summaryrefslogtreecommitdiff
path: root/drivers/md/raid5-cache.c
blob: 41542ebd813bcfa15f7b0a70609f35c910ea096a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
/*
 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms and conditions of the GNU General Public License,
 * version 2, as published by the Free Software Foundation.
 *
 * This program is distributed in the hope it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 * more details.
 *
 */
#include <linux/kernel.h>
#include <linux/wait.h>
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/raid/md_p.h>
#include <linux/crc32c.h>
#include <linux/random.h>
#include "md.h"
#include "raid5.h"

/*
 * metadata/data stored in disk with 4k size unit (a block) regardless
 * underneath hardware sector size. only works with PAGE_SIZE == 4096
 */
#define BLOCK_SECTORS (8)

/*
 * reclaim runs every 1/4 disk size or 10G reclaimable space. This can prevent
 * recovery scans a very long log
 */
#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)

struct r5l_log {
	struct md_rdev *rdev;

	u32 uuid_checksum;

	sector_t device_size;		/* log device size, round to
					 * BLOCK_SECTORS */
	sector_t max_free_space;	/* reclaim run if free space is at
					 * this size */

	sector_t last_checkpoint;	/* log tail. where recovery scan
					 * starts from */
	u64 last_cp_seq;		/* log tail sequence */

	sector_t log_start;		/* log head. where new data appends */
	u64 seq;			/* log head sequence */

	struct mutex io_mutex;
	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */

	spinlock_t io_list_lock;
	struct list_head running_ios;	/* io_units which are still running,
					 * and have not yet been completely
					 * written to the log */
	struct list_head io_end_ios;	/* io_units which have been completely
					 * written to the log but not yet written
					 * to the RAID */
	struct list_head flushing_ios;	/* io_units which are waiting for log
					 * cache flush */
	struct list_head flushed_ios;	/* io_units which settle down in log disk */
	struct bio flush_bio;
	struct list_head stripe_end_ios;/* io_units which have been completely
					 * written to the RAID but have not yet
					 * been considered for updating super */

	struct kmem_cache *io_kc;

	struct md_thread *reclaim_thread;
	unsigned long reclaim_target;	/* number of space that need to be
					 * reclaimed.  if it's 0, reclaim spaces
					 * used by io_units which are in
					 * IO_UNIT_STRIPE_END state (eg, reclaim
					 * dones't wait for specific io_unit
					 * switching to IO_UNIT_STRIPE_END
					 * state) */

	struct list_head no_space_stripes; /* pending stripes, log has no space */
	spinlock_t no_space_stripes_lock;
};

/*
 * an IO range starts from a meta data block and end at the next meta data
 * block. The io unit's the meta data block tracks data/parity followed it. io
 * unit is written to log disk with normal write, as we always flush log disk
 * first and then start move data to raid disks, there is no requirement to
 * write io unit with FLUSH/FUA
 */
struct r5l_io_unit {
	struct r5l_log *log;

	struct page *meta_page;	/* store meta block */
	int meta_offset;	/* current offset in meta_page */

	struct bio_list bios;
	atomic_t pending_io;	/* pending bios not written to log yet */
	struct bio *current_bio;/* current_bio accepting new data */

	atomic_t pending_stripe;/* how many stripes not flushed to raid */
	u64 seq;		/* seq number of the metablock */
	sector_t log_start;	/* where the io_unit starts */
	sector_t log_end;	/* where the io_unit ends */
	struct list_head log_sibling; /* log->running_ios */
	struct list_head stripe_list; /* stripes added to the io_unit */

	int state;
	wait_queue_head_t wait_state;
};

