1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
|
/*
* Hisilicon NAND Flash controller driver
*
* Copyright © 2012-2014 HiSilicon Technologies Co., Ltd.
* http://www.hisilicon.com
*
* Author: Zhou Wang <wangzhou.bry@gmail.com>
* The initial developer of the original code is Zhiyong Cai
* <caizhiyong@huawei.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/of.h>
#include <linux/of_mtd.h>
#include <linux/mtd/mtd.h>
#include <linux/sizes.h>
#include <linux/clk.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/mtd/nand.h>
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/mtd/partitions.h>
#define HINFC504_MAX_CHIP (4)
#define HINFC504_W_LATCH (5)
#define HINFC504_R_LATCH (7)
#define HINFC504_RW_LATCH (3)
#define HINFC504_NFC_TIMEOUT (2 * HZ)
#define HINFC504_NFC_PM_TIMEOUT (1 * HZ)
#define HINFC504_NFC_DMA_TIMEOUT (5 * HZ)
#define HINFC504_CHIP_DELAY (25)
#define HINFC504_REG_BASE_ADDRESS_LEN (0x100)
#define HINFC504_BUFFER_BASE_ADDRESS_LEN (2048 + 128)
#define HINFC504_ADDR_CYCLE_MASK 0x4
#define HINFC504_CON 0x00
#define HINFC504_CON_OP_MODE_NORMAL BIT(0)
#define HINFC504_CON_PAGEISZE_SHIFT (1)
#define HINFC504_CON_PAGESIZE_MASK (0x07)
#define HINFC504_CON_BUS_WIDTH BIT(4)
#define HINFC504_CON_READY_BUSY_SEL BIT(8)
#define HINFC504_CON_ECCTYPE_SHIFT (9)
#define HINFC504_CON_ECCTYPE_MASK (0x07)
#define HINFC504_PWIDTH 0x04
#define SET_HINFC504_PWIDTH(_w_lcnt, _r_lcnt, _rw_hcnt) \
((_w_lcnt) | (((_r_lcnt) & 0x0F) << 4) | (((_rw_hcnt) & 0x0F) << 8))
#define HINFC504_CMD 0x0C
#define HINFC504_ADDRL 0x10
#define HINFC504_ADDRH 0x14
#define HINFC504_DATA_NUM 0x18
#define HINFC504_OP 0x1C
#define HINFC504_OP_READ_DATA_EN BIT(1)
#define HINFC504_OP_WAIT_READY_EN BIT(2)
#define HINFC504_OP_CMD2_EN BIT(3)
#define HINFC504_OP_WRITE_DATA_EN BIT(4)
#define HINFC504_OP_ADDR_EN BIT(5)
#define HINFC504_OP_CMD1_EN BIT(6)
#define HINFC504_OP_NF_CS_SHIFT (7)
#define HINFC504_OP_NF_CS_MASK (3)
#define HINFC504_OP_ADDR_CYCLE_SHIFT (9)
#define HINFC504_OP_ADDR_CYCLE_MASK (7)
#define HINFC504_STATUS 0x20
#define HINFC504_READY BIT(0)
#define HINFC504_INTEN 0x24
#define HINFC504_INTEN_DMA BIT(9)
#define HINFC504_INTEN_UE BIT(6)
#define HINFC504_INTEN_CE BIT(5)
#define HINFC504_INTS 0x28
#define HINFC504_INTS_DMA BIT(9)
#define HINFC504_INTS_UE BIT(6)
#define HINFC504_INTS_CE BIT(5)
#define HINFC504_INTCLR 0x2C
#define HINFC504_INTCLR_DMA BIT(9)
#define HINFC504_INTCLR_UE BIT(6)
#define HINFC504_INTCLR_CE BIT(5)
#define HINFC504_ECC_STATUS 0x5C
#define HINFC504_ECC_16_BIT_SHIFT 12
#define HINFC504_DMA_CTRL 0x60
#define HINFC504_DMA_CTRL_DMA_START BIT(0)
#define HINFC504_DMA_CTRL_WE BIT(1)
#define HINFC504_DMA_CTRL_DATA_AREA_EN BIT(2)
#define HINFC504_DMA_CTRL_OOB_AREA_EN BIT(3)
#define HINFC504_DMA_CTRL_BURST4_EN BIT(4)
#define HINFC504_DMA_CTRL_BURST8_EN BIT(5)
#define HINFC504_DMA_CTRL_BURST16_EN BIT(6)
#define HINFC504_DMA_CTRL_ADDR_NUM_SHIFT (7)
#define HINFC504_DMA_CTRL_ADDR_NUM_MASK (1)
#define HINFC504_DMA_CTRL_CS_SHIFT (8)
#define HINFC504_DMA_CTRL_CS_MASK (0x03)
#define HINFC504_DMA_ADDR_DATA 0x64
