1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
|
// SPDX-License-Identifier: GPL-2.0
/*
* ARM PL353 SMC driver
*
* Copyright (C) 2012 - 2018 Xilinx, Inc
* Author: Punnaiah Choudary Kalluri <punnaiah@xilinx.com>
* Author: Naga Sureshkumar Relli <nagasure@xilinx.com>
*/
#include <linux/clk.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/pl353-smc.h>
#include <linux/amba/bus.h>
/* Register definitions */
#define PL353_SMC_MEMC_STATUS_OFFS 0 /* Controller status reg, RO */
#define PL353_SMC_CFG_CLR_OFFS 0xC /* Clear config reg, WO */
#define PL353_SMC_DIRECT_CMD_OFFS 0x10 /* Direct command reg, WO */
#define PL353_SMC_SET_CYCLES_OFFS 0x14 /* Set cycles register, WO */
#define PL353_SMC_SET_OPMODE_OFFS 0x18 /* Set opmode register, WO */
#define PL353_SMC_ECC_STATUS_OFFS 0x400 /* ECC status register */
#define PL353_SMC_ECC_MEMCFG_OFFS 0x404 /* ECC mem config reg */
#define PL353_SMC_ECC_MEMCMD1_OFFS 0x408 /* ECC mem cmd1 reg */
#define PL353_SMC_ECC_MEMCMD2_OFFS 0x40C /* ECC mem cmd2 reg */
#define PL353_SMC_ECC_VALUE0_OFFS 0x418 /* ECC value 0 reg */
/* Controller status register specific constants */
#define PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT 6
/* Clear configuration register specific constants */
#define PL353_SMC_CFG_CLR_INT_CLR_1 0x10
#define PL353_SMC_CFG_CLR_ECC_INT_DIS_1 0x40
#define PL353_SMC_CFG_CLR_INT_DIS_1 0x2
#define PL353_SMC_CFG_CLR_DEFAULT_MASK (PL353_SMC_CFG_CLR_INT_CLR_1 | \
PL353_SMC_CFG_CLR_ECC_INT_DIS_1 | \
PL353_SMC_CFG_CLR_INT_DIS_1)
/* Set cycles register specific constants */
#define PL353_SMC_SET_CYCLES_T0_MASK 0xF
#define PL353_SMC_SET_CYCLES_T0_SHIFT 0
#define PL353_SMC_SET_CYCLES_T1_MASK 0xF
#define PL353_SMC_SET_CYCLES_T1_SHIFT 4
#define PL353_SMC_SET_CYCLES_T2_MASK 0x7
#define PL353_SMC_SET_CYCLES_T2_SHIFT 8
#define PL353_SMC_SET_CYCLES_T3_MASK 0x7
#define PL353_SMC_SET_CYCLES_T3_SHIFT 11
#define PL353_SMC_SET_CYCLES_T4_MASK 0x7
#define PL353_SMC_SET_CYCLES_T4_SHIFT 14
#define PL353_SMC_SET_CYCLES_T5_MASK 0x7
#define PL353_SMC_SET_CYCLES_T5_SHIFT 17
#define PL353_SMC_SET_CYCLES_T6_MASK 0xF
#define PL353_SMC_SET_CYCLES_T6_SHIFT 20
/* ECC status register specific constants */
#define PL353_SMC_ECC_STATUS_BUSY BIT(6)
#define PL353_SMC_ECC_REG_SIZE_OFFS 4
/* ECC memory config register specific constants */
#define PL353_SMC_ECC_MEMCFG_MODE_MASK 0xC
#define PL353_SMC_ECC_MEMCFG_MODE_SHIFT 2
#define PL353_SMC_ECC_MEMCFG_PGSIZE_MASK 0xC
#define PL353_SMC_DC_UPT_NAND_REGS ((4 << 23) | /* CS: NAND chip */ \
(2 << 21)) /* UpdateRegs operation */
#define PL353_NAND_ECC_CMD1 ((0x80) | /* Write command */ \
(0 << 8) | /* Read command */ \
