summaryrefslogtreecommitdiff
path: root/drivers/net/ethernet/cavium/liquidio/cn23xx_vf_device.c
blob: 1f8b7f65125401ef250f9cf57c266fbb55da3f38 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/**********************************************************************
 * Author: Cavium, Inc.
 *
 * Contact: support@cavium.com
 *          Please include "LiquidIO" in the subject.
 *
 * Copyright (c) 2003-2016 Cavium, Inc.
 *
 * This file is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License, Version 2, as
 * published by the Free Software Foundation.
 *
 * This file is distributed in the hope that it will be useful, but
 * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
 * NONINFRINGEMENT.  See the GNU General Public License for more details.
 ***********************************************************************/
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/vmalloc.h>
#include "liquidio_common.h"
#include "octeon_droq.h"
#include "octeon_iq.h"
#include "response_manager.h"
#include "octeon_device.h"
#include "cn23xx_vf_device.h"
#include "octeon_main.h"
#include "octeon_mailbox.h"

u32 cn23xx_vf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us)
{
	/* This gives the SLI clock per microsec */
	u32 oqticks_per_us = (u32)oct->pfvf_hsword.coproc_tics_per_us;

	/* This gives the clock cycles per millisecond */
	oqticks_per_us *= 1000;

	/* This gives the oq ticks (1024 core clock cycles) per millisecond */
	oqticks_per_us /= 1024;

	/* time_intr is in microseconds. The next 2 steps gives the oq ticks
	 * corressponding to time_intr.
	 */
	oqticks_per_us *= time_intr_in_us;
	oqticks_per_us /= 1000;

	return oqticks_per_us;
}

static int cn23xx_vf_reset_io_queues(struct octeon_device *oct, u32 num_queues)
{
	u32 loop = BUSY_READING_REG_VF_LOOP_COUNT;
	int ret_val = 0;
	u32 q_no;
	u64 d64;

	for (q_no = 0; q_no < num_queues; q_no++) {
		/* set RST bit to 1. This bit applies to both IQ and OQ */
		d64 = octeon_read_csr64(oct,
					CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
		d64 |= CN23XX_PKT_INPUT_CTL_RST;
		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
				   d64);
	}

	/* wait until the RST bit is clear or the RST and QUIET bits are set */
	for (q_no = 0; q_no < num_queues; q_no++) {
		u64 reg_val = octeon_read_csr64(oct,
					CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
		while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) &&
		       !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) &&
		       loop) {
			WRITE_ONCE(reg_val, octeon_read_csr64(
			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)));
			loop--;
		}
		if (!loop) {
			dev_err(&oct->pci_dev->dev,
				"clearing the reset reg failed or setting the quiet reg failed for qno: %u\n",
				q_no);
			return -1;
		}
		WRITE_ONCE(reg_val, READ_ONCE(reg_val) &
			   ~CN23XX_PKT_INPUT_CTL_RST);
		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
				   READ_ONCE(reg_val));

		WRITE_ONCE(reg_val, octeon_read_csr64(
		    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)));
		if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) {
			dev_err(&oct->pci_dev->dev,
				"clearing the reset failed for qno: %u\n",
				q_no);
			ret_val = -1;
		}
	}

	return ret_val;
}

static int cn23xx_vf_setup_global_input_regs(struct octeon_device *oct)
{
	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
	struct octeon_instr_queue *iq;
	u64 q_no, intr_threshold;
	u64 d64;

	if (cn23xx_vf_reset_io_queues(oct, oct->sriov_info.rings_per_vf))
		return -1;

	for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) {
		void __iomem *inst_cnt_reg;

		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_DOORBELL(q_no),
				   0xFFFFFFFF);
		iq = oct->instr_queue[q_no];

		if (iq)
			inst_cnt_reg = iq->inst_cnt_reg;
		else
			inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr +
				       CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no);

		d64 = octeon_read_csr64(oct,
					CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no));

		d64 &= 0xEFFFFFFFFFFFFFFFL;

		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
				   d64);