#define HINFC504_DMA_ADDR_OOB 0x68
#define HINFC504_DMA_LEN 0x6C
#define HINFC504_DMA_LEN_OOB_SHIFT (16)
#define HINFC504_DMA_LEN_OOB_MASK (0xFFF)
#define HINFC504_DMA_PARA 0x70
#define HINFC504_DMA_PARA_DATA_RW_EN BIT(0)
#define HINFC504_DMA_PARA_OOB_RW_EN BIT(1)
#define HINFC504_DMA_PARA_DATA_EDC_EN BIT(2)
#define HINFC504_DMA_PARA_OOB_EDC_EN BIT(3)
#define HINFC504_DMA_PARA_DATA_ECC_EN BIT(4)
#define HINFC504_DMA_PARA_OOB_ECC_EN BIT(5)
#define HINFC_VERSION 0x74
#define HINFC504_LOG_READ_ADDR 0x7C
#define HINFC504_LOG_READ_LEN 0x80
#define HINFC504_NANDINFO_LEN 0x10
struct hinfc_host {
struct nand_chip chip;
struct device *dev;
void __iomem *iobase;
void __iomem *mmio;
struct completion cmd_complete;
unsigned int offset;
unsigned int command;
int chipselect;
unsigned int addr_cycle;
u32 addr_value[2];
u32 cache_addr_value[2];
char *buffer;
dma_addr_t dma_buffer;
dma_addr_t dma_oob;
int version;
unsigned int irq_status; /* interrupt status */
};
static inline unsigned int hinfc_read(struct hinfc_host *host, unsigned int reg)
{
return readl(host->iobase + reg);
}
static inline void hinfc_write(struct hinfc_host *host, unsigned int value,
unsigned int reg)
{
writel(value, host->iobase + reg);
}
static void wait_controller_finished(struct hinfc_host *host)
{
unsigned long timeout = jiffies + HINFC504_NFC_TIMEOUT;
int val;
while (time_before(jiffies, timeout)) {
val = hinfc_read(host, HINFC504_STATUS);
if (host->command == NAND_CMD_ERASE2) {
/* nfc is ready */
while (!(val & HINFC504_READY)) {
usleep_range(500, 1000);
val = hinfc_read(host, HINFC504_STATUS);
}
return;
}
if (val & HINFC504_READY)
return;
}
/* wait cmd timeout */
dev_err(host->dev, "Wait NAND controller exec cmd timeout.\n");
}
static void hisi_nfc_dma_transfer(struct hinfc_host *host, int todev)
{
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
unsigned long val;
int ret;
hinfc_write(host, host->dma_buffer, HINFC504_DMA_ADDR_DATA);
hinfc_write(host, host->dma_oob, HINFC504_DMA_ADDR_OOB);
if (chip->ecc.mode == NAND_ECC_NONE) {
hinfc_write(host, ((mtd->oobsize & HINFC504_DMA_LEN_OOB_MASK)
<< HINFC504_DMA_LEN_OOB_SHIFT), HINFC504_DMA_LEN);
hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN
| HINFC504_DMA_PARA_OOB_RW_EN, HINFC504_DMA_PARA);
} else {
if (host->command == NAND_CMD_READOOB)
hinfc_write(host, HINFC504_DMA_PARA_OOB_RW_EN
| HINFC504_DMA_PARA_OOB_EDC_EN
| HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA);
else
hinfc_write(host, HINFC504_DMA_PARA_DATA_RW_EN
| HINFC504_DMA_PARA_OOB_RW_EN
| HINFC504_DMA_PARA_DATA_EDC_EN
| HINFC504_DMA_PARA_OOB_EDC_EN
| HINFC504_DMA_PARA_DATA_ECC_EN
| HINFC504_DMA_PARA_OOB_ECC_EN, HINFC504_DMA_PARA);
}
val = (HINFC504_DMA_CTRL_DMA_START | HINFC504_DMA_CTRL_BURST4_EN
| HINFC504_DMA_CTRL_BURST8_EN | HINFC504_DMA_CTRL_BURST16_EN
| HINFC504_DMA_CTRL_DATA_AREA_EN | HINFC504_DMA_CTRL_OOB_AREA_EN
| ((host->addr_cycle == 4 ? 1 : 0)
<< HINFC504_DMA_CTRL_ADDR_NUM_SHIFT)
| ((host->chipselect & HINFC504_DMA_CTRL_CS_MASK)
<< HINFC504_DMA_CTRL_CS_SHIFT));
if (todev)
val |= HINFC504_DMA_CTRL_WE;