(0x30 << 16) | /* Read End command */ \
(1 << 24)) /* Read End command calid */
#define PL353_NAND_ECC_CMD2 ((0x85) | /* Write col change cmd */ \
(5 << 8) | /* Read col change cmd */ \
(0xE0 << 16) | /* Read col change end cmd */ \
(1 << 24)) /* Read col change end cmd valid */
#define PL353_NAND_ECC_BUSY_TIMEOUT (1 * HZ)
/**
* struct pl353_smc_data - Private smc driver structure
* @memclk: Pointer to the peripheral clock
* @aclk: Pointer to the APER clock
*/
struct pl353_smc_data {
struct clk *memclk;
struct clk *aclk;
};
/* SMC virtual register base */
static void __iomem *pl353_smc_base;
/**
* pl353_smc_set_buswidth - Set memory buswidth
* @bw: Memory buswidth (8 | 16)
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_buswidth(unsigned int bw)
{
if (bw != PL353_SMC_MEM_WIDTH_8 && bw != PL353_SMC_MEM_WIDTH_16)
return -EINVAL;
writel(bw, pl353_smc_base + PL353_SMC_SET_OPMODE_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_buswidth);
/**
* pl353_smc_set_cycles - Set memory timing parameters
* @timings: NAND controller timing parameters
*
* Sets NAND chip specific timing parameters.
*/
void pl353_smc_set_cycles(u32 timings[])
{
/*
* Set write pulse timing. This one is easy to extract:
*
* NWE_PULSE = tWP
*/
timings[0] &= PL353_SMC_SET_CYCLES_T0_MASK;
timings[1] = (timings[1] & PL353_SMC_SET_CYCLES_T1_MASK) <<
PL353_SMC_SET_CYCLES_T1_SHIFT;
timings[2] = (timings[2] & PL353_SMC_SET_CYCLES_T2_MASK) <<
PL353_SMC_SET_CYCLES_T2_SHIFT;
timings[3] = (timings[3] & PL353_SMC_SET_CYCLES_T3_MASK) <<
PL353_SMC_SET_CYCLES_T3_SHIFT;
timings[4] = (timings[4] & PL353_SMC_SET_CYCLES_T4_MASK) <<
PL353_SMC_SET_CYCLES_T4_SHIFT;
timings[5] = (timings[5] & PL353_SMC_SET_CYCLES_T5_MASK) <<
PL353_SMC_SET_CYCLES_T5_SHIFT;
timings[6] = (timings[6] & PL353_SMC_SET_CYCLES_T6_MASK) <<
PL353_SMC_SET_CYCLES_T6_SHIFT;
timings[0] |= timings[1] | timings[2] | timings[3] |
timings[4] | timings[5] | timings[6];
writel(timings[0], pl353_smc_base + PL353_SMC_SET_CYCLES_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_set_cycles);
/**
* pl353_smc_ecc_is_busy - Read ecc busy flag
* Return: the ecc_status bit from the ecc_status register. 1 = busy, 0 = idle
*/
bool pl353_smc_ecc_is_busy(void)
{
return ((readl(pl353_smc_base + PL353_SMC_ECC_STATUS_OFFS) &
PL353_SMC_ECC_STATUS_BUSY) == PL353_SMC_ECC_STATUS_BUSY);
}
EXPORT_SYMBOL_GPL(pl353_smc_ecc_is_busy);
/**
* pl353_smc_get_ecc_val - Read ecc_valueN registers
* @ecc_reg: Index of the ecc_value reg (0..3)
* Return: the content of the requested ecc_value register.
*
* There are four valid ecc_value registers. The argument is truncated to stay
* within this valid boundary.
