1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2019, Vladimir Oltean <olteanv@gmail.com>
*/
#ifndef _SJA1105_PTP_H
#define _SJA1105_PTP_H
#include <linux/timer.h>
#if IS_ENABLED(CONFIG_NET_DSA_SJA1105_PTP)
/* Timestamps are in units of 8 ns clock ticks (equivalent to
* a fixed 125 MHz clock).
*/
#define SJA1105_TICK_NS 8
static inline s64 ns_to_sja1105_ticks(s64 ns)
{
return ns / SJA1105_TICK_NS;
}
static inline s64 sja1105_ticks_to_ns(s64 ticks)
{
return ticks * SJA1105_TICK_NS;
}
/* Calculate the first base_time in the future that satisfies this
* relationship:
*
* future_base_time = base_time + N x cycle_time >= now, or
*
* now - base_time
* N >= ---------------
* cycle_time
*
* Because N is an integer, the ceiling value of the above "a / b" ratio
* is in fact precisely the floor value of "(a + b - 1) / b", which is
* easier to calculate only having integer division tools.
*/
static inline s64 future_base_time(s64 base_time, s64 cycle_time, s64 now)
{
s64 a, b, n;
if (base_time >= now)
return base_time;
a = now - base_time;
b = cycle_time;
n = div_s64(a + b - 1, b);
return base_time + n * cycle_time;
}
/* This is not a preprocessor macro because the "ns" argument may or may not be
* s64 at caller side. This ensures it is properly type-cast before div_s64.
*/
static inline s64 ns_to_sja1105_delta(s64 ns)
{
return div_s64(ns, 200);
}
static inline s64 sja1105_delta_to_ns(s64 delta)
{
return delta * 200;
}
struct sja1105_ptp_cmd {
u64 startptpcp; /* start toggling PTP_CLK pin */
u64 stopptpcp; /* stop toggling PTP_CLK pin */
u64 ptpstrtsch; /* start schedule */
u64 ptpstopsch; /* stop schedule */
u64 resptp; /* reset */
u64 corrclk4ts; /* use the corrected clock for timestamps */
u64 ptpclkadd; /* enum sja1105_ptp_clk_mode */
};
struct sja1105_ptp_data {
struct timer_list extts_timer;
/* Used only on SJA1105 to reconstruct partial timestamps */
struct sk_buff_head skb_rxtstamp_queue;
/* Used on SJA1110 where meta frames are generated only for
* 2-step TX timestamps
*/
struct sk_buff_head skb_txtstamp_queue;
struct ptp_clock_info caps;
struct ptp_clock *clock;
struct sja1105_ptp_cmd cmd;
/* Serializes all operations on the PTP hardware clock */
struct mutex lock;
bool extts_enabled;
u64 ptpsyncts;
};
int sja1105_ptp_clock_register(struct dsa_switch *ds);
void sja1105_ptp_clock_unregister(struct dsa_switch *ds);
void sja1105et_ptp_cmd_packing(u8 *buf, struct sja1105_ptp_cmd *cmd,
enum packing_op op);
void sja1105pqrs_ptp_cmd_packing(u8 *buf, struct sja1105_ptp_cmd *cmd,
enum packing_op op);
int sja1105_get_ts_info(struct dsa_switch *ds, int port,
struct ethtool_ts_info *ts);
void sja1105_ptp_txtstamp_skb(struct dsa_switch *ds, int slot,
struct sk_buff *clone);
bool sja1105_port_rxtstamp(struct dsa_switch *ds, int port,
struct sk_buff *skb, unsigned int type);
void sja1105_port_txtstamp(struct dsa_switch *ds, int port,
struct sk_buff *skb);
int sja1105_hwtstamp_get(struct dsa_switch *ds, int port, struct ifreq *ifr);
int sja1105_hwtstamp_set(struct dsa_switch *ds, int port, struct ifreq *ifr);
int __sja1105_ptp_gettimex(struct dsa_switch *ds, u64 *ns,
struct ptp_system_timestamp *sts);
int __sja1105_ptp_settime(struct dsa_switch *ds, u64 ns,
struct ptp_system_timestamp *ptp_sts);
int __sja1105_ptp_adjtime(struct dsa_switch *ds, s64 delta);
int sja1105_ptp_commit(struct dsa_switch *ds, struct sja1105_ptp_cmd *cmd,
sja1105_spi_rw_mode_t rw);
bool sja1105_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb);
bool sja1110_rxtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb);
void sja1110_txtstamp(struct dsa_switch *ds, int port, struct sk_buff *skb);
#else
struct sja1105_ptp_cmd;
/* Structures cannot be empty in C. Bah!
* Keep the mutex as the only element, which is a bit more difficult to
* refactor out of sja1105_main.c anyway.
*/
struct sja1105_ptp_data {
struct mutex lock;
};
static inline int sja1105_ptp_clock_register(struct dsa_switch *ds)
{
return 0;
}
static inline void sja1105_ptp_clock_unregister(struct dsa_switch *ds) { }
static inline void sja1105_ptp_txtstamp_skb(struct dsa_switch *ds, int slot,
struct sk_buff *clone)
{
}
static inline int __sja1105_ptp_gettimex(struct dsa_switch *ds, u64 *ns,
struct ptp_system_timestamp *sts)
{
return 0;
}
static inline int __sja1105_ptp_settime(struct dsa_switch *ds, u64 ns,
struct ptp_system_timestamp *ptp_sts)
{
return 0;
}
static inline int __sja1105_ptp_adjtime(struct dsa_switch *ds, s64 delta)
{
return 0;
}
static inline int sja1105_ptp_commit(struct dsa_switch *ds,
struct sja1105_ptp_cmd *cmd,
sja1105_spi_rw_mode_t rw)
{
return 0;
}
#define sja1105et_ptp_cmd_packing NULL
#define sja1105pqrs_ptp_cmd_packing NULL
#define sja1105_get_ts_info NULL
#define sja1105_port_rxtstamp NULL
#define sja1105_port_txtstamp NULL
#define sja1105_hwtstamp_get NULL
#define sja1105_hwtstamp_set NULL
#define sja1105_rxtstamp NULL
#define sja1110_rxtstamp NULL
#define sja1110_txtstamp NULL
#endif /* IS_ENABLED(CONFIG_NET_DSA_SJA1105_PTP) */
#endif /* _SJA1105_PTP_H */
|