/* r5l_io_unit state */
enum r5l_io_unit_state {
	IO_UNIT_RUNNING = 0,	/* accepting new IO */
	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
				 * don't accepting new bio */
	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
};

static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
{
	start += inc;
	if (start >= log->device_size)
		start = start - log->device_size;
	return start;
}

static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
				  sector_t end)
{
	if (end >= start)
		return end - start;
	else
		return end + log->device_size - start;
}

static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
{
	sector_t used_size;

	used_size = r5l_ring_distance(log, log->last_checkpoint,
					log->log_start);

	return log->device_size > used_size + size;
}

static struct r5l_io_unit *r5l_alloc_io_unit(struct r5l_log *log)
{
	struct r5l_io_unit *io;
	/* We can't handle memory allocate failure so far */
	gfp_t gfp = GFP_NOIO | __GFP_NOFAIL;

	io = kmem_cache_zalloc(log->io_kc, gfp);
	io->log = log;
	io->meta_page = alloc_page(gfp | __GFP_ZERO);

	bio_list_init(&io->bios);
	INIT_LIST_HEAD(&io->log_sibling);
	INIT_LIST_HEAD(&io->stripe_list);
	io->state = IO_UNIT_RUNNING;
	init_waitqueue_head(&io->wait_state);
	return io;
}

static void r5l_free_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
{
	__free_page(io->meta_page);
	kmem_cache_free(log->io_kc, io);
}

static void r5l_move_io_unit_list(struct list_head *from, struct list_head *to,
				  enum r5l_io_unit_state state)
{
	struct r5l_io_unit *io;

	while (!list_empty(from)) {
		io = list_first_entry(from, struct r5l_io_unit, log_sibling);
		/* don't change list order */
		if (io->state >= state)
			list_move_tail(&io->log_sibling, to);
		else
			break;
	}
}

/*
 * We don't want too many io_units reside in stripe_end_ios list, which will
 * waste a lot of memory. So we try to remove some. But we must keep at least 2
 * io_units. The superblock must point to a valid meta, if it's the last meta,
 * recovery can scan less
 */
static void r5l_compress_stripe_end_list(struct r5l_log *log)
{
	struct r5l_io_unit *first, *last, *io;

	first = list_first_entry(&log->stripe_end_ios,
				 struct r5l_io_unit, log_sibling);
	last = list_last_entry(&log->stripe_end_ios,
			       struct r5l_io_unit, log_sibling);
	if (first == last)
		return;
	list_del(&first->log_sibling);
	list_del(&last->log_sibling);
	while (!list_empty(&log->stripe_end_ios)) {
		io = list_first_entry(&log->stripe_end_ios,
				      struct r5l_io_unit, log_sibling);
		list_del(&io->log_sibling);
		first->log_end = io->log_end;
		r5l_free_io_unit(log, io);
	}
	list_add_tail(&first->log_sibling, &log->stripe_end_ios);
	list_add_tail(&last->log_sibling, &log->stripe_end_ios);
}

static void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
				    enum r5l_io_unit_state state)
{
	struct r5l_log *log = io->log;

	if (WARN_ON(io->state >= state))
		return;
	io->state = state;
	if (state == IO_UNIT_IO_END)
		r5l_move_io_unit_list(&log->running_ios, &log->io_end_ios,
				      IO_UNIT_IO_END);
	if (state == IO_UNIT_STRIPE_END) {
		struct r5l_io_unit *last;
		sector_t reclaimable_space;

		r5l_move_io_unit_list(&log->flushed_ios, &log->stripe_end_ios,
				      IO_UNIT_STRIPE_END);

		last = list_last_entry(&log->stripe_end_ios,
				       struct r5l_io_unit, log_sibling);
		reclaimable_space = r5l_ring_distance(log, log->last_checkpoint,
						      last->log_end);
		if (reclaimable_space >= log->max_free_space)
			r5l_wake_reclaim(log, 0);

		r5l_compress_stripe_end_list(log);
	}
	wake_up(&io->wait_state);
}

static void r5l_set_io_unit_state(struct r5l_io_unit *io,
				  enum r5l_io_unit_state state)
{
	struct r5l_log *log = io->log;
	unsigned long flags;

	spin_lock_irqsave(&log->io_list_lock, flags);
	__r5l_set_io_unit_state(io, state);
	spin_unlock_irqrestore(&log->io_list_lock, flags);
}