		/* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for
		 * the Input Queues
		 */
		octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
				   CN23XX_PKT_INPUT_CTL_MASK);

		/* set the wmark level to trigger PI_INT */
		intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) &
				 CN23XX_PKT_IN_DONE_WMARK_MASK;

		writeq((readq(inst_cnt_reg) &
			~(CN23XX_PKT_IN_DONE_WMARK_MASK <<
			  CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) |
		       (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS),
		       inst_cnt_reg);
	}
	return 0;
}

static void cn23xx_vf_setup_global_output_regs(struct octeon_device *oct)
{
	u32 reg_val;
	u32 q_no;

	for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) {
		octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKTS_CREDIT(q_no),
				 0xFFFFFFFF);

		reg_val =
		    octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKTS_SENT(q_no));

		reg_val &= 0xEFFFFFFFFFFFFFFFL;

		reg_val =
		    octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no));

		/* clear IPTR */
		reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR;

		/* set DPTR */
		reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR;

		/* reset BMODE */
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE);

		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
		 * for Output Queue ScatterList reset ROR_P, NSR_P
		 */
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P);
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P);

#ifdef __LITTLE_ENDIAN_BITFIELD
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P);
#else
		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P);
#endif
		/* No Relaxed Ordering, No Snoop, 64-bit Byte swap
		 * for Output Queue Data reset ROR, NSR
		 */
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR);
		reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR);
		/* set the ES bit */
		reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES);

		/* write all the selected settings */
		octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no),
				 reg_val);
	}
}

static int cn23xx_setup_vf_device_regs(struct octeon_device *oct)
{
	if (cn23xx_vf_setup_global_input_regs(oct))
		return -1;

	cn23xx_vf_setup_global_output_regs(oct);

	return 0;
}

static void cn23xx_setup_vf_iq_regs(struct octeon_device *oct, u32 iq_no)
{
	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
	u64 pkt_in_done;

	/* Write the start of the input queue's ring and its size */
	octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_BASE_ADDR64(iq_no),
			   iq->base_addr_dma);
	octeon_write_csr(oct, CN23XX_VF_SLI_IQ_SIZE(iq_no), iq->max_count);

	/* Remember the doorbell & instruction count register addr
	 * for this queue
	 */
	iq->doorbell_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_DOORBELL(iq_no);
	iq->inst_cnt_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_INSTR_COUNT64(iq_no);
	dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n",
		iq_no, iq->doorbell_reg, iq->inst_cnt_reg);

	/* Store the current instruction counter (used in flush_iq
	 * calculation)
	 */
	pkt_in_done = readq(iq->inst_cnt_reg);

	if (oct->msix_on) {
		/* Set CINT_ENB to enable IQ interrupt */
		writeq((pkt_in_done | CN23XX_INTR_CINT_ENB),
		       iq->inst_cnt_reg);
	}
	iq->reset_instr_cnt = 0;
}

static void cn23xx_setup_vf_oq_regs(struct octeon_device *oct, u32 oq_no)
{
	struct octeon_droq *droq = oct->droq[oq_no];

	octeon_write_csr64(oct, CN23XX_VF_SLI_OQ_BASE_ADDR64(oq_no),
			   droq->desc_ring_dma);
	octeon_write_csr(oct, CN23XX_VF_SLI_OQ_SIZE(oq_no), droq->max_count);

	octeon_write_csr(oct, CN23XX_VF_SLI_OQ_BUFF_INFO_SIZE(oq_no),
			 droq->buffer_size);