init_completion(&host->cmd_complete);
hinfc_write(host, val, HINFC504_DMA_CTRL);
ret = wait_for_completion_timeout(&host->cmd_complete,
HINFC504_NFC_DMA_TIMEOUT);
if (!ret) {
dev_err(host->dev, "DMA operation(irq) timeout!\n");
/* sanity check */
val = hinfc_read(host, HINFC504_DMA_CTRL);
if (!(val & HINFC504_DMA_CTRL_DMA_START))
dev_err(host->dev, "DMA is already done but without irq ACK!\n");
else
dev_err(host->dev, "DMA is really timeout!\n");
}
}
static int hisi_nfc_send_cmd_pageprog(struct hinfc_host *host)
{
host->addr_value[0] &= 0xffff0000;
hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
hinfc_write(host, host->addr_value[1], HINFC504_ADDRH);
hinfc_write(host, NAND_CMD_PAGEPROG << 8 | NAND_CMD_SEQIN,
HINFC504_CMD);
hisi_nfc_dma_transfer(host, 1);
return 0;
}
static int hisi_nfc_send_cmd_readstart(struct hinfc_host *host)
{
struct mtd_info *mtd = nand_to_mtd(&host->chip);
if ((host->addr_value[0] == host->cache_addr_value[0]) &&
(host->addr_value[1] == host->cache_addr_value[1]))
return 0;
host->addr_value[0] &= 0xffff0000;
hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
hinfc_write(host, host->addr_value[1], HINFC504_ADDRH);
hinfc_write(host, NAND_CMD_READSTART << 8 | NAND_CMD_READ0,
HINFC504_CMD);
hinfc_write(host, 0, HINFC504_LOG_READ_ADDR);
hinfc_write(host, mtd->writesize + mtd->oobsize,
HINFC504_LOG_READ_LEN);
hisi_nfc_dma_transfer(host, 0);
host->cache_addr_value[0] = host->addr_value[0];
host->cache_addr_value[1] = host->addr_value[1];
return 0;
}
static int hisi_nfc_send_cmd_erase(struct hinfc_host *host)
{
hinfc_write(host, host->addr_value[0], HINFC504_ADDRL);
hinfc_write(host, (NAND_CMD_ERASE2 << 8) | NAND_CMD_ERASE1,
HINFC504_CMD);
hinfc_write(host, HINFC504_OP_WAIT_READY_EN
| HINFC504_OP_CMD2_EN
| HINFC504_OP_CMD1_EN
| HINFC504_OP_ADDR_EN
| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
<< HINFC504_OP_NF_CS_SHIFT)
| ((host->addr_cycle & HINFC504_OP_ADDR_CYCLE_MASK)
<< HINFC504_OP_ADDR_CYCLE_SHIFT),
HINFC504_OP);
wait_controller_finished(host);
return 0;
}
static int hisi_nfc_send_cmd_readid(struct hinfc_host *host)
{
hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM);
hinfc_write(host, NAND_CMD_READID, HINFC504_CMD);
hinfc_write(host, 0, HINFC504_ADDRL);
hinfc_write(host, HINFC504_OP_CMD1_EN | HINFC504_OP_ADDR_EN
| HINFC504_OP_READ_DATA_EN
| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
<< HINFC504_OP_NF_CS_SHIFT)
| 1 << HINFC504_OP_ADDR_CYCLE_SHIFT, HINFC504_OP);
wait_controller_finished(host);
return 0;
}
static int hisi_nfc_send_cmd_status(struct hinfc_host *host)
{
hinfc_write(host, HINFC504_NANDINFO_LEN, HINFC504_DATA_NUM);
hinfc_write(host, NAND_CMD_STATUS, HINFC504_CMD);
hinfc_write(host, HINFC504_OP_CMD1_EN
| HINFC504_OP_READ_DATA_EN
| ((host->chipselect & HINFC504_OP_NF_CS_MASK)
<< HINFC504_OP_NF_CS_SHIFT),
HINFC504_OP);
wait_controller_finished(host);
return 0;
}
static int hisi_nfc_send_cmd_reset(struct hinfc_host *host, int chipselect)
{
hinfc_write(host, NAND_CMD_RESET, HINFC504_CMD);
hinfc_write(host, HINFC504_OP_CMD1_EN