/* XXX: totally ignores I/O errors */
static void r5l_log_endio(struct bio *bio)
{
	struct r5l_io_unit *io = bio->bi_private;
	struct r5l_log *log = io->log;

	bio_put(bio);

	if (!atomic_dec_and_test(&io->pending_io))
		return;

	r5l_set_io_unit_state(io, IO_UNIT_IO_END);
	md_wakeup_thread(log->rdev->mddev->thread);
}

static void r5l_submit_current_io(struct r5l_log *log)
{
	struct r5l_io_unit *io = log->current_io;
	struct r5l_meta_block *block;
	struct bio *bio;
	u32 crc;

	if (!io)
		return;

	block = page_address(io->meta_page);
	block->meta_size = cpu_to_le32(io->meta_offset);
	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
	block->checksum = cpu_to_le32(crc);

	log->current_io = NULL;
	r5l_set_io_unit_state(io, IO_UNIT_IO_START);

	while ((bio = bio_list_pop(&io->bios))) {
		/* all IO must start from rdev->data_offset */
		bio->bi_iter.bi_sector += log->rdev->data_offset;
		submit_bio(WRITE, bio);
	}
}

static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
{
	struct r5l_io_unit *io;
	struct r5l_meta_block *block;
	struct bio *bio;

	io = r5l_alloc_io_unit(log);

	block = page_address(io->meta_page);
	block->magic = cpu_to_le32(R5LOG_MAGIC);
	block->version = R5LOG_VERSION;
	block->seq = cpu_to_le64(log->seq);
	block->position = cpu_to_le64(log->log_start);

	io->log_start = log->log_start;
	io->meta_offset = sizeof(struct r5l_meta_block);
	io->seq = log->seq;

	bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
	io->current_bio = bio;
	bio->bi_rw = WRITE;
	bio->bi_bdev = log->rdev->bdev;
	bio->bi_iter.bi_sector = log->log_start;
	bio_add_page(bio, io->meta_page, PAGE_SIZE, 0);
	bio->bi_end_io = r5l_log_endio;
	bio->bi_private = io;

	bio_list_add(&io->bios, bio);
	atomic_inc(&io->pending_io);

	log->seq++;
	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
	io->log_end = log->log_start;
	/* current bio hit disk end */
	if (log->log_start == 0)
		io->current_bio = NULL;

	spin_lock_irq(&log->io_list_lock);
	list_add_tail(&io->log_sibling, &log->running_ios);
	spin_unlock_irq(&log->io_list_lock);

	return io;
}

static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
{
	struct r5l_io_unit *io;

	io = log->current_io;
	if (io && io->meta_offset + payload_size > PAGE_SIZE)
		r5l_submit_current_io(log);
	io = log->current_io;
	if (io)
		return 0;

	log->current_io = r5l_new_meta(log);
	return 0;
}

static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
				    sector_t location,
				    u32 checksum1, u32 checksum2,
				    bool checksum2_valid)
{
	struct r5l_io_unit *io = log->current_io;
	struct r5l_payload_data_parity *payload;

	payload = page_address(io->meta_page) + io->meta_offset;
	payload->header.type = cpu_to_le16(type);
	payload->header.flags = cpu_to_le16(0);
	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
				    (PAGE_SHIFT - 9));
	payload->location = cpu_to_le64(location);
	payload->checksum[0] = cpu_to_le32(checksum1);
	if (checksum2_valid)
		payload->checksum[1] = cpu_to_le32(checksum2);

	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
		sizeof(__le32) * (1 + !!checksum2_valid);
}

static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
{
	struct r5l_io_unit *io = log->current_io;

alloc_bio:
	if (!io->current_bio) {
		struct bio *bio;

		bio = bio_kmalloc(GFP_NOIO | __GFP_NOFAIL, BIO_MAX_PAGES);
		bio->bi_rw = WRITE;
		bio->bi_bdev = log->rdev->bdev;
		bio->bi_iter.bi_sector = log->log_start;
		bio->bi_end_io = r5l_log_endio;
		bio->bi_private = io;
		bio_list_add(&io->bios, bio);
		atomic_inc(&io->pending_io);
		io->current_bio = bio;
	}
	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0)) {
		io->current_bio = NULL;
		goto alloc_bio;
	}
	log->log_start = r5l_ring_add(log, log->log_start,
				      BLOCK_SECTORS);
	/* current bio hit disk end */
	if (log->log_start == 0)
		io->current_bio = NULL;

	io->log_end = log->log_start;
}

static void r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
			   int data_pages, int parity_pages)
{
	int i;
	int meta_size;
	struct r5l_io_unit *io;