	/* Get the mapped address of the pkt_sent and pkts_credit regs */
	droq->pkts_sent_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_SENT(oq_no);
	droq->pkts_credit_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_CREDIT(oq_no);
}

static void cn23xx_vf_mbox_thread(struct work_struct *work)
{
	struct cavium_wk *wk = (struct cavium_wk *)work;
	struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr;

	octeon_mbox_process_message(mbox);
}

static int cn23xx_free_vf_mbox(struct octeon_device *oct)
{
	cancel_delayed_work_sync(&oct->mbox[0]->mbox_poll_wk.work);
	vfree(oct->mbox[0]);
	return 0;
}

static int cn23xx_setup_vf_mbox(struct octeon_device *oct)
{
	struct octeon_mbox *mbox = NULL;

	mbox = vmalloc(sizeof(*mbox));
	if (!mbox)
		return 1;

	memset(mbox, 0, sizeof(struct octeon_mbox));

	spin_lock_init(&mbox->lock);

	mbox->oct_dev = oct;

	mbox->q_no = 0;

	mbox->state = OCTEON_MBOX_STATE_IDLE;

	/* VF mbox interrupt reg */
	mbox->mbox_int_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_PKT_MBOX_INT(0);
	/* VF reads from SIG0 reg */
	mbox->mbox_read_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 0);
	/* VF writes into SIG1 reg */
	mbox->mbox_write_reg =
	    (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 1);

	INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work,
			  cn23xx_vf_mbox_thread);

	mbox->mbox_poll_wk.ctxptr = mbox;

	oct->mbox[0] = mbox;

	writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg);

	return 0;
}

static int cn23xx_enable_vf_io_queues(struct octeon_device *oct)
{
	u32 q_no;

	for (q_no = 0; q_no < oct->num_iqs; q_no++) {
		u64 reg_val;

		/* set the corresponding IQ IS_64B bit */
		if (oct->io_qmask.iq64B & BIT_ULL(q_no)) {
			reg_val = octeon_read_csr64(
			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
			reg_val |= CN23XX_PKT_INPUT_CTL_IS_64B;
			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
		}

		/* set the corresponding IQ ENB bit */
		if (oct->io_qmask.iq & BIT_ULL(q_no)) {
			reg_val = octeon_read_csr64(
			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no));
			reg_val |= CN23XX_PKT_INPUT_CTL_RING_ENB;
			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val);
		}
	}
	for (q_no = 0; q_no < oct->num_oqs; q_no++) {
		u32 reg_val;

		/* set the corresponding OQ ENB bit */
		if (oct->io_qmask.oq & BIT_ULL(q_no)) {
			reg_val = octeon_read_csr(
			    oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no));
			reg_val |= CN23XX_PKT_OUTPUT_CTL_RING_ENB;
			octeon_write_csr(
			    oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no), reg_val);
		}
	}

	return 0;
}

static void cn23xx_disable_vf_io_queues(struct octeon_device *oct)
{
	u32 num_queues = oct->num_iqs;

	/* per HRM, rings can only be disabled via reset operation,
	 * NOT via SLI_PKT()_INPUT/OUTPUT_CONTROL[ENB]
	 */
	if (num_queues < oct->num_oqs)
		num_queues = oct->num_oqs;

	cn23xx_vf_reset_io_queues(oct, num_queues);
}

void cn23xx_vf_ask_pf_to_do_flr(struct octeon_device *oct)
{
	struct octeon_mbox_cmd mbox_cmd;

	mbox_cmd.msg.u64 = 0;
	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
	mbox_cmd.msg.s.resp_needed = 0;
	mbox_cmd.msg.s.cmd = OCTEON_VF_FLR_REQUEST;
	mbox_cmd.msg.s.len = 1;
	mbox_cmd.q_no = 0;
	mbox_cmd.recv_len = 0;
	mbox_cmd.recv_status = 0;
	mbox_cmd.fn = NULL;
	mbox_cmd.fn_arg = 0;

	octeon_mbox_write(oct, &mbox_cmd);
}

static void octeon_pfvf_hs_callback(struct octeon_device *oct,
				    struct octeon_mbox_cmd *cmd,
				    void *arg)
{
	u32 major = 0;

	memcpy((uint8_t *)&oct->pfvf_hsword, cmd->msg.s.params,
	       CN23XX_MAILBOX_MSGPARAM_SIZE);
	if (cmd->recv_len > 1)  {
		major = ((struct lio_version *)(cmd->data))->major;
		major = major << 16;
	}

	atomic_set((atomic_t *)arg, major | 1);
}

int cn23xx_octeon_pfvf_handshake(struct octeon_device *oct)
{
	struct octeon_mbox_cmd mbox_cmd;
	u32 q_no, count = 0;
	atomic_t status;
	u32 pfmajor;
	u32 vfmajor;
	u32 ret;

