1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
|
// SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
/*
* Copyright(c) 2018 Intel Corporation.
*
*/
#include "hfi.h"
#include "qp.h"
#include "rc.h"
#include "verbs.h"
#include "tid_rdma.h"
#include "exp_rcv.h"
#include "trace.h"
/**
* DOC: TID RDMA READ protocol
*
* This is an end-to-end protocol at the hfi1 level between two nodes that
* improves performance by avoiding data copy on the requester side. It
* converts a qualified RDMA READ request into a TID RDMA READ request on
* the requester side and thereafter handles the request and response
* differently. To be qualified, the RDMA READ request should meet the
* following:
* -- The total data length should be greater than 256K;
* -- The total data length should be a multiple of 4K page size;
* -- Each local scatter-gather entry should be 4K page aligned;
* -- Each local scatter-gather entry should be a multiple of 4K page size;
*/
#define RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK BIT_ULL(32)
#define RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK BIT_ULL(33)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK BIT_ULL(34)
#define RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK BIT_ULL(35)
#define RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK BIT_ULL(37)
#define RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK BIT_ULL(38)
/* Maximum number of packets within a flow generation. */
#define MAX_TID_FLOW_PSN BIT(HFI1_KDETH_BTH_SEQ_SHIFT)
#define GENERATION_MASK 0xFFFFF
static u32 mask_generation(u32 a)
{
return a & GENERATION_MASK;
}
/* Reserved generation value to set to unused flows for kernel contexts */
#define KERN_GENERATION_RESERVED mask_generation(U32_MAX)
/*
* J_KEY for kernel contexts when TID RDMA is used.
* See generate_jkey() in hfi.h for more information.
*/
#define TID_RDMA_JKEY 32
#define HFI1_KERNEL_MIN_JKEY HFI1_ADMIN_JKEY_RANGE
#define HFI1_KERNEL_MAX_JKEY (2 * HFI1_ADMIN_JKEY_RANGE - 1)
/* Maximum number of segments in flight per QP request. */
#define TID_RDMA_MAX_READ_SEGS_PER_REQ 6
#define TID_RDMA_MAX_WRITE_SEGS_PER_REQ 4
#define MAX_REQ max_t(u16, TID_RDMA_MAX_READ_SEGS_PER_REQ, \
TID_RDMA_MAX_WRITE_SEGS_PER_REQ)
#define MAX_FLOWS roundup_pow_of_two(MAX_REQ + 1)
#define MAX_EXPECTED_PAGES (MAX_EXPECTED_BUFFER / PAGE_SIZE)
#define TID_RDMA_DESTQP_FLOW_SHIFT 11
#define TID_RDMA_DESTQP_FLOW_MASK 0x1f
#define TID_FLOW_SW_PSN BIT(0)
#define TID_OPFN_QP_CTXT_MASK 0xff
#define TID_OPFN_QP_CTXT_SHIFT 56
#define TID_OPFN_QP_KDETH_MASK 0xff
#define TID_OPFN_QP_KDETH_SHIFT 48
#define TID_OPFN_MAX_LEN_MASK 0x7ff
#define TID_OPFN_MAX_LEN_SHIFT 37
#define TID_OPFN_TIMEOUT_MASK 0x1f
#define TID_OPFN_TIMEOUT_SHIFT 32
#define TID_OPFN_RESERVED_MASK 0x3f
#define TID_OPFN_RESERVED_SHIFT 26
#define TID_OPFN_URG_MASK 0x1
#define TID_OPFN_URG_SHIFT 25
#define TID_OPFN_VER_MASK 0x7
#define TID_OPFN_VER_SHIFT 22
#define TID_OPFN_JKEY_MASK 0x3f
#define TID_OPFN_JKEY_SHIFT 16
#define TID_OPFN_MAX_READ_MASK 0x3f
#define TID_OPFN_MAX_READ_SHIFT 10
#define TID_OPFN_MAX_WRITE_MASK 0x3f
#define TID_OPFN_MAX_WRITE_SHIFT 4
/*
* OPFN TID layout
*
* 63 47 31 15
* NNNNNNNNKKKKKKKK MMMMMMMMMMMTTTTT DDDDDDUVVVJJJJJJ RRRRRRWWWWWWCCCC
* 3210987654321098 7654321098765432 1098765432109876 5432109876543210
* N - the context Number
* K - the Kdeth_qp
* M - Max_len
* T - Timeout
* D - reserveD
* V - version
* U - Urg capable