*/
u32 pl353_smc_get_ecc_val(int ecc_reg)
{
u32 addr, reg;
addr = PL353_SMC_ECC_VALUE0_OFFS +
(ecc_reg * PL353_SMC_ECC_REG_SIZE_OFFS);
reg = readl(pl353_smc_base + addr);
return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_ecc_val);
/**
* pl353_smc_get_nand_int_status_raw - Get NAND interrupt status bit
* Return: the raw_int_status1 bit from the memc_status register
*/
int pl353_smc_get_nand_int_status_raw(void)
{
u32 reg;
reg = readl(pl353_smc_base + PL353_SMC_MEMC_STATUS_OFFS);
reg >>= PL353_SMC_MEMC_STATUS_RAW_INT_1_SHIFT;
reg &= 1;
return reg;
}
EXPORT_SYMBOL_GPL(pl353_smc_get_nand_int_status_raw);
/**
* pl353_smc_clr_nand_int - Clear NAND interrupt
*/
void pl353_smc_clr_nand_int(void)
{
writel(PL353_SMC_CFG_CLR_INT_CLR_1,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
}
EXPORT_SYMBOL_GPL(pl353_smc_clr_nand_int);
/**
* pl353_smc_set_ecc_mode - Set SMC ECC mode
* @mode: ECC mode (BYPASS, APB, MEM)
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_ecc_mode(enum pl353_smc_ecc_mode mode)
{
u32 reg;
int ret = 0;
switch (mode) {
case PL353_SMC_ECCMODE_BYPASS:
case PL353_SMC_ECCMODE_APB:
case PL353_SMC_ECCMODE_MEM:
reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
reg &= ~PL353_SMC_ECC_MEMCFG_MODE_MASK;
reg |= mode << PL353_SMC_ECC_MEMCFG_MODE_SHIFT;
writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
break;
default:
ret = -EINVAL;
}
return ret;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_mode);
/**
* pl353_smc_set_ecc_pg_size - Set SMC ECC page size
* @pg_sz: ECC page size
* Return: 0 on success or negative errno.
*/
int pl353_smc_set_ecc_pg_size(unsigned int pg_sz)
{
u32 reg, sz;
switch (pg_sz) {
case 0:
sz = 0;
break;
case SZ_512:
sz = 1;
break;
case SZ_1K:
sz = 2;
break;
case SZ_2K:
sz = 3;
break;
default:
return -EINVAL;
}
reg = readl(pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
reg &= ~PL353_SMC_ECC_MEMCFG_PGSIZE_MASK;
reg |= sz;
writel(reg, pl353_smc_base + PL353_SMC_ECC_MEMCFG_OFFS);
return 0;
}
EXPORT_SYMBOL_GPL(pl353_smc_set_ecc_pg_size);
static int __maybe_unused pl353_smc_suspend(struct device *dev)
{
struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
clk_disable(pl353_smc->memclk);
clk_disable(pl353_smc->aclk);
return 0;
}
static int __maybe_unused pl353_smc_resume(struct device *dev)
{
int ret;
struct pl353_smc_data *pl353_smc = dev_get_drvdata(dev);
ret = clk_enable(pl353_smc->aclk);
if (ret) {
dev_err(dev, "Cannot enable axi domain clock.\n");
return ret;
}
ret = clk_enable(pl353_smc->memclk);
if (ret) {
dev_err(dev, "Cannot enable memory clock.\n");
clk_disable(pl353_smc->aclk);
return ret;
}
return ret;
}
static struct amba_driver pl353_smc_driver;
static SIMPLE_DEV_PM_OPS(pl353_smc_dev_pm_ops, pl353_smc_suspend,
pl353_smc_resume);
/**
* pl353_smc_init_nand_interface - Initialize the NAND interface
* @adev: Pointer to the amba_device struct
* @nand_node: Pointer to the pl353_nand device_node struct
*/
static void pl353_smc_init_nand_interface(struct amba_device *adev,
struct device_node *nand_node)
{
unsigned long timeout;
pl353_smc_set_buswidth(PL353_SMC_MEM_WIDTH_8);
writel(PL353_SMC_CFG_CLR_INT_CLR_1,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
writel(PL353_SMC_DC_UPT_NAND_REGS, pl353_smc_base +
