summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/intel/igc/igc_i225.c
blob: 7ec04e48860c6a52e1c6a09f35a31d3ad3507473 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c)  2018 Intel Corporation */

#include <linux/delay.h>

#include "igc_hw.h"

/**
 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Acquire the necessary semaphores for exclusive access to the EEPROM.
 * Set the EEPROM access request bit and wait for EEPROM access grant bit.
 * Return successful if access grant bit set, else clear the request for
 * EEPROM access and return -IGC_ERR_NVM (-1).
 */
static s32 igc_acquire_nvm_i225(struct igc_hw *hw)
{
	return igc_acquire_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}

/**
 * igc_release_nvm_i225 - Release exclusive access to EEPROM
 * @hw: pointer to the HW structure
 *
 * Stop any current commands to the EEPROM and clear the EEPROM request bit,
 * then release the semaphores acquired.
 */
static void igc_release_nvm_i225(struct igc_hw *hw)
{
	igc_release_swfw_sync_i225(hw, IGC_SWFW_EEP_SM);
}

/**
 * igc_get_hw_semaphore_i225 - Acquire hardware semaphore
 * @hw: pointer to the HW structure
 *
 * Acquire the HW semaphore to access the PHY or NVM
 */
static s32 igc_get_hw_semaphore_i225(struct igc_hw *hw)
{
	s32 timeout = hw->nvm.word_size + 1;
	s32 i = 0;
	u32 swsm;

	/* Get the SW semaphore */
	while (i < timeout) {
		swsm = rd32(IGC_SWSM);
		if (!(swsm & IGC_SWSM_SMBI))
			break;

		usleep_range(500, 600);
		i++;
	}

	if (i == timeout) {
		/* In rare circumstances, the SW semaphore may already be held
		 * unintentionally. Clear the semaphore once before giving up.
		 */
		if (hw->dev_spec._base.clear_semaphore_once) {
			hw->dev_spec._base.clear_semaphore_once = false;
			igc_put_hw_semaphore(hw);
			for (i = 0; i < timeout; i++) {
				swsm = rd32(IGC_SWSM);
				if (!(swsm & IGC_SWSM_SMBI))
					break;

				usleep_range(500, 600);
			}
		}

		/* If we do not have the semaphore here, we have to give up. */
		if (i == timeout) {
			hw_dbg("Driver can't access device - SMBI bit is set.\n");
			return -IGC_ERR_NVM;
		}
	}

	/* Get the FW semaphore. */
	for (i = 0; i < timeout; i++) {
		swsm = rd32(IGC_SWSM);
		wr32(IGC_SWSM, swsm | IGC_SWSM_SWESMBI);

		/* Semaphore acquired if bit latched */
		if (rd32(IGC_SWSM) & IGC_SWSM_SWESMBI)
			break;

		usleep_range(500, 600);
	}

	if (i == timeout) {
		/* Release semaphores */
		igc_put_hw_semaphore(hw);
		hw_dbg("Driver can't access the NVM\n");
		return -IGC_ERR_NVM;
	}

	return 0;
}

/**
 * igc_acquire_swfw_sync_i225 - Acquire SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Acquire the SW/FW semaphore to access the PHY or NVM.  The mask
 * will also specify which port we're acquiring the lock for.
 */
s32 igc_acquire_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
	s32 i = 0, timeout = 200;
	u32 fwmask = mask << 16;
	u32 swmask = mask;
	s32 ret_val = 0;
	u32 swfw_sync;

	while (i < timeout) {
		if (igc_get_hw_semaphore_i225(hw)) {
			ret_val = -IGC_ERR_SWFW_SYNC;
			goto out;
		}

		swfw_sync = rd32(IGC_SW_FW_SYNC);
		if (!(swfw_sync & (fwmask | swmask)))
			break;

		/* Firmware currently using resource (fwmask) */
		igc_put_hw_semaphore(hw);
		mdelay(5);
		i++;
	}

	if (i == timeout) {
		hw_dbg("Driver can't access resource, SW_FW_SYNC timeout.\n");
		ret_val = -IGC_ERR_SWFW_SYNC;
		goto out;
	}

	swfw_sync |= swmask;
	wr32(IGC_SW_FW_SYNC, swfw_sync);

	igc_put_hw_semaphore(hw);
out:
	return ret_val;
}

/**
 * igc_release_swfw_sync_i225 - Release SW/FW semaphore
 * @hw: pointer to the HW structure
 * @mask: specifies which semaphore to acquire
 *
 * Release the SW/FW semaphore used to access the PHY or NVM.  The mask
 * will also specify which port we're releasing the lock for.
 */
void igc_release_swfw_sync_i225(struct igc_hw *hw, u16 mask)
{
	u32 swfw_sync;

	while (igc_get_hw_semaphore_i225(hw))
		; /* Empty */

	swfw_sync = rd32(IGC_SW_FW_SYNC);
	swfw_sync &= ~mask;
	wr32(IGC_SW_FW_SYNC, swfw_sync);

	igc_put_hw_semaphore(hw);
}

/**
 * igc_read_nvm_srrd_i225 - Reads Shadow Ram using EERD register
 * @hw: pointer to the HW structure
 * @offset: offset of word in the Shadow Ram to read
 * @words: number of words to read
 * @data: word read from the Shadow Ram
 *
 * Reads a 16 bit word from the Shadow Ram using the EERD register.
 * Uses necessary synchronization semaphores.
 */
static s32 igc_read_nvm_srrd_i225(struct igc_hw *hw, u16 offset, u16 words,
				  u16 *data)
{
	s32 status = 0;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to read in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
			IGC_EERD_EEWR_MAX_COUNT : (words - i);

		status = hw->nvm.ops.acquire(hw);
		if (status)
			break;

		status = igc_read_nvm_eerd(hw, offset, count, data + i);
		hw->nvm.ops.release(hw);
		if (status)
			break;
	}

	return status;
}

/**
 * igc_write_nvm_srwr - Write to Shadow Ram using EEWR
 * @hw: pointer to the HW structure
 * @offset: offset within the Shadow Ram to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the Shadow Ram
 *
 * Writes data to Shadow Ram at offset using EEWR register.
 *
 * If igc_update_nvm_checksum is not called after this function , the
 * Shadow Ram will most likely contain an invalid checksum.
 */
static s32 igc_write_nvm_srwr(struct igc_hw *hw, u16 offset, u16 words,
			      u16 *data)
{
	struct igc_nvm_info *nvm = &hw->nvm;
	s32 ret_val = -IGC_ERR_NVM;
	u32 attempts = 100000;
	u32 i, k, eewr = 0;

	/* A check for invalid values:  offset too large, too many words,
	 * too many words for the offset, and not enough words.
	 */
	if (offset >= nvm->word_size || (words > (nvm->word_size - offset)) ||
	    words == 0) {
		hw_dbg("nvm parameter(s) out of bounds\n");
		goto out;
	}

	for (i = 0; i < words; i++) {
		eewr = ((offset + i) << IGC_NVM_RW_ADDR_SHIFT) |
			(data[i] << IGC_NVM_RW_REG_DATA) |
			IGC_NVM_RW_REG_START;

		wr32(IGC_SRWR, eewr);

		for (k = 0; k < attempts; k++) {
			if (IGC_NVM_RW_REG_DONE &
			    rd32(IGC_SRWR)) {
				ret_val = 0;
				break;
			}
			udelay(5);
		}

		if (ret_val) {
			hw_dbg("Shadow RAM write EEWR timed out\n");
			break;
		}
	}

out:
	return ret_val;
}

/**
 * igc_write_nvm_srwr_i225 - Write to Shadow RAM using EEWR
 * @hw: pointer to the HW structure
 * @offset: offset within the Shadow RAM to be written to
 * @words: number of words to write
 * @data: 16 bit word(s) to be written to the Shadow RAM
 *
 * Writes data to Shadow RAM at offset using EEWR register.
 *
 * If igc_update_nvm_checksum is not called after this function , the
 * data will not be committed to FLASH and also Shadow RAM will most likely
 * contain an invalid checksum.
 *
 * If error code is returned, data and Shadow RAM may be inconsistent - buffer
 * partially written.
 */
static s32 igc_write_nvm_srwr_i225(struct igc_hw *hw, u16 offset, u16 words,
				   u16 *data)
{
	s32 status = 0;
	u16 i, count;

	/* We cannot hold synchronization semaphores for too long,
	 * because of forceful takeover procedure. However it is more efficient
	 * to write in bursts than synchronizing access for each word.
	 */
	for (i = 0; i < words; i += IGC_EERD_EEWR_MAX_COUNT) {
		count = (words - i) / IGC_EERD_EEWR_MAX_COUNT > 0 ?
			IGC_EERD_EEWR_MAX_COUNT : (words - i);

		status = hw->nvm.ops.acquire(hw);
		if (status)
			break;

		status = igc_write_nvm_srwr(hw, offset, count, data + i);
		hw->nvm.ops.release(hw);
		if (status)
			break;
	}

	return status;
}

/**
 * igc_validate_nvm_checksum_i225 - Validate EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
 */
static s32 igc_validate_nvm_checksum_i225(struct igc_hw *hw)
{
	s32 (*read_op_ptr)(struct igc_hw *hw, u16 offset, u16 count,
			   u16 *data);
	s32 status = 0;

	status = hw->nvm.ops.acquire(hw);
	if (status)
		goto out;

	/* Replace the read function with semaphore grabbing with
	 * the one that skips this for a while.
	 * We have semaphore taken already here.
	 */
	read_op_ptr = hw->nvm.ops.read;
	hw->nvm.ops.read = igc_read_nvm_eerd;

	status = igc_validate_nvm_checksum(hw);

	/* Revert original read operation. */
	hw->nvm.ops.read = read_op_ptr;

	hw->nvm.ops.release(hw);

out:
	return status;
}

/**
 * igc_pool_flash_update_done_i225 - Pool FLUDONE status
 * @hw: pointer to the HW structure
 */
static s32 igc_pool_flash_update_done_i225(struct igc_hw *hw)
{
	s32 ret_val = -IGC_ERR_NVM;
	u32 i, reg;

	for (i = 0; i < IGC_FLUDONE_ATTEMPTS; i++) {
		reg = rd32(IGC_EECD);
		if (reg & IGC_EECD_FLUDONE_I225) {
			ret_val = 0;
			break;
		}
		udelay(5);
	}

	return ret_val;
}

/**
 * igc_update_flash_i225 - Commit EEPROM to the flash
 * @hw: pointer to the HW structure
 */
static s32 igc_update_flash_i225(struct igc_hw *hw)
{
	s32 ret_val = 0;
	u32 flup;

	ret_val = igc_pool_flash_update_done_i225(hw);
	if (ret_val == -IGC_ERR_NVM) {
		hw_dbg("Flash update time out\n");
		goto out;
	}

	flup = rd32(IGC_EECD) | IGC_EECD_FLUPD_I225;
	wr32(IGC_EECD, flup);

	ret_val = igc_pool_flash_update_done_i225(hw);
	if (ret_val)
		hw_dbg("Flash update time out\n");
	else
		hw_dbg("Flash update complete\n");

out:
	return ret_val;
}

/**
 * igc_update_nvm_checksum_i225 - Update EEPROM checksum
 * @hw: pointer to the HW structure
 *
 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
 * up to the checksum.  Then calculates the EEPROM checksum and writes the
 * value to the EEPROM. Next commit EEPROM data onto the Flash.
 */
static s32 igc_update_nvm_checksum_i225(struct igc_hw *hw)
{
	u16 checksum = 0;
	s32 ret_val = 0;
	u16 i, nvm_data;

	/* Read the first word from the EEPROM. If this times out or fails, do
	 * not continue or we could be in for a very long wait while every
	 * EEPROM read fails
	 */
	ret_val = igc_read_nvm_eerd(hw, 0, 1, &nvm_data);
	if (ret_val) {
		hw_dbg("EEPROM read failed\n");
		goto out;
	}

	ret_val = hw->nvm.ops.acquire(hw);
	if (ret_val)
		goto out;

	/* Do not use hw->nvm.ops.write, hw->nvm.ops.read
	 * because we do not want to take the synchronization
	 * semaphores twice here.
	 */

	for (i = 0; i < NVM_CHECKSUM_REG; i++) {
		ret_val = igc_read_nvm_eerd(hw, i, 1, &nvm_data);
		if (ret_val) {
			hw->nvm.ops.release(hw);
			hw_dbg("NVM Read Error while updating checksum.\n");
			goto out;
		}
		checksum += nvm_data;
	}
	checksum = (u16)NVM_SUM - checksum;
	ret_val = igc_write_nvm_srwr(hw, NVM_CHECKSUM_REG, 1,
				     &checksum);
	if (ret_val) {
		hw->nvm.ops.release(hw);
		hw_dbg("NVM Write Error while updating checksum.\n");
		goto out;
	}

	hw->nvm.ops.release(hw);

	ret_val = igc_update_flash_i225(hw);

out:
	return ret_val;
}

/**
 * igc_get_flash_presence_i225 - Check if flash device is detected
 * @hw: pointer to the HW structure
 */
bool igc_get_flash_presence_i225(struct igc_hw *hw)
{
	bool ret_val = false;
	u32 eec = 0;

	eec = rd32(IGC_EECD);
	if (eec & IGC_EECD_FLASH_DETECTED_I225)
		ret_val = true;

	return ret_val;
}

/**
 * igc_init_nvm_params_i225 - Init NVM func ptrs.
 * @hw: pointer to the HW structure
 */
s32 igc_init_nvm_params_i225(struct igc_hw *hw)
{
	struct igc_nvm_info *nvm = &hw->nvm;

	nvm->ops.acquire = igc_acquire_nvm_i225;
	nvm->ops.release = igc_release_nvm_i225;

	/* NVM Function Pointers */
	if (igc_get_flash_presence_i225(hw)) {
		hw->nvm.type = igc_nvm_flash_hw;
		nvm->ops.read = igc_read_nvm_srrd_i225;
		nvm->ops.write = igc_write_nvm_srwr_i225;
		nvm->ops.validate = igc_validate_nvm_checksum_i225;
		nvm->ops.update = igc_update_nvm_checksum_i225;
	} else {
		hw->nvm.type = igc_nvm_invm;
		nvm->ops.read = igc_read_nvm_eerd;
		nvm->ops.write = NULL;
		nvm->ops.validate = NULL;
		nvm->ops.update = NULL;
	}
	return 0;
}

/**
 *  igc_set_eee_i225 - Enable/disable EEE support
 *  @hw: pointer to the HW structure
 *  @adv2p5G: boolean flag enabling 2.5G EEE advertisement
 *  @adv1G: boolean flag enabling 1G EEE advertisement
 *  @adv100M: boolean flag enabling 100M EEE advertisement
 *
 *  Enable/disable EEE based on setting in dev_spec structure.
 **/
s32 igc_set_eee_i225(struct igc_hw *hw, bool adv2p5G, bool adv1G,
		     bool adv100M)
{
	u32 ipcnfg, eeer;

	ipcnfg = rd32(IGC_IPCNFG);
	eeer = rd32(IGC_EEER);

	/* enable or disable per user setting */
	if (hw->dev_spec._base.eee_enable) {
		u32 eee_su = rd32(IGC_EEE_SU);

		if (adv100M)
			ipcnfg |= IGC_IPCNFG_EEE_100M_AN;
		else
			ipcnfg &= ~IGC_IPCNFG_EEE_100M_AN;

		if (adv1G)
			ipcnfg |= IGC_IPCNFG_EEE_1G_AN;
		else
			ipcnfg &= ~IGC_IPCNFG_EEE_1G_AN;

		if (adv2p5G)
			ipcnfg |= IGC_IPCNFG_EEE_2_5G_AN;
		else
			ipcnfg &= ~IGC_IPCNFG_EEE_2_5G_AN;

		eeer |= (IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
			 IGC_EEER_LPI_FC);

		/* This bit should not be set in normal operation. */
		if (eee_su & IGC_EEE_SU_LPI_CLK_STP)
			hw_dbg("LPI Clock Stop Bit should not be set!\n");
	} else {
		ipcnfg &= ~(IGC_IPCNFG_EEE_2_5G_AN | IGC_IPCNFG_EEE_1G_AN |
			    IGC_IPCNFG_EEE_100M_AN);
		eeer &= ~(IGC_EEER_TX_LPI_EN | IGC_EEER_RX_LPI_EN |
			  IGC_EEER_LPI_FC);
	}
	wr32(IGC_IPCNFG, ipcnfg);
	wr32(IGC_EEER, eeer);
	rd32(IGC_IPCNFG);
	rd32(IGC_EEER);

	return IGC_SUCCESS;
}

/* igc_set_ltr_i225 - Set Latency Tolerance Reporting thresholds
 * @hw: pointer to the HW structure
 * @link: bool indicating link status
 *
 * Set the LTR thresholds based on the link speed (Mbps), EEE, and DMAC
 * settings, otherwise specify that there is no LTR requirement.
 */
s32 igc_set_ltr_i225(struct igc_hw *hw, bool link)
{
	u32 tw_system, ltrc, ltrv, ltr_min, ltr_max, scale_min, scale_max;
	u16 speed, duplex;
	s32 size;

	/* If we do not have link, LTR thresholds are zero. */
	if (link) {
		hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);

		/* Check if using copper interface with EEE enabled or if the
		 * link speed is 10 Mbps.
		 */
		if (hw->dev_spec._base.eee_enable &&
		    speed != SPEED_10) {
			/* EEE enabled, so send LTRMAX threshold. */
			ltrc = rd32(IGC_LTRC) |
			       IGC_LTRC_EEEMS_EN;
			wr32(IGC_LTRC, ltrc);

			/* Calculate tw_system (nsec). */
			if (speed == SPEED_100) {
				tw_system = ((rd32(IGC_EEE_SU) &
					     IGC_TW_SYSTEM_100_MASK) >>
					     IGC_TW_SYSTEM_100_SHIFT) * 500;
			} else {
				tw_system = (rd32(IGC_EEE_SU) &
					     IGC_TW_SYSTEM_1000_MASK) * 500;
			}
		} else {
			tw_system = 0;
		}

		/* Get the Rx packet buffer size. */
		size = rd32(IGC_RXPBS) &
		       IGC_RXPBS_SIZE_I225_MASK;

		/* Calculations vary based on DMAC settings. */
		if (rd32(IGC_DMACR) & IGC_DMACR_DMAC_EN) {
			size -= (rd32(IGC_DMACR) &
				 IGC_DMACR_DMACTHR_MASK) >>
				 IGC_DMACR_DMACTHR_SHIFT;
			/* Convert size to bits. */
			size *= 1024 * 8;
		} else {
			/* Convert size to bytes, subtract the MTU, and then
			 * convert the size to bits.
			 */
			size *= 1024;
			size *= 8;
		}

		if (size < 0) {
			hw_dbg("Invalid effective Rx buffer size %d\n",
			       size);
			return -IGC_ERR_CONFIG;
		}

		/* Calculate the thresholds. Since speed is in Mbps, simplify
		 * the calculation by multiplying size/speed by 1000 for result
		 * to be in nsec before dividing by the scale in nsec. Set the
		 * scale such that the LTR threshold fits in the register.
		 */
		ltr_min = (1000 * size) / speed;
		ltr_max = ltr_min + tw_system;
		scale_min = (ltr_min / 1024) < 1024 ? IGC_LTRMINV_SCALE_1024 :
			    IGC_LTRMINV_SCALE_32768;
		scale_max = (ltr_max / 1024) < 1024 ? IGC_LTRMAXV_SCALE_1024 :
			    IGC_LTRMAXV_SCALE_32768;
		ltr_min /= scale_min == IGC_LTRMINV_SCALE_1024 ? 1024 : 32768;
		ltr_min -= 1;
		ltr_max /= scale_max == IGC_LTRMAXV_SCALE_1024 ? 1024 : 32768;
		ltr_max -= 1;

		/* Only write the LTR thresholds if they differ from before. */
		ltrv = rd32(IGC_LTRMINV);
		if (ltr_min != (ltrv & IGC_LTRMINV_LTRV_MASK)) {
			ltrv = IGC_LTRMINV_LSNP_REQ | ltr_min |
			       (scale_min << IGC_LTRMINV_SCALE_SHIFT);
			wr32(IGC_LTRMINV, ltrv);
		}

		ltrv = rd32(IGC_LTRMAXV);
		if (ltr_max != (ltrv & IGC_LTRMAXV_LTRV_MASK)) {
			ltrv = IGC_LTRMAXV_LSNP_REQ | ltr_max |
			       (scale_min << IGC_LTRMAXV_SCALE_SHIFT);
			wr32(IGC_LTRMAXV, ltrv);
		}
	}

	return IGC_SUCCESS;
}