1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
|
// SPDX-License-Identifier: GPL-2.0
/* Author: Dan Scally <djrscally@gmail.com> */
#include <linux/acpi.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/property.h>
#include <media/v4l2-fwnode.h>
#include "cio2-bridge.h"
/*
* Extend this array with ACPI Hardware IDs of devices known to be working
* plus the number of link-frequencies expected by their drivers, along with
* the frequency values in hertz. This is somewhat opportunistic way of adding
* support for this for now in the hopes of a better source for the information
* (possibly some encoded value in the SSDB buffer that we're unaware of)
* becoming apparent in the future.
*
* Do not add an entry for a sensor that is not actually supported.
*/
static const struct cio2_sensor_config cio2_supported_sensors[] = {
/* Omnivision OV5693 */
CIO2_SENSOR_CONFIG("INT33BE", 0),
/* Omnivision OV2680 */
CIO2_SENSOR_CONFIG("OVTI2680", 0),
};
static const struct cio2_property_names prop_names = {
.clock_frequency = "clock-frequency",
.rotation = "rotation",
.bus_type = "bus-type",
.data_lanes = "data-lanes",
.remote_endpoint = "remote-endpoint",
.link_frequencies = "link-frequencies",
};
static int cio2_bridge_read_acpi_buffer(struct acpi_device *adev, char *id,
void *data, u32 size)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *obj;
acpi_status status;
int ret = 0;
status = acpi_evaluate_object(adev->handle, id, NULL, &buffer);
if (ACPI_FAILURE(status))
return -ENODEV;
obj = buffer.pointer;
if (!obj) {
dev_err(&adev->dev, "Couldn't locate ACPI buffer\n");
return -ENODEV;
}
if (obj->type != ACPI_TYPE_BUFFER) {
dev_err(&adev->dev, "Not an ACPI buffer\n");
ret = -ENODEV;
goto out_free_buff;
}
if (obj->buffer.length > size) {
dev_err(&adev->dev, "Given buffer is too small\n");
ret = -EINVAL;
goto out_free_buff;
}
memcpy(data, obj->buffer.pointer, obj->buffer.length);
out_free_buff:
kfree(buffer.pointer);
return ret;
}
static void cio2_bridge_create_fwnode_properties(
struct cio2_sensor *sensor,
struct cio2_bridge *bridge,
const struct cio2_sensor_config *cfg)
{
sensor->prop_names = prop_names;
sensor->local_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_CIO2_ENDPOINT]);
sensor->remote_ref[0] = SOFTWARE_NODE_REFERENCE(&sensor->swnodes[SWNODE_SENSOR_ENDPOINT]);
sensor->dev_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.clock_frequency,
sensor->ssdb.mclkspeed);
sensor->dev_properties[1] = PROPERTY_ENTRY_U8(
sensor->prop_names.rotation,
sensor->ssdb.degree);
sensor->ep_properties[0] = PROPERTY_ENTRY_U32(
sensor->prop_names.bus_type,
V4L2_FWNODE_BUS_TYPE_CSI2_DPHY);
sensor->ep_properties[1] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->ep_properties[2] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->local_ref);
if (cfg->nr_link_freqs > 0)
sensor->ep_properties[3] = PROPERTY_ENTRY_U64_ARRAY_LEN(
sensor->prop_names.link_frequencies,
cfg->link_freqs,
cfg->nr_link_freqs);
sensor->cio2_properties[0] = PROPERTY_ENTRY_U32_ARRAY_LEN(
sensor->prop_names.data_lanes,
bridge->data_lanes,
sensor->ssdb.lanes);
sensor->cio2_properties[1] = PROPERTY_ENTRY_REF_ARRAY(
sensor->prop_names.remote_endpoint,
sensor->remote_ref);
}
static void cio2_bridge_init_swnode_names(struct cio2_sensor *sensor)
{
snprintf(sensor->node_names.remote_port,
sizeof(sensor->node_names.remote_port),
SWNODE_GRAPH_PORT_NAME_FMT, sensor->ssdb.link);
snprintf(sensor->node_names.port,
sizeof(sensor->node_names.port),
SWNODE_GRAPH_PORT_NAME_FMT, 0); /* Always port 0 */
snprintf(sensor->node_names.endpoint,
sizeof(sensor->node_names.endpoint),
SWNODE_GRAPH_ENDPOINT_NAME_FMT, 0); /* And endpoint 0 */
}
static void cio2_bridge_create_connection_swnodes(struct cio2_bridge *bridge,
struct cio2_sensor *sensor)
{
struct software_node *nodes = sensor->swnodes;
cio2_bridge_init_swnode_names(sensor);
nodes[SWNODE_SENSOR_HID] = NODE_SENSOR(sensor->name,
sensor->dev_properties);