* J - Jkey
* R - max_Read
* W - max_Write
* C - Capcode
*/
static void tid_rdma_trigger_resume(struct work_struct *work);
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req);
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
gfp_t gfp);
static void hfi1_init_trdma_req(struct rvt_qp *qp,
struct tid_rdma_request *req);
static u64 tid_rdma_opfn_encode(struct tid_rdma_params *p)
{
return
(((u64)p->qp & TID_OPFN_QP_CTXT_MASK) <<
TID_OPFN_QP_CTXT_SHIFT) |
((((u64)p->qp >> 16) & TID_OPFN_QP_KDETH_MASK) <<
TID_OPFN_QP_KDETH_SHIFT) |
(((u64)((p->max_len >> PAGE_SHIFT) - 1) &
TID_OPFN_MAX_LEN_MASK) << TID_OPFN_MAX_LEN_SHIFT) |
(((u64)p->timeout & TID_OPFN_TIMEOUT_MASK) <<
TID_OPFN_TIMEOUT_SHIFT) |
(((u64)p->urg & TID_OPFN_URG_MASK) << TID_OPFN_URG_SHIFT) |
(((u64)p->jkey & TID_OPFN_JKEY_MASK) << TID_OPFN_JKEY_SHIFT) |
(((u64)p->max_read & TID_OPFN_MAX_READ_MASK) <<
TID_OPFN_MAX_READ_SHIFT) |
(((u64)p->max_write & TID_OPFN_MAX_WRITE_MASK) <<
TID_OPFN_MAX_WRITE_SHIFT);
}
static void tid_rdma_opfn_decode(struct tid_rdma_params *p, u64 data)
{
p->max_len = (((data >> TID_OPFN_MAX_LEN_SHIFT) &
TID_OPFN_MAX_LEN_MASK) + 1) << PAGE_SHIFT;
p->jkey = (data >> TID_OPFN_JKEY_SHIFT) & TID_OPFN_JKEY_MASK;
p->max_write = (data >> TID_OPFN_MAX_WRITE_SHIFT) &
TID_OPFN_MAX_WRITE_MASK;
p->max_read = (data >> TID_OPFN_MAX_READ_SHIFT) &
TID_OPFN_MAX_READ_MASK;
p->qp =
((((data >> TID_OPFN_QP_KDETH_SHIFT) & TID_OPFN_QP_KDETH_MASK)
<< 16) |
((data >> TID_OPFN_QP_CTXT_SHIFT) & TID_OPFN_QP_CTXT_MASK));
p->urg = (data >> TID_OPFN_URG_SHIFT) & TID_OPFN_URG_MASK;
p->timeout = (data >> TID_OPFN_TIMEOUT_SHIFT) & TID_OPFN_TIMEOUT_MASK;
}
void tid_rdma_opfn_init(struct rvt_qp *qp, struct tid_rdma_params *p)
{
struct hfi1_qp_priv *priv = qp->priv;
p->qp = (kdeth_qp << 16) | priv->rcd->ctxt;
p->max_len = TID_RDMA_MAX_SEGMENT_SIZE;
p->jkey = priv->rcd->jkey;
p->max_read = TID_RDMA_MAX_READ_SEGS_PER_REQ;
p->max_write = TID_RDMA_MAX_WRITE_SEGS_PER_REQ;
p->timeout = qp->timeout;
p->urg = is_urg_masked(priv->rcd);
}
bool tid_rdma_conn_req(struct rvt_qp *qp, u64 *data)
{
struct hfi1_qp_priv *priv = qp->priv;
*data = tid_rdma_opfn_encode(&priv->tid_rdma.local);
return true;
}
bool tid_rdma_conn_reply(struct rvt_qp *qp, u64 data)
{
struct hfi1_qp_priv *priv = qp->priv;
struct tid_rdma_params *remote, *old;
bool ret = true;
old = rcu_dereference_protected(priv->tid_rdma.remote,
lockdep_is_held(&priv->opfn.lock));
data &= ~0xfULL;
/*
* If data passed in is zero, return true so as not to continue the
* negotiation process
*/
if (!data || !HFI1_CAP_IS_KSET(TID_RDMA))
goto null;
/*
* If kzalloc fails, return false. This will result in:
* * at the requester a new OPFN request being generated to retry
* the negotiation
* * at the responder, 0 being returned to the requester so as to
* disable TID RDMA at both the requester and the responder
*/
remote = kzalloc(sizeof(*remote), GFP_ATOMIC);
if (!remote) {
ret = false;
goto null;
}
tid_rdma_opfn_decode(remote, data);
priv->tid_timer_timeout_jiffies =
usecs_to_jiffies((((4096UL * (1UL << remote->timeout)) /
1000UL) << 3) * 7);
trace_hfi1_opfn_param(qp, 0, &priv->tid_rdma.local);
trace_hfi1_opfn_param(qp, 1, remote);
rcu_assign_pointer(priv->tid_rdma.remote, remote);
/*
* A TID RDMA READ request's segment size is not equal to
* remote->max_len only when the request's data length is smaller
* than remote->max_len. In that case, there will be only one segment.