	meta_size =
		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
		 * data_pages) +
		sizeof(struct r5l_payload_data_parity) +
		sizeof(__le32) * parity_pages;

	r5l_get_meta(log, meta_size);
	io = log->current_io;

	for (i = 0; i < sh->disks; i++) {
		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
			continue;
		if (i == sh->pd_idx || i == sh->qd_idx)
			continue;
		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
					raid5_compute_blocknr(sh, i, 0),
					sh->dev[i].log_checksum, 0, false);
		r5l_append_payload_page(log, sh->dev[i].page);
	}

	if (sh->qd_idx >= 0) {
		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
					sh->sector, sh->dev[sh->pd_idx].log_checksum,
					sh->dev[sh->qd_idx].log_checksum, true);
		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
	} else {
		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
					sh->sector, sh->dev[sh->pd_idx].log_checksum,
					0, false);
		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
	}

	list_add_tail(&sh->log_list, &io->stripe_list);
	atomic_inc(&io->pending_stripe);
	sh->log_io = io;
}

/*
 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
 * data from log to raid disks), so we shouldn't wait for reclaim here
 */
int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
{
	int write_disks = 0;
	int data_pages, parity_pages;
	int meta_size;
	int reserve;
	int i;

	if (!log)
		return -EAGAIN;
	/* Don't support stripe batch */
	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
	    test_bit(STRIPE_SYNCING, &sh->state)) {
		/* the stripe is written to log, we start writing it to raid */
		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
		return -EAGAIN;
	}

	for (i = 0; i < sh->disks; i++) {
		void *addr;

		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
			continue;
		write_disks++;
		/* checksum is already calculated in last run */
		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
			continue;
		addr = kmap_atomic(sh->dev[i].page);
		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
						    addr, PAGE_SIZE);
		kunmap_atomic(addr);
	}
	parity_pages = 1 + !!(sh->qd_idx >= 0);
	data_pages = write_disks - parity_pages;

	meta_size =
		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
		 * data_pages) +
		sizeof(struct r5l_payload_data_parity) +
		sizeof(__le32) * parity_pages;
	/* Doesn't work with very big raid array */
	if (meta_size + sizeof(struct r5l_meta_block) > PAGE_SIZE)
		return -EINVAL;

	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
	atomic_inc(&sh->count);

	mutex_lock(&log->io_mutex);
	/* meta + data */
	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
	if (r5l_has_free_space(log, reserve))
		r5l_log_stripe(log, sh, data_pages, parity_pages);
	else {
		spin_lock(&log->no_space_stripes_lock);
		list_add_tail(&sh->log_list, &log->no_space_stripes);
		spin_unlock(&log->no_space_stripes_lock);

		r5l_wake_reclaim(log, reserve);
	}
	mutex_unlock(&log->io_mutex);

	return 0;
}

void r5l_write_stripe_run(struct r5l_log *log)
{
	if (!log)
		return;
	mutex_lock(&log->io_mutex);
	r5l_submit_current_io(log);
	mutex_unlock(&log->io_mutex);
}

/* This will run after log space is reclaimed */
static void r5l_run_no_space_stripes(struct r5l_log *log)
{
	struct stripe_head *sh;

	spin_lock(&log->no_space_stripes_lock);
	while (!list_empty(&log->no_space_stripes)) {
		sh = list_first_entry(&log->no_space_stripes,
				      struct stripe_head, log_list);
		list_del_init(&sh->log_list);
		set_bit(STRIPE_HANDLE, &sh->state);
		raid5_release_stripe(sh);
	}
	spin_unlock(&log->no_space_stripes_lock);
}

void r5l_stripe_write_finished(struct stripe_head *sh)
{
	struct r5l_io_unit *io;