| ((chipselect & HINFC504_OP_NF_CS_MASK)
<< HINFC504_OP_NF_CS_SHIFT)
| HINFC504_OP_WAIT_READY_EN,
HINFC504_OP);
wait_controller_finished(host);
return 0;
}
static void hisi_nfc_select_chip(struct mtd_info *mtd, int chipselect)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
if (chipselect < 0)
return;
host->chipselect = chipselect;
}
static uint8_t hisi_nfc_read_byte(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
if (host->command == NAND_CMD_STATUS)
return *(uint8_t *)(host->mmio);
host->offset++;
if (host->command == NAND_CMD_READID)
return *(uint8_t *)(host->mmio + host->offset - 1);
return *(uint8_t *)(host->buffer + host->offset - 1);
}
static u16 hisi_nfc_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
host->offset += 2;
return *(u16 *)(host->buffer + host->offset - 2);
}
static void
hisi_nfc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
memcpy(host->buffer + host->offset, buf, len);
host->offset += len;
}
static void hisi_nfc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
memcpy(buf, host->buffer + host->offset, len);
host->offset += len;
}
static void set_addr(struct mtd_info *mtd, int column, int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
unsigned int command = host->command;
host->addr_cycle = 0;
host->addr_value[0] = 0;
host->addr_value[1] = 0;
/* Serially input address */
if (column != -1) {
/* Adjust columns for 16 bit buswidth */
if (chip->options & NAND_BUSWIDTH_16 &&
!nand_opcode_8bits(command))
column >>= 1;
host->addr_value[0] = column & 0xffff;
host->addr_cycle = 2;
}
if (page_addr != -1) {
host->addr_value[0] |= (page_addr & 0xffff)
<< (host->addr_cycle * 8);
host->addr_cycle += 2;
/* One more address cycle for devices > 128MiB */
if (chip->chipsize > (128 << 20)) {
host->addr_cycle += 1;
if (host->command == NAND_CMD_ERASE1)
host->addr_value[0] |= ((page_addr >> 16) & 0xff) << 16;
else
host->addr_value[1] |= ((page_addr >> 16) & 0xff);
}
}
}
static void hisi_nfc_cmdfunc(struct mtd_info *mtd, unsigned command, int column,
int page_addr)
{
struct nand_chip *chip = mtd_to_nand(mtd);
struct hinfc_host *host = nand_get_controller_data(chip);
int is_cache_invalid = 1;
unsigned int flag = 0;
host->command = command;
switch (command) {
case NAND_CMD_READ0:
case NAND_CMD_READOOB:
if (command == NAND_CMD_READ0)
host->offset = column;
else
host->offset = column + mtd->writesize;
is_cache_invalid = 0;
set_addr(mtd, column, page_addr);
hisi_nfc_send_cmd_readstart(host);
break;
case NAND_CMD_SEQIN:
host->offset = column;
set_addr(mtd, column, page_addr);
break;
case NAND_CMD_ERASE1:
set_addr(mtd, column, page_addr);
break;
case NAND_CMD_PAGEPROG:
hisi_nfc_send_cmd_pageprog(host);
break;
case NAND_CMD_ERASE2:
hisi_nfc_send_cmd_erase(host);
break;
case NAND_CMD_READID:
host->offset = column;
memset(host->mmio, 0, 0x10);
hisi_nfc_send_cmd_readid(host);
break;
case NAND_CMD_STATUS:
flag = hinfc_read(host, HINFC504_CON);
if (chip->ecc.mode == NAND_ECC_HW)
hinfc_write(host,
flag & ~(HINFC504_CON_ECCTYPE_MASK <<
HINFC504_CON_ECCTYPE_SHIFT), HINFC504_CON);