* Therefore, when priv->pkts_ps is used to calculate req->cur_seg
* during retry, it will lead to req->cur_seg = 0, which is exactly
* what is expected.
*/
priv->pkts_ps = (u16)rvt_div_mtu(qp, remote->max_len);
priv->timeout_shift = ilog2(priv->pkts_ps - 1) + 1;
goto free;
null:
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
priv->timeout_shift = 0;
free:
if (old)
kfree_rcu(old, rcu_head);
return ret;
}
bool tid_rdma_conn_resp(struct rvt_qp *qp, u64 *data)
{
bool ret;
ret = tid_rdma_conn_reply(qp, *data);
*data = 0;
/*
* If tid_rdma_conn_reply() returns error, set *data as 0 to indicate
* TID RDMA could not be enabled. This will result in TID RDMA being
* disabled at the requester too.
*/
if (ret)
(void)tid_rdma_conn_req(qp, data);
return ret;
}
void tid_rdma_conn_error(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv = qp->priv;
struct tid_rdma_params *old;
old = rcu_dereference_protected(priv->tid_rdma.remote,
lockdep_is_held(&priv->opfn.lock));
RCU_INIT_POINTER(priv->tid_rdma.remote, NULL);
if (old)
kfree_rcu(old, rcu_head);
}
/* This is called at context initialization time */
int hfi1_kern_exp_rcv_init(struct hfi1_ctxtdata *rcd, int reinit)
{
if (reinit)
return 0;
BUILD_BUG_ON(TID_RDMA_JKEY < HFI1_KERNEL_MIN_JKEY);
BUILD_BUG_ON(TID_RDMA_JKEY > HFI1_KERNEL_MAX_JKEY);
rcd->jkey = TID_RDMA_JKEY;
hfi1_set_ctxt_jkey(rcd->dd, rcd, rcd->jkey);
return hfi1_alloc_ctxt_rcv_groups(rcd);
}
/**
* qp_to_rcd - determine the receive context used by a qp
* @qp - the qp
*
* This routine returns the receive context associated
* with a a qp's qpn.
*
* Returns the context.
*/
static struct hfi1_ctxtdata *qp_to_rcd(struct rvt_dev_info *rdi,
struct rvt_qp *qp)
{
struct hfi1_ibdev *verbs_dev = container_of(rdi,
struct hfi1_ibdev,
rdi);
struct hfi1_devdata *dd = container_of(verbs_dev,
struct hfi1_devdata,
verbs_dev);
unsigned int ctxt;
if (qp->ibqp.qp_num == 0)
ctxt = 0;
else
ctxt = ((qp->ibqp.qp_num >> dd->qos_shift) %
(dd->n_krcv_queues - 1)) + 1;
return dd->rcd[ctxt];
}
int hfi1_qp_priv_init(struct rvt_dev_info *rdi, struct rvt_qp *qp,
struct ib_qp_init_attr *init_attr)
{
struct hfi1_qp_priv *qpriv = qp->priv;
int i, ret;
qpriv->rcd = qp_to_rcd(rdi, qp);
spin_lock_init(&qpriv->opfn.lock);
INIT_WORK(&qpriv->opfn.opfn_work, opfn_send_conn_request);
INIT_WORK(&qpriv->tid_rdma.trigger_work, tid_rdma_trigger_resume);
qpriv->flow_state.psn = 0;
qpriv->flow_state.index = RXE_NUM_TID_FLOWS;
qpriv->flow_state.last_index = RXE_NUM_TID_FLOWS;
qpriv->flow_state.generation = KERN_GENERATION_RESERVED;
INIT_LIST_HEAD(&qpriv->tid_wait);
if (init_attr->qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
struct hfi1_devdata *dd = qpriv->rcd->dd;
qpriv->pages = kzalloc_node(TID_RDMA_MAX_PAGES *
sizeof(*qpriv->pages),
GFP_KERNEL, dd->node);
if (!qpriv->pages)
return -ENOMEM;
for (i = 0; i < qp->s_size; i++) {
struct hfi1_swqe_priv *priv;
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
dd->node);
if (!priv)
return -ENOMEM;
hfi1_init_trdma_req(qp, &priv->tid_req);
priv->tid_req.e.swqe = wqe;
wqe->priv = priv;
}
for (i = 0; i < rvt_max_atomic(rdi); i++) {
struct hfi1_ack_priv *priv;
priv = kzalloc_node(sizeof(*priv), GFP_KERNEL,
dd->node);
if (!priv)
return -ENOMEM;
hfi1_init_trdma_req(qp, &priv->tid_req);
priv->tid_req.e.ack = &qp->s_ack_queue[i];
ret = hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req,
GFP_KERNEL);
if (ret) {
kfree(priv);
return ret;
}