PL353_SMC_DIRECT_CMD_OFFS);
timeout = jiffies + PL353_NAND_ECC_BUSY_TIMEOUT;
/* Wait till the ECC operation is complete */
do {
if (pl353_smc_ecc_is_busy())
cpu_relax();
else
break;
} while (!time_after_eq(jiffies, timeout));
if (time_after_eq(jiffies, timeout))
return;
writel(PL353_NAND_ECC_CMD1,
pl353_smc_base + PL353_SMC_ECC_MEMCMD1_OFFS);
writel(PL353_NAND_ECC_CMD2,
pl353_smc_base + PL353_SMC_ECC_MEMCMD2_OFFS);
}
static const struct of_device_id pl353_smc_supported_children[] = {
{
.compatible = "cfi-flash"
},
{
.compatible = "arm,pl353-nand-r2p1",
.data = pl353_smc_init_nand_interface
},
{}
};
static int pl353_smc_probe(struct amba_device *adev, const struct amba_id *id)
{
struct pl353_smc_data *pl353_smc;
struct device_node *child;
struct resource *res;
int err;
struct device_node *of_node = adev->dev.of_node;
static void (*init)(struct amba_device *adev,
struct device_node *nand_node);
const struct of_device_id *match = NULL;
pl353_smc = devm_kzalloc(&adev->dev, sizeof(*pl353_smc), GFP_KERNEL);
if (!pl353_smc)
return -ENOMEM;
/* Get the NAND controller virtual address */
res = &adev->res;
pl353_smc_base = devm_ioremap_resource(&adev->dev, res);
if (IS_ERR(pl353_smc_base))
return PTR_ERR(pl353_smc_base);
pl353_smc->aclk = devm_clk_get(&adev->dev, "apb_pclk");
if (IS_ERR(pl353_smc->aclk)) {
dev_err(&adev->dev, "aclk clock not found.\n");
return PTR_ERR(pl353_smc->aclk);
}
pl353_smc->memclk = devm_clk_get(&adev->dev, "memclk");
if (IS_ERR(pl353_smc->memclk)) {
dev_err(&adev->dev, "memclk clock not found.\n");
return PTR_ERR(pl353_smc->memclk);
}
err = clk_prepare_enable(pl353_smc->aclk);
if (err) {
dev_err(&adev->dev, "Unable to enable AXI clock.\n");
return err;
}
err = clk_prepare_enable(pl353_smc->memclk);
if (err) {
dev_err(&adev->dev, "Unable to enable memory clock.\n");
goto out_clk_dis_aper;
}
amba_set_drvdata(adev, pl353_smc);
/* clear interrupts */
writel(PL353_SMC_CFG_CLR_DEFAULT_MASK,
pl353_smc_base + PL353_SMC_CFG_CLR_OFFS);
/* Find compatible children. Only a single child is supported */
for_each_available_child_of_node(of_node, child) {
match = of_match_node(pl353_smc_supported_children, child);
if (!match) {
dev_warn(&adev->dev, "unsupported child node\n");
continue;
}
break;
}
if (!match) {
dev_err(&adev->dev, "no matching children\n");
goto out_clk_disable;
}
init = match->data;
if (init)
init(adev, child);
of_platform_device_create(child, NULL, &adev->dev);
return 0;
out_clk_disable:
clk_disable_unprepare(pl353_smc->memclk);
out_clk_dis_aper:
clk_disable_unprepare(pl353_smc->aclk);
return err;
}
static void pl353_smc_remove(struct amba_device *adev)
{
struct pl353_smc_data *pl353_smc = amba_get_drvdata(adev);
clk_disable_unprepare(pl353_smc->memclk);
clk_disable_unprepare(pl353_smc->aclk);
}
static const struct amba_id pl353_ids[] = {
{
.id = 0x00041353,
.mask = 0x000fffff,
},
{ 0, 0 },
};
MODULE_DEVICE_TABLE(amba, pl353_ids);
static struct amba_driver pl353_smc_driver = {
.drv = {
.owner = THIS_MODULE,
.name = "pl353-smc",
.pm = &pl353_smc_dev_pm_ops,
},
.id_table = pl353_ids,
.probe = pl353_smc_probe,
.remove = pl353_smc_remove,
};
module_amba_driver(pl353_smc_driver);
MODULE_AUTHOR("Xilinx, Inc.");
MODULE_DESCRIPTION("ARM PL353 SMC Driver");
MODULE_LICENSE("GPL");
|