nodes[SWNODE_SENSOR_PORT] = NODE_PORT(sensor->node_names.port,
&nodes[SWNODE_SENSOR_HID]);
nodes[SWNODE_SENSOR_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_SENSOR_PORT],
sensor->ep_properties);
nodes[SWNODE_CIO2_PORT] = NODE_PORT(sensor->node_names.remote_port,
&bridge->cio2_hid_node);
nodes[SWNODE_CIO2_ENDPOINT] = NODE_ENDPOINT(
sensor->node_names.endpoint,
&nodes[SWNODE_CIO2_PORT],
sensor->cio2_properties);
}
static void cio2_bridge_unregister_sensors(struct cio2_bridge *bridge)
{
struct cio2_sensor *sensor;
unsigned int i;
for (i = 0; i < bridge->n_sensors; i++) {
sensor = &bridge->sensors[i];
software_node_unregister_nodes(sensor->swnodes);
acpi_dev_put(sensor->adev);
}
}
static int cio2_bridge_connect_sensor(const struct cio2_sensor_config *cfg,
struct cio2_bridge *bridge,
struct pci_dev *cio2)
{
struct fwnode_handle *fwnode;
struct cio2_sensor *sensor;
struct acpi_device *adev;
int ret;
for_each_acpi_dev_match(adev, cfg->hid, NULL, -1) {
if (!adev->status.enabled)
continue;
if (bridge->n_sensors >= CIO2_NUM_PORTS) {
acpi_dev_put(adev);
dev_err(&cio2->dev, "Exceeded available CIO2 ports\n");
return -EINVAL;
}
sensor = &bridge->sensors[bridge->n_sensors];
strscpy(sensor->name, cfg->hid, sizeof(sensor->name));
ret = cio2_bridge_read_acpi_buffer(adev, "SSDB",
&sensor->ssdb,
sizeof(sensor->ssdb));
if (ret)
goto err_put_adev;
if (sensor->ssdb.lanes > CIO2_MAX_LANES) {
dev_err(&adev->dev,
"Number of lanes in SSDB is invalid\n");
ret = -EINVAL;
goto err_put_adev;
}
cio2_bridge_create_fwnode_properties(sensor, bridge, cfg);
cio2_bridge_create_connection_swnodes(bridge, sensor);
ret = software_node_register_nodes(sensor->swnodes);
if (ret)
goto err_put_adev;
fwnode = software_node_fwnode(&sensor->swnodes[
SWNODE_SENSOR_HID]);
if (!fwnode) {
ret = -ENODEV;
goto err_free_swnodes;
}
sensor->adev = acpi_dev_get(adev);
adev->fwnode.secondary = fwnode;
dev_info(&cio2->dev, "Found supported sensor %s\n",
acpi_dev_name(adev));
bridge->n_sensors++;
}
return 0;
err_free_swnodes:
software_node_unregister_nodes(sensor->swnodes);
err_put_adev:
acpi_dev_put(sensor->adev);
return ret;
}
static int cio2_bridge_connect_sensors(struct cio2_bridge *bridge,
struct pci_dev *cio2)
{
unsigned int i;
int ret;
for (i = 0; i < ARRAY_SIZE(cio2_supported_sensors); i++) {
const struct cio2_sensor_config *cfg =
&cio2_supported_sensors[i];
ret = cio2_bridge_connect_sensor(cfg, bridge, cio2);
if (ret)
goto err_unregister_sensors;
}
return 0;
err_unregister_sensors:
cio2_bridge_unregister_sensors(bridge);
return ret;
}
int cio2_bridge_init(struct pci_dev *cio2)
{
struct device *dev = &cio2->dev;
struct fwnode_handle *fwnode;
struct cio2_bridge *bridge;
unsigned int i;
int ret;
bridge = kzalloc(sizeof(*bridge), GFP_KERNEL);
if (!bridge)
return -ENOMEM;
strscpy(bridge->cio2_node_name, CIO2_HID,
sizeof(bridge->cio2_node_name));
bridge->cio2_hid_node.name = bridge->cio2_node_name;
ret = software_node_register(&bridge->cio2_hid_node);
if (ret < 0) {
dev_err(dev, "Failed to register the CIO2 HID node\n");
goto err_free_bridge;
}
/*
* Map the lane arrangement, which is fixed for the IPU3 (meaning we
* only need one, rather than one per sensor). We include it as a
* member of the struct cio2_bridge rather than a global variable so
* that it survives if the module is unloaded along with the rest of
* the struct.
*/
for (i = 0; i < CIO2_MAX_LANES; i++)
bridge->data_lanes[i] = i + 1;
ret = cio2_bridge_connect_sensors(bridge, cio2);
if (ret || bridge->n_sensors == 0)
goto err_unregister_cio2;
dev_info(dev, "Connected %d cameras\n", bridge->n_sensors);
fwnode = software_node_fwnode(&bridge->cio2_hid_node);
if (!fwnode) {
dev_err(dev, "Error getting fwnode from cio2 software_node\n");
ret = -ENODEV;
goto err_unregister_sensors;
}
set_secondary_fwnode(dev, fwnode);
return 0;
err_unregister_sensors:
cio2_bridge_unregister_sensors(bridge);
err_unregister_cio2:
software_node_unregister(&bridge->cio2_hid_node);
err_free_bridge:
kfree(bridge);
return ret;
}
|