qp->s_ack_queue[i].priv = priv;
}
}
return 0;
}
void hfi1_qp_priv_tid_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
{
struct hfi1_qp_priv *qpriv = qp->priv;
struct rvt_swqe *wqe;
u32 i;
if (qp->ibqp.qp_type == IB_QPT_RC && HFI1_CAP_IS_KSET(TID_RDMA)) {
for (i = 0; i < qp->s_size; i++) {
wqe = rvt_get_swqe_ptr(qp, i);
kfree(wqe->priv);
wqe->priv = NULL;
}
for (i = 0; i < rvt_max_atomic(rdi); i++) {
struct hfi1_ack_priv *priv = qp->s_ack_queue[i].priv;
if (priv)
hfi1_kern_exp_rcv_free_flows(&priv->tid_req);
kfree(priv);
qp->s_ack_queue[i].priv = NULL;
}
cancel_work_sync(&qpriv->opfn.opfn_work);
kfree(qpriv->pages);
qpriv->pages = NULL;
}
}
/* Flow and tid waiter functions */
/**
* DOC: lock ordering
*
* There are two locks involved with the queuing
* routines: the qp s_lock and the exp_lock.
*
* Since the tid space allocation is called from
* the send engine, the qp s_lock is already held.
*
* The allocation routines will get the exp_lock.
*
* The first_qp() call is provided to allow the head of
* the rcd wait queue to be fetched under the exp_lock and
* followed by a drop of the exp_lock.
*
* Any qp in the wait list will have the qp reference count held
* to hold the qp in memory.
*/
/*
* return head of rcd wait list
*
* Must hold the exp_lock.
*
* Get a reference to the QP to hold the QP in memory.
*
* The caller must release the reference when the local
* is no longer being used.
*/
static struct rvt_qp *first_qp(struct hfi1_ctxtdata *rcd,
struct tid_queue *queue)
__must_hold(&rcd->exp_lock)
{
struct hfi1_qp_priv *priv;
lockdep_assert_held(&rcd->exp_lock);
priv = list_first_entry_or_null(&queue->queue_head,
struct hfi1_qp_priv,
tid_wait);
if (!priv)
return NULL;
rvt_get_qp(priv->owner);
return priv->owner;
}
/**
* kernel_tid_waiters - determine rcd wait
* @rcd: the receive context
* @qp: the head of the qp being processed
*
* This routine will return false IFF
* the list is NULL or the head of the
* list is the indicated qp.
*
* Must hold the qp s_lock and the exp_lock.
*
* Return:
* false if either of the conditions below are statisfied:
* 1. The list is empty or
* 2. The indicated qp is at the head of the list and the
* HFI1_S_WAIT_TID_SPACE bit is set in qp->s_flags.
* true is returned otherwise.
*/
static bool kernel_tid_waiters(struct hfi1_ctxtdata *rcd,
struct tid_queue *queue, struct rvt_qp *qp)
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
struct rvt_qp *fqp;
bool ret = true;
lockdep_assert_held(&qp->s_lock);
lockdep_assert_held(&rcd->exp_lock);
fqp = first_qp(rcd, queue);
if (!fqp || (fqp == qp && (qp->s_flags & HFI1_S_WAIT_TID_SPACE)))
ret = false;
rvt_put_qp(fqp);
return ret;
}
/**
* dequeue_tid_waiter - dequeue the qp from the list
* @qp - the qp to remove the wait list
*
* This routine removes the indicated qp from the
* wait list if it is there.
*
* This should be done after the hardware flow and
* tid array resources have been allocated.
*
* Must hold the qp s_lock and the rcd exp_lock.
*
* It assumes the s_lock to protect the s_flags
* field and to reliably test the HFI1_S_WAIT_TID_SPACE flag.
*/
static void dequeue_tid_waiter(struct hfi1_ctxtdata *rcd,
struct tid_queue *queue, struct rvt_qp *qp)
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
lockdep_assert_held(&rcd->exp_lock);
if (list_empty(&priv->tid_wait))
return;
list_del_init(&priv->tid_wait);
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
queue->dequeue++;
rvt_