	/* Don't support stripe batch */
	io = sh->log_io;
	if (!io)
		return;
	sh->log_io = NULL;

	if (atomic_dec_and_test(&io->pending_stripe))
		r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
}

static void r5l_log_flush_endio(struct bio *bio)
{
	struct r5l_log *log = container_of(bio, struct r5l_log,
		flush_bio);
	unsigned long flags;
	struct r5l_io_unit *io;
	struct stripe_head *sh;

	spin_lock_irqsave(&log->io_list_lock, flags);
	list_for_each_entry(io, &log->flushing_ios, log_sibling) {
		while (!list_empty(&io->stripe_list)) {
			sh = list_first_entry(&io->stripe_list,
				struct stripe_head, log_list);
			list_del_init(&sh->log_list);
			set_bit(STRIPE_HANDLE, &sh->state);
			raid5_release_stripe(sh);
		}
	}
	list_splice_tail_init(&log->flushing_ios, &log->flushed_ios);
	spin_unlock_irqrestore(&log->io_list_lock, flags);
}

/*
 * Starting dispatch IO to raid.
 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
 * broken meta in the middle of a log causes recovery can't find meta at the
 * head of log. If operations require meta at the head persistent in log, we
 * must make sure meta before it persistent in log too. A case is:
 *
 * stripe data/parity is in log, we start write stripe to raid disks. stripe
 * data/parity must be persistent in log before we do the write to raid disks.
 *
 * The solution is we restrictly maintain io_unit list order. In this case, we
 * only write stripes of an io_unit to raid disks till the io_unit is the first
 * one whose data/parity is in log.
 */
void r5l_flush_stripe_to_raid(struct r5l_log *log)
{
	bool do_flush;
	if (!log)
		return;

	spin_lock_irq(&log->io_list_lock);
	/* flush bio is running */
	if (!list_empty(&log->flushing_ios)) {
		spin_unlock_irq(&log->io_list_lock);
		return;
	}
	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
	do_flush = !list_empty(&log->flushing_ios);
	spin_unlock_irq(&log->io_list_lock);

	if (!do_flush)
		return;
	bio_reset(&log->flush_bio);
	log->flush_bio.bi_bdev = log->rdev->bdev;
	log->flush_bio.bi_end_io = r5l_log_flush_endio;
	submit_bio(WRITE_FLUSH, &log->flush_bio);
}

static void r5l_kick_io_unit(struct r5l_log *log, struct r5l_io_unit *io)
{
	md_wakeup_thread(log->rdev->mddev->thread);
	wait_event(io->wait_state, io->state >= IO_UNIT_STRIPE_END);
}

static void r5l_write_super(struct r5l_log *log, sector_t cp);
static void r5l_do_reclaim(struct r5l_log *log)
{
	struct r5l_io_unit *io, *last;
	LIST_HEAD(list);
	sector_t free = 0;
	sector_t reclaim_target = xchg(&log->reclaim_target, 0);

	spin_lock_irq(&log->io_list_lock);
	/*
	 * move proper io_unit to reclaim list. We should not change the order.
	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
	 * shouldn't reuse space of an unreclaimable io_unit
	 */
	while (1) {
		struct list_head *target_list = NULL;

		while (!list_empty(&log->stripe_end_ios)) {
			io = list_first_entry(&log->stripe_end_ios,
					      struct r5l_io_unit, log_sibling);
			list_move_tail(&io->log_sibling, &list);
			free += r5l_ring_distance(log, io->log_start,
						  io->log_end);
		}

		if (free >= reclaim_target ||
		    (list_empty(&log->running_ios) &&
		     list_empty(&log->io_end_ios) &&
		     list_empty(&log->flushing_ios) &&
		     list_empty(&log->flushed_ios)))
			break;

		/* Below waiting mostly happens when we shutdown the raid */
		if (!list_empty(&log->flushed_ios))
			target_list = &log->flushed_ios;
		else if (!list_empty(&log->flushing_ios))
			target_list = &log->flushing_ios;
		else if (!list_empty(&log->io_end_ios))
			target_list = &log->io_end_ios;
		else if (!list_empty(&log->running_ios))
			target_list = &log->running_ios;

		io = list_first_entry(target_list,
				      struct r5l_io_unit, log_sibling);
		spin_unlock_irq(&log->io_list_lock);
		/* nobody else can delete the io, we are safe */
		r5l_kick_io_unit(log, io);
		spin_lock_irq(&log->io_list_lock);
	}
	spin_unlock_irq(&log->io_list_lock);

	if (list_empty(&list))
		return;