	/* Sending VF_ACTIVE indication to the PF driver */
	dev_dbg(&oct->pci_dev->dev, "requesting info from pf\n");

	mbox_cmd.msg.u64 = 0;
	mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST;
	mbox_cmd.msg.s.resp_needed = 1;
	mbox_cmd.msg.s.cmd = OCTEON_VF_ACTIVE;
	mbox_cmd.msg.s.len = 2;
	mbox_cmd.data[0] = 0;
	((struct lio_version *)&mbox_cmd.data[0])->major =
						LIQUIDIO_BASE_MAJOR_VERSION;
	((struct lio_version *)&mbox_cmd.data[0])->minor =
						LIQUIDIO_BASE_MINOR_VERSION;
	((struct lio_version *)&mbox_cmd.data[0])->micro =
						LIQUIDIO_BASE_MICRO_VERSION;
	mbox_cmd.q_no = 0;
	mbox_cmd.recv_len = 0;
	mbox_cmd.recv_status = 0;
	mbox_cmd.fn = (octeon_mbox_callback_t)octeon_pfvf_hs_callback;
	mbox_cmd.fn_arg = &status;

	octeon_mbox_write(oct, &mbox_cmd);

	atomic_set(&status, 0);

	do {
		schedule_timeout_uninterruptible(1);
	} while ((!atomic_read(&status)) && (count++ < 100000));

	ret = atomic_read(&status);
	if (!ret) {
		dev_err(&oct->pci_dev->dev, "octeon_pfvf_handshake timeout\n");
		return 1;
	}

	for (q_no = 0 ; q_no < oct->num_iqs ; q_no++)
		oct->instr_queue[q_no]->txpciq.s.pkind = oct->pfvf_hsword.pkind;

	vfmajor = LIQUIDIO_BASE_MAJOR_VERSION;
	pfmajor = ret >> 16;
	if (pfmajor != vfmajor) {
		dev_err(&oct->pci_dev->dev,
			"VF Liquidio driver (major version %d) is not compatible with Liquidio PF driver (major version %d)\n",
			vfmajor, pfmajor);
		return 1;
	}

	dev_dbg(&oct->pci_dev->dev,
		"VF Liquidio driver (major version %d), Liquidio PF driver (major version %d)\n",
		vfmajor, pfmajor);

	dev_dbg(&oct->pci_dev->dev, "got data from pf pkind is %d\n",
		oct->pfvf_hsword.pkind);

	return 0;
}

static void cn23xx_handle_vf_mbox_intr(struct octeon_ioq_vector *ioq_vector)
{
	struct octeon_device *oct = ioq_vector->oct_dev;
	u64 mbox_int_val;

	if (!ioq_vector->droq_index) {
		/* read and clear by writing 1 */
		mbox_int_val = readq(oct->mbox[0]->mbox_int_reg);
		writeq(mbox_int_val, oct->mbox[0]->mbox_int_reg);
		if (octeon_mbox_read(oct->mbox[0]))
			schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work,
					      msecs_to_jiffies(0));
	}
}

static u64 cn23xx_vf_msix_interrupt_handler(void *dev)
{
	struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev;
	struct octeon_device *oct = ioq_vector->oct_dev;
	struct octeon_droq *droq = oct->droq[ioq_vector->droq_index];
	u64 pkts_sent;
	u64 ret = 0;

	dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct);
	pkts_sent = readq(droq->pkts_sent_reg);

	/* If our device has interrupted, then proceed. Also check
	 * for all f's if interrupt was triggered on an error
	 * and the PCI read fails.
	 */
	if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL))
		return ret;