host->offset = 0;
memset(host->mmio, 0, 0x10);
hisi_nfc_send_cmd_status(host);
hinfc_write(host, flag, HINFC504_CON);
break;
case NAND_CMD_RESET:
hisi_nfc_send_cmd_reset(host, host->chipselect);
break;
default:
dev_err(host->dev, "Error: unsupported cmd(cmd=%x, col=%x, page=%x)\n",
command, column, page_addr);
}
if (is_cache_invalid) {
host->cache_addr_value[0] = ~0;
host->cache_addr_value[1] = ~0;
}
}
static irqreturn_t hinfc_irq_handle(int irq, void *devid)
{
struct hinfc_host *host = devid;
unsigned int flag;
flag = hinfc_read(host, HINFC504_INTS);
/* store interrupts state */
host->irq_status |= flag;
if (flag & HINFC504_INTS_DMA) {
hinfc_write(host, HINFC504_INTCLR_DMA, HINFC504_INTCLR);
complete(&host->cmd_complete);
} else if (flag & HINFC504_INTS_CE) {
hinfc_write(host, HINFC504_INTCLR_CE, HINFC504_INTCLR);
} else if (flag & HINFC504_INTS_UE) {
hinfc_write(host, HINFC504_INTCLR_UE, HINFC504_INTCLR);
}
return IRQ_HANDLED;
}
static int hisi_nand_read_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
{
struct hinfc_host *host = nand_get_controller_data(chip);
int max_bitflips = 0, stat = 0, stat_max = 0, status_ecc;
int stat_1, stat_2;
chip->read_buf(mtd, buf, mtd->writesize);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
/* errors which can not be corrected by ECC */
if (host->irq_status & HINFC504_INTS_UE) {
mtd->ecc_stats.failed++;
} else if (host->irq_status & HINFC504_INTS_CE) {
/* TODO: need add other ECC modes! */
switch (chip->ecc.strength) {
case 16:
status_ecc = hinfc_read(host, HINFC504_ECC_STATUS) >>
HINFC504_ECC_16_BIT_SHIFT & 0x0fff;
stat_2 = status_ecc & 0x3f;
stat_1 = status_ecc >> 6 & 0x3f;
stat = stat_1 + stat_2;
stat_max = max_t(int, stat_1, stat_2);
}
mtd->ecc_stats.corrected += stat;
max_bitflips = max_t(int, max_bitflips, stat_max);
}
host->irq_status = 0;
return max_bitflips;
}
static int hisi_nand_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
struct hinfc_host *host = nand_get_controller_data(chip);
chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
if (host->irq_status & HINFC504_INTS_UE) {
host->irq_status = 0;
return -EBADMSG;
}
host->irq_status = 0;
return 0;
}
static int hisi_nand_write_page_hwecc(struct mtd_info *mtd,
struct nand_chip *chip, const uint8_t *buf, int oob_required,
int page)
{
chip->write_buf(mtd, buf, mtd->writesize);
if (oob_required)
chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
return 0;
}
static void hisi_nfc_host_init(struct hinfc_host *host)
{
struct nand_chip *chip = &host->chip;
unsigned int flag = 0;
host->version = hinfc_read(host, HINFC_VERSION);
host->addr_cycle = 0;
host->addr_value[0] = 0;
host->addr_value[1] = 0;
host->cache_addr_value[0] = ~0;
host->cache_addr_value[1] = ~0;
host->chipselect = 0;
/* default page size: 2K, ecc_none. need modify */
flag = HINFC504_CON_OP_MODE_NORMAL | HINFC504_CON_READY_BUSY_SEL
| ((0x001 & HINFC504_CON_PAGESIZE_MASK)
<< HINFC504_CON_PAGEISZE_SHIFT)
| ((0x0 & HINFC504_CON_ECCTYPE_MASK)
<< HINFC504_CON_ECCTYPE_SHIFT)
| ((chip->options & NAND_BUSWIDTH_16) ?