	/* super always point to last valid meta */
	last = list_last_entry(&list, struct r5l_io_unit, log_sibling);
	/*
	 * write_super will flush cache of each raid disk. We must write super
	 * here, because the log area might be reused soon and we don't want to
	 * confuse recovery
	 */
	r5l_write_super(log, last->log_start);

	mutex_lock(&log->io_mutex);
	log->last_checkpoint = last->log_start;
	log->last_cp_seq = last->seq;
	mutex_unlock(&log->io_mutex);
	r5l_run_no_space_stripes(log);

	while (!list_empty(&list)) {
		io = list_first_entry(&list, struct r5l_io_unit, log_sibling);
		list_del(&io->log_sibling);
		r5l_free_io_unit(log, io);
	}
}

static void r5l_reclaim_thread(struct md_thread *thread)
{
	struct mddev *mddev = thread->mddev;
	struct r5conf *conf = mddev->private;
	struct r5l_log *log = conf->log;

	if (!log)
		return;
	r5l_do_reclaim(log);
}

static void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
{
	unsigned long target;
	unsigned long new = (unsigned long)space; /* overflow in theory */

	do {
		target = log->reclaim_target;
		if (new < target)
			return;
	} while (cmpxchg(&log->reclaim_target, target, new) != target);
	md_wakeup_thread(log->reclaim_thread);
}

struct r5l_recovery_ctx {
	struct page *meta_page;		/* current meta */
	sector_t meta_total_blocks;	/* total size of current meta and data */
	sector_t pos;			/* recovery position */
	u64 seq;			/* recovery position seq */
};

static int r5l_read_meta_block(struct r5l_log *log,
			       struct r5l_recovery_ctx *ctx)
{
	struct page *page = ctx->meta_page;
	struct r5l_meta_block *mb;
	u32 crc, stored_crc;

	if (!sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page, READ, false))
		return -EIO;

	mb = page_address(page);
	stored_crc = le32_to_cpu(mb->checksum);
	mb->checksum = 0;

	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
	    le64_to_cpu(mb->seq) != ctx->seq ||
	    mb->version != R5LOG_VERSION ||
	    le64_to_cpu(mb->position) != ctx->pos)
		return -EINVAL;

	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
	if (stored_crc != crc)
		return -EINVAL;

	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
		return -EINVAL;

	ctx->meta_total_blocks = BLOCK_SECTORS;

	return 0;
}

static int r5l_recovery_flush_one_stripe(struct r5l_log *log,
					 struct r5l_recovery_ctx *ctx,
					 sector_t stripe_sect,
					 int *offset, sector_t *log_offset)
{
	struct r5conf *conf = log->rdev->mddev->private;
	struct stripe_head *sh;
	struct r5l_payload_data_parity *payload;
	int disk_index;

	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 0, 0);
	while (1) {
		payload = page_address(ctx->meta_page) + *offset;

		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
			raid5_compute_sector(conf,
					     le64_to_cpu(payload->location), 0,
					     &disk_index, sh);

			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
				     sh->dev[disk_index].page, READ, false);
			sh->dev[disk_index].log_checksum =
				le32_to_cpu(payload->checksum[0]);
			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);
			ctx->meta_total_blocks += BLOCK_SECTORS;
		} else {
			disk_index = sh->pd_idx;
			sync_page_io(log->rdev, *log_offset, PAGE_SIZE,
				     sh->dev[disk_index].page, READ, false);
			sh->dev[disk_index].log_checksum =
				le32_to_cpu(payload->checksum[0]);
			set_bit(R5_Wantwrite, &sh->dev[disk_index].flags);

			if (sh->qd_idx >= 0) {
				disk_index = sh->qd_idx;
				sync_page_io(log->rdev,
					     r5l_ring_add(log, *log_offset, BLOCK_SECTORS),
					     PAGE_SIZE, sh->dev[disk_index].page,
					     READ, false);
				sh->dev[disk_index].log_checksum =
					le32_to_cpu(payload->checksum[1]);
				set_bit(R5_Wantwrite,
					&sh->dev[disk_index].flags);
			}
			ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
		}

		*log_offset = r5l_ring_add(log, *log_offset,
					   le32_to_cpu(payload->size));
		*offset += sizeof(struct r5l_payload_data_parity) +
			sizeof(__le32) *
			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
			break;
	}