	/* Write count reg in sli_pkt_cnts to clear these int. */
	if ((pkts_sent & CN23XX_INTR_PO_INT) ||
	    (pkts_sent & CN23XX_INTR_PI_INT)) {
		if (pkts_sent & CN23XX_INTR_PO_INT)
			ret |= MSIX_PO_INT;
	}

	if (pkts_sent & CN23XX_INTR_PI_INT)
		/* We will clear the count when we update the read_index. */
		ret |= MSIX_PI_INT;

	if (pkts_sent & CN23XX_INTR_MBOX_INT) {
		cn23xx_handle_vf_mbox_intr(ioq_vector);
		ret |= MSIX_MBOX_INT;
	}

	return ret;
}

static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq)
{
	u32 pkt_in_done = readl(iq->inst_cnt_reg);
	u32 last_done;
	u32 new_idx;

	last_done = pkt_in_done - iq->pkt_in_done;
	iq->pkt_in_done = pkt_in_done;

	/* Modulo of the new index with the IQ size will give us
	 * the new index.  The iq->reset_instr_cnt is always zero for
	 * cn23xx, so no extra adjustments are needed.
	 */
	new_idx = (iq->octeon_read_index +
		   (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) %
		  iq->max_count;

	return new_idx;
}

static void cn23xx_enable_vf_interrupt(struct octeon_device *oct, u8 intr_flag)
{
	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
	u32 q_no, time_threshold;

	if (intr_flag & OCTEON_OUTPUT_INTR) {
		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
			/* Set up interrupt packet and time thresholds
			 * for all the OQs
			 */
			time_threshold = cn23xx_vf_get_oq_ticks(
				oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf));

			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no),
			    (CFG_GET_OQ_INTR_PKT(cn23xx->conf) |
			     ((u64)time_threshold << 32)));
		}
	}

	if (intr_flag & OCTEON_INPUT_INTR) {
		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
			/* Set CINT_ENB to enable IQ interrupt */
			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
			    ((octeon_read_csr64(
				  oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) &
			      ~CN23XX_PKT_IN_DONE_CNT_MASK) |
			     CN23XX_INTR_CINT_ENB));
		}
	}

	/* Set queue-0 MBOX_ENB to enable VF mailbox interrupt */
	if (intr_flag & OCTEON_MBOX_INTR) {
		octeon_write_csr64(
		    oct, CN23XX_VF_SLI_PKT_MBOX_INT(0),
		    (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) |
		     CN23XX_INTR_MBOX_ENB));
	}
}

static void cn23xx_disable_vf_interrupt(struct octeon_device *oct, u8 intr_flag)
{
	u32 q_no;

	if (intr_flag & OCTEON_OUTPUT_INTR) {
		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
			/* Write all 1's in INT_LEVEL reg to disable PO_INT */
			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no),
			    0x3fffffffffffff);
		}
	}
	if (intr_flag & OCTEON_INPUT_INTR) {
		for (q_no = 0; q_no < oct->num_oqs; q_no++) {
			octeon_write_csr64(
			    oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no),
			    (octeon_read_csr64(
				 oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) &
			     ~(CN23XX_INTR_CINT_ENB |
			       CN23XX_PKT_IN_DONE_CNT_MASK)));
		}
	}

	if (intr_flag & OCTEON_MBOX_INTR) {
		octeon_write_csr64(
		    oct, CN23XX_VF_SLI_PKT_MBOX_INT(0),
		    (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) &
		     ~CN23XX_INTR_MBOX_ENB));
	}
}

int cn23xx_setup_octeon_vf_device(struct octeon_device *oct)
{
	struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip;
	u32 rings_per_vf, ring_flag;
	u64 reg_val;

	if (octeon_map_pci_barx(oct, 0, 0))
		return 1;

	/* INPUT_CONTROL[RPVF] gives the VF IOq count */
	reg_val = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(0));

	oct->pf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) &
		      CN23XX_PKT_INPUT_CTL_PF_NUM_MASK;
	oct->vf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_VF_NUM_POS) &
		      CN23XX_PKT_INPUT_CTL_VF_NUM_MASK;

	reg_val = reg_val >> CN23XX_PKT_INPUT_CTL_RPVF_POS;

	rings_per_vf = reg_val & CN23XX_PKT_INPUT_CTL_RPVF_MASK;

	ring_flag = 0;

	cn23xx->conf  = oct_get_config_info(oct, LIO_23XX);
	if (!cn23xx->conf) {
		dev_err(&oct->pci_dev->dev, "%s No Config found for CN23XX\n",
			__func__);
		octeon_unmap_pci_barx(oct, 0);
		return 1;
	}

	if (oct->sriov_info.rings_per_vf > rings_per_vf) {
		dev_warn(&oct->pci_dev->dev,
			 "num_queues:%d greater than PF configured rings_per_vf:%d. Reducing to %d.\n",
			 oct->sriov_info.rings_per_vf, rings_per_vf,
			 rings_per_vf);
		oct->sriov_info.rings_per_vf = rings_per_vf;
	} else {
		if (rings_per_vf > num_present_cpus()) {
			dev_warn(&oct->pci_dev->dev,
				 "PF configured rings_per_vf:%d greater than num_cpu:%d. Using rings_per_vf:%d equal to num cpus\n",
				 rings_per_vf,
				 num_present_cpus(),
				 num_present_cpus());
			oct->sriov_info.rings_per_vf =
				num_present_cpus();
		} else {
			oct->sriov_info.rings_per_vf = rings_per_vf;
		}
	}

	oct->fn_list.setup_iq_regs = cn23xx_setup_vf_iq_regs;
	oct->fn_list.setup_oq_regs = cn23xx_setup_vf_oq_regs;
	oct->fn_list.setup_mbox = cn23xx_setup_vf_mbox;
	oct->fn_list.free_mbox = cn23xx_free_vf_mbox;

	oct->fn_list.msix_interrupt_handler = cn23xx_vf_msix_interrupt_handler;

	oct->fn_list.setup_device_regs = cn23xx_setup_vf_device_regs;
	oct->fn_list.update_iq_read_idx = cn23xx_update_read_index;

	oct->fn_list.enable_interrupt = cn23xx_enable_vf_interrupt;
	oct->fn_list.disable_interrupt = cn23xx_disable_vf_interrupt;

	oct->fn_list.enable_io_queues = cn23xx_enable_vf_io_queues;
	oct->fn_list.disable_io_queues = cn23xx_disable_vf_io_queues;

	return 0;
}

void cn23xx_dump_vf_iq_regs(struct octeon_device *oct)
{
	u32 regval, q_no;

	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_DOORBELL_0 [0x%x]: 0x%016llx\n",
		CN23XX_VF_SLI_IQ_DOORBELL(0),
		CVM_CAST64(octeon_read_csr64(
					oct, CN23XX_VF_SLI_IQ_DOORBELL(0))));

	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_BASEADDR_0 [0x%x]: 0x%016llx\n",
		CN23XX_VF_SLI_IQ_BASE_ADDR64(0),
		CVM_CAST64(octeon_read_csr64(
			oct, CN23XX_VF_SLI_IQ_BASE_ADDR64(0))));

	dev_dbg(&oct->pci_dev->dev, "SLI_IQ_FIFO_RSIZE_0 [0x%x]: 0x%016llx\n",
		CN23XX_VF_SLI_IQ_SIZE(0),
		CVM_CAST64(octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_SIZE(0))));

	for (q_no = 0; q_no < oct->sriov_info.rings_per_vf; q_no++) {
		dev_dbg(&oct->pci_dev->dev, "SLI_PKT[%d]_INPUT_CTL [0x%x]: 0x%016llx\n",
			q_no, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no),
			CVM_CAST64(octeon_read_csr64(
				oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no))));
	}

	pci_read_config_dword(oct->pci_dev, CN23XX_CONFIG_PCIE_DEVCTL, &regval);
	dev_dbg(&oct->pci_dev->dev, "Config DevCtl [0x%x]: 0x%08x\n",
		CN23XX_CONFIG_PCIE_DEVCTL, regval);
}