HINFC504_CON_BUS_WIDTH : 0);
hinfc_write(host, flag, HINFC504_CON);
memset(host->mmio, 0xff, HINFC504_BUFFER_BASE_ADDRESS_LEN);
hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH,
HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH);
/* enable DMA irq */
hinfc_write(host, HINFC504_INTEN_DMA, HINFC504_INTEN);
}
static struct nand_ecclayout nand_ecc_2K_16bits = {
.oobavail = 6,
.oobfree = { {2, 6} },
};
static int hisi_nfc_ecc_probe(struct hinfc_host *host)
{
unsigned int flag;
int size, strength, ecc_bits;
struct device *dev = host->dev;
struct nand_chip *chip = &host->chip;
struct mtd_info *mtd = nand_to_mtd(chip);
struct device_node *np = host->dev->of_node;
size = of_get_nand_ecc_step_size(np);
strength = of_get_nand_ecc_strength(np);
if (size != 1024) {
dev_err(dev, "error ecc size: %d\n", size);
return -EINVAL;
}
if ((size == 1024) && ((strength != 8) && (strength != 16) &&
(strength != 24) && (strength != 40))) {
dev_err(dev, "ecc size and strength do not match\n");
return -EINVAL;
}
chip->ecc.size = size;
chip->ecc.strength = strength;
chip->ecc.read_page = hisi_nand_read_page_hwecc;
chip->ecc.read_oob = hisi_nand_read_oob;
chip->ecc.write_page = hisi_nand_write_page_hwecc;
switch (chip->ecc.strength) {
case 16:
ecc_bits = 6;
if (mtd->writesize == 2048)
chip->ecc.layout = &nand_ecc_2K_16bits;
/* TODO: add more page size support */
break;
/* TODO: add more ecc strength support */
default:
dev_err(dev, "not support strength: %d\n", chip->ecc.strength);
return -EINVAL;
}
flag = hinfc_read(host, HINFC504_CON);
/* add ecc type configure */
flag |= ((ecc_bits & HINFC504_CON_ECCTYPE_MASK)
<< HINFC504_CON_ECCTYPE_SHIFT);
hinfc_write(host, flag, HINFC504_CON);
/* enable ecc irq */
flag = hinfc_read(host, HINFC504_INTEN) & 0xfff;
hinfc_write(host, flag | HINFC504_INTEN_UE | HINFC504_INTEN_CE,
HINFC504_INTEN);
return 0;
}
static int hisi_nfc_probe(struct platform_device *pdev)
{
int ret = 0, irq, buswidth, flag, max_chips = HINFC504_MAX_CHIP;
struct device *dev = &pdev->dev;
struct hinfc_host *host;
struct nand_chip *chip;
struct mtd_info *mtd;
struct resource *res;
struct device_node *np = dev->of_node;
host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL);
if (!host)
return -ENOMEM;
host->dev = dev;
platform_set_drvdata(pdev, host);
chip = &host->chip;
mtd = nand_to_mtd(chip);
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
dev_err(dev, "no IRQ resource defined\n");
ret = -ENXIO;
goto err_res;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
host->iobase = devm_ioremap_resource(dev, res);
if (IS_ERR(host->iobase)) {
ret = PTR_ERR(host->iobase);
goto err_res;
}
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
host->mmio = devm_ioremap_resource(dev, res);
if (IS_ERR(host->mmio)) {
ret = PTR_ERR(host->mmio);
dev_err(dev, "devm_ioremap_resource[1] fail\n");
goto err_res;
}
mtd->name = "hisi_nand";
mtd->dev.parent = &pdev->dev;
nand_set_controller_data(chip, host);
nand_set_flash_node(chip, np);
chip->cmdfunc = hisi_nfc_cmdfunc;
chip->select_chip = hisi_nfc_select_chip;
chip->read_byte = hisi_nfc_read_byte;
chip->read_word = hisi_nfc_read_word;
chip->write_buf = hisi_nfc_write_buf;
chip->read_buf = hisi_nfc_read_buf;
chip->chip_delay = HINFC504_CHIP_DELAY;
chip->ecc.mode = of_get_nand_ecc_mode(np);
buswidth = of_get_nand_bus_width(np);
if (buswidth == 16)
chip->options |= NAND_BUSWIDTH_16;
hisi_nfc_host_init(host);
ret = devm_request_irq(dev, irq, hinfc_irq_handle, 0x0, "nandc", host);
if (ret) {
dev_err(dev, "failed to request IRQ\n");
goto err_res;
}
ret = nand_scan_ident(mtd, max_chips, NULL);
if (ret) {
ret = -ENODEV;
goto err_res;
}
host->buffer = dmam_alloc_coherent(dev, mtd->writesize + mtd->oobsize,
&host->dma_buffer, GFP_KERNEL);
if (!host->buffer) {
ret = -ENOMEM;
goto err_res;
}
host->dma_oob = host->dma_buffer + mtd->writesize;
memset(host->buffer, 0xff, mtd->writesize + mtd->oobsize);
flag = hinfc_read(host, HINFC504_CON);
flag &= ~(HINFC504_CON_PAGESIZE_MASK << HINFC504_CON_PAGEISZE_SHIFT);
switch (mtd->writesize) {
case 2048:
flag |= (0x001 << HINFC504_CON_PAGEISZE_SHIFT); break;
/*
* TODO: add more pagesize support,
* default pagesize has been set in hisi_nfc_host_init
*/
default:
dev_err(dev, "NON-2KB page size nand flash\n");
ret = -EINVAL;
goto err_res;
}
hinfc_write(host, flag, HINFC504_CON);
if (chip->ecc.mode == NAND_ECC_HW)
hisi_nfc_ecc_probe(host);
ret = nand_scan_tail(mtd);
if (ret) {
dev_err(dev, "nand_scan_tail failed: %d\n", ret);
goto err_res;
}
ret = mtd_device_register(mtd, NULL, 0);
if (ret) {
dev_err(dev, "Err MTD partition=%d\n", ret);
goto err_mtd;
}
return 0;
err_mtd:
nand_release(mtd);
err_res:
return ret;
}
static int hisi_nfc_remove(struct platform_device *pdev)
{
struct hinfc_host *host = platform_get_drvdata(pdev);
struct mtd_info *mtd = nand_to_mtd(&host->chip);
nand_release(mtd);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int hisi_nfc_suspend(struct device *dev)
{
struct hinfc_host *host = dev_get_drvdata(dev);
unsigned long timeout = jiffies + HINFC504_NFC_PM_TIMEOUT;
while (time_before(jiffies, timeout)) {
if (((hinfc_read(host, HINFC504_STATUS) & 0x1) == 0x0) &&
(hinfc_read(host, HINFC504_DMA_CTRL) &
HINFC504_DMA_CTRL_DMA_START)) {
cond_resched();
return 0;
}
}
dev_err(host->dev, "nand controller suspend timeout.\n");
return -EAGAIN;
}
static int hisi_nfc_resume(struct device *dev)
{
int cs;
struct hinfc_host *host = dev_get_drvdata(dev);
struct nand_chip *chip = &host->chip;
for (cs = 0; cs < chip->numchips; cs++)
hisi_nfc_send_cmd_reset(host, cs);
hinfc_write(host, SET_HINFC504_PWIDTH(HINFC504_W_LATCH,
HINFC504_R_LATCH, HINFC504_RW_LATCH), HINFC504_PWIDTH);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(hisi_nfc_pm_ops, hisi_nfc_suspend, hisi_nfc_resume);
static const struct of_device_id nfc_id_table[] = {
{ .compatible = "hisilicon,504-nfc" },
{}
};
MODULE_DEVICE_TABLE(of, nfc_id_table);
static struct platform_driver hisi_nfc_driver = {
.driver = {
.name = "hisi_nand",
.of_match_table = nfc_id_table,
.pm = &hisi_nfc_pm_ops,
},
.probe = hisi_nfc_probe,
.remove = hisi_nfc_remove,
};
module_platform_driver(hisi_nfc_driver);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Zhou Wang");
MODULE_AUTHOR("Zhiyong Cai");
MODULE_DESCRIPTION("Hisilicon Nand Flash Controller Driver");
|