	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
		void *addr;
		u32 checksum;

		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
			continue;
		addr = kmap_atomic(sh->dev[disk_index].page);
		checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
		kunmap_atomic(addr);
		if (checksum != sh->dev[disk_index].log_checksum)
			goto error;
	}

	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
		struct md_rdev *rdev, *rrdev;

		if (!test_and_clear_bit(R5_Wantwrite,
					&sh->dev[disk_index].flags))
			continue;

		/* in case device is broken */
		rdev = rcu_dereference(conf->disks[disk_index].rdev);
		if (rdev)
			sync_page_io(rdev, stripe_sect, PAGE_SIZE,
				     sh->dev[disk_index].page, WRITE, false);
		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
		if (rrdev)
			sync_page_io(rrdev, stripe_sect, PAGE_SIZE,
				     sh->dev[disk_index].page, WRITE, false);
	}
	raid5_release_stripe(sh);
	return 0;

error:
	for (disk_index = 0; disk_index < sh->disks; disk_index++)
		sh->dev[disk_index].flags = 0;
	raid5_release_stripe(sh);
	return -EINVAL;
}

static int r5l_recovery_flush_one_meta(struct r5l_log *log,
				       struct r5l_recovery_ctx *ctx)
{
	struct r5conf *conf = log->rdev->mddev->private;
	struct r5l_payload_data_parity *payload;
	struct r5l_meta_block *mb;
	int offset;
	sector_t log_offset;
	sector_t stripe_sector;

	mb = page_address(ctx->meta_page);
	offset = sizeof(struct r5l_meta_block);
	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);

	while (offset < le32_to_cpu(mb->meta_size)) {
		int dd;

		payload = (void *)mb + offset;
		stripe_sector = raid5_compute_sector(conf,
						     le64_to_cpu(payload->location), 0, &dd, NULL);
		if (r5l_recovery_flush_one_stripe(log, ctx, stripe_sector,
						  &offset, &log_offset))
			return -EINVAL;
	}
	return 0;
}

/* copy data/parity from log to raid disks */
static void r5l_recovery_flush_log(struct r5l_log *log,
				   struct r5l_recovery_ctx *ctx)
{
	while (1) {
		if (r5l_read_meta_block(log, ctx))
			return;
		if (r5l_recovery_flush_one_meta(log, ctx))
			return;
		ctx->seq++;
		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
	}
}

static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
					  u64 seq)
{
	struct page *page;
	struct r5l_meta_block *mb;
	u32 crc;

	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page)
		return -ENOMEM;
	mb = page_address(page);
	mb->magic = cpu_to_le32(R5LOG_MAGIC);
	mb->version = R5LOG_VERSION;
	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
	mb->seq = cpu_to_le64(seq);
	mb->position = cpu_to_le64(pos);
	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
	mb->checksum = cpu_to_le32(crc);

	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, WRITE_FUA, false)) {
		__free_page(page);
		return -EIO;
	}
	__free_page(page);
	return 0;
}

static int r5l_recovery_log(struct r5l_log *log)
{
	struct r5l_recovery_ctx ctx;

	ctx.pos = log->last_checkpoint;
	ctx.seq = log->last_cp_seq;
	ctx.meta_page = alloc_page(GFP_KERNEL);
	if (!ctx.meta_page)
		return -ENOMEM;

	r5l_recovery_flush_log(log, &ctx);
	__free_page(ctx.meta_page);

	/*
	 * we did a recovery. Now ctx.pos points to an invalid meta block. New
	 * log will start here. but we can't let superblock point to last valid
	 * meta block. The log might looks like:
	 * | meta 1| meta 2| meta 3|
	 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
	 * superblock points to meta 1, we write a new valid meta 2n.  if crash
	 * happens again, new recovery will start from meta 1. Since meta 2n is
	 * valid now, recovery will think meta 3 is valid, which is wrong.
	 * The solution is we create a new meta in meta2 with its seq == meta
	 * 1's seq + 10 and let superblock points to meta2. The same recovery will
	 * not think meta 3 is a valid meta, because its seq doesn't match
	 */
	if (ctx.seq > log->last_cp_seq + 1) {
		int ret;

		ret = r5l_log_write_empty_meta_block(log, ctx.pos, ctx.seq + 10);
		if (ret)
			return ret;
		log->seq = ctx.seq + 11;
		log->log_start = r5l_ring_add(log, ctx.pos, BLOCK_SECTORS);
		r5l_write_super(log, ctx.pos);
	} else {
		log->log_start = ctx.pos;
		log->seq = ctx.seq;
	}
	return 0;
}

static void r5l_write_super(struct r5l_log *log, sector_t cp)
{
	struct mddev *mddev = log->rdev->mddev;

	log->rdev->journal_tail = cp;
	set_bit(MD_CHANGE_DEVS, &mddev->flags);
}

static int r5l_load_log(struct r5l_log *log)
{
	struct md_rdev *rdev = log->rdev;
	struct page *page;
	struct r5l_meta_block *mb;
	sector_t cp = log->rdev->journal_tail;
	u32 stored_crc, expected_crc;
	bool create_super = false;
	int ret;

	/* Make sure it's valid */
	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
		cp = 0;
	page = alloc_page(GFP_KERNEL);
	if (!page)
		return -ENOMEM;

	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, READ, false)) {
		ret = -EIO;
		goto ioerr;
	}
	mb = page_address(page);

	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
	    mb->version != R5LOG_VERSION) {
		create_super = true;
		goto create;
	}
	stored_crc = le32_to_cpu(mb->checksum);
	mb->checksum = 0;
	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
	if (stored_crc != expected_crc) {
		create_super = true;
		goto create;
	}
	if (le64_to_cpu(mb->position) != cp) {
		create_super = true;
		goto create;
	}
create:
	if (create_super) {
		log->last_cp_seq = prandom_u32();
		cp = 0;
		/*
		 * Make sure super points to correct address. Log might have
		 * data very soon. If super hasn't correct log tail address,
		 * recovery can't find the log
		 */
		r5l_write_super(log, cp);
	} else
		log->last_cp_seq = le64_to_cpu(mb->seq);

	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
	log->last_checkpoint = cp;

	__free_page(page);

	return r5l_recovery_log(log);
ioerr:
	__free_page(page);
	return ret;
}

int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
{
	struct r5l_log *log;

	if (PAGE_SIZE != 4096)
		return -EINVAL;
	log = kzalloc(sizeof(*log), GFP_KERNEL);
	if (!log)
		return -ENOMEM;
	log->rdev = rdev;

	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
				       sizeof(rdev->mddev->uuid));

	mutex_init(&log->io_mutex);

	spin_lock_init(&log->io_list_lock);
	INIT_LIST_HEAD(&log->running_ios);
	INIT_LIST_HEAD(&log->io_end_ios);
	INIT_LIST_HEAD(&log->stripe_end_ios);
	INIT_LIST_HEAD(&log->flushing_ios);
	INIT_LIST_HEAD(&log->flushed_ios);
	bio_init(&log->flush_bio);

	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
	if (!log->io_kc)
		goto io_kc;

	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
						 log->rdev->mddev, "reclaim");
	if (!log->reclaim_thread)
		goto reclaim_thread;

	INIT_LIST_HEAD(&log->no_space_stripes);
	spin_lock_init(&log->no_space_stripes_lock);

	if (r5l_load_log(log))
		goto error;

	conf->log = log;
	return 0;
error:
	md_unregister_thread(&log->reclaim_thread);
reclaim_thread:
	kmem_cache_destroy(log->io_kc);
io_kc:
	kfree(log);
	return -EINVAL;
}

void r5l_exit_log(struct r5l_log *log)
{
	/*
	 * at this point all stripes are finished, so io_unit is at least in
	 * STRIPE_END state
	 */
	r5l_wake_reclaim(log, -1L);
	md_unregister_thread(&log->reclaim_thread);
	r5l_do_reclaim(log);
	/*
	 * force a super update, r5l_do_reclaim might updated the super.
	 * mddev->thread is already stopped
	 */
	md_update_sb(log->rdev->mddev, 1);

	kmem_cache_destroy(log->io_kc);
	kfree(log);
}