE_TSO:
			/* TX TSO descriptor */
			WARN_ON_ONCE(!(buffer->flags & EFX_TX_BUF_TSO_V3));
			ef100_make_tso_desc(tx_queue->efx, skb,
					    buffer, txd, nr_descs);
			break;
		default:
			/* TX segment descriptor */
			EFX_POPULATE_OWORD_3(*txd,
					     ESF_GZ_TX_DESC_TYPE, ESE_GZ_TX_DESC_TYPE_SEG,
					     ESF_GZ_TX_SEG_LEN, buffer->len,
					     ESF_GZ_TX_SEG_ADDR, buffer->dma_addr);
		}
		/* if it's a raw write (such as XDP) then always SEND */
		next_desc_type = skb ? ESE_GZ_TX_DESC_TYPE_SEG :
				       ESE_GZ_TX_DESC_TYPE_SEND;

	} while (new_write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	tx_queue->write_count = new_write_count;

	/* The write_count above must be updated before reading
	 * channel->holdoff_doorbell to avoid a race with the
	 * completion path, so ensure these operations are not
	 * re-ordered.  This also flushes the update of write_count
	 * back into the cache.
	 */
	smp_mb();
}

void ef100_tx_write(struct efx_tx_queue *tx_queue)
{
	ef100_tx_make_descriptors(tx_queue, NULL, 0);
	ef100_tx_push_buffers(tx_queue);
}

void ef100_ev_tx(struct efx_channel *channel, const efx_qword_t *p_event)
{
	unsigned int tx_done =
		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_NUM_DESC);
	unsigned int qlabel =
		EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_TXCMPL_Q_LABEL);
	struct efx_tx_queue *tx_queue =
		efx_channel_get_tx_queue(channel, qlabel);
	unsigned int tx_index = (tx_queue->read_count + tx_done - 1) &
				tx_queue->ptr_mask;

	efx_xmit_done(tx_queue, tx_index);
}

/* Add a socket buffer to a TX queue
 *
 * You must hold netif_tx_lock() to call this function.
 *
 * Returns 0 on success, error code otherwise. In case of an error this
 * function will free the SKB.
 */
int ef100_enqueue_skb(struct efx_tx_queue *tx_queue, struct sk_buff *skb)
{
	unsigned int old_insert_count = tx_queue->insert_count;
	struct efx_nic *efx = tx_queue->efx;
	bool xmit_more = netdev_xmit_more();
	unsigned int fill_level;
	unsigned int segments;
	int rc;

	if (!tx_queue->buffer || !tx_queue->ptr_mask) {
		netif_stop_queue(efx->net_dev);
		dev_kfree_skb_any(skb);
		return -ENODEV;
	}

	segments = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 0;
	if (segments == 1)
		segments = 0;	/* Don't use TSO/GSO for a single segment. */
	if (segments && !ef100_tx_can_tso(tx_queue, skb)) {
		rc = efx_tx_tso_fallback(tx_queue, skb);
		tx_queue->tso_fallbacks++;
		if (rc)
			goto err;
		else
			return 0;
	}

	/* Map for DMA and create descriptors */
	rc = efx_tx_map_data(tx_queue, skb, segments);
	if (rc)
		goto err;
	ef100_tx_make_descriptors(tx_queue, skb, segments);

	fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
	if (fill_level > efx->txq_stop_thresh) {
		struct efx_tx_queue *txq2;

		netif_tx_stop_queue(tx_queue->core_txq);
		/* Re-read after a memory barrier in case we've raced with
		 * the completion path. Otherwise there's a danger we'll never
		 * restart the queue if all completions have just happened.
		 */
		smp_mb();
		efx_for_each_channel_tx_queue(txq2, tx_queue->channel)
			txq2->old_read_count = READ_ONCE(txq2->read_count);
		fill_level = efx_channel_tx_old_fill_level(tx_queue->channel);
		if (fill_level < efx->txq_stop_thresh)
			netif_tx_start_queue(tx_queue->core_txq);
	}

	tx_queue->xmit_pending = true;

	/* If xmit_more then we don't need to push the doorbell, unless there
	 * are 256 descriptors already queued in which case we have to push to
	 * ensure we never push more than 256 at once.
	 */
	if (__netdev_tx_sent_queue(tx_queue->core_txq, skb->len, xmit_more) ||
	    tx_queue->write_count - tx_queue->notify_count > 255)
		ef100_tx_push_buffers(tx_queue);

	if (segments) {
		tx_queue->tso_bursts++;
		tx_queue->tso_packets += segments;
		tx_queue->tx_packets  += segments;
	} else {
		tx_queue->tx_packets++;
	}
	return 0;

err:
	efx_enqueue_unwind(tx_queue, old_insert_count);
	if (!IS_ERR_OR_NULL(skb))
		dev_kfree_skb_any(skb);

	/* If we're not expecting another transmit and we had something to push
	 * on this queue then we need to push here to get the previous packets
	 * out.  We only enter this branch from before the xmit_more handling
	 * above, so xmit_pending still refers to the old state.
	 */
	if (tx_queue->xmit_pending && !xmit_more)
		ef100_tx_push_buffers(tx_queue);
	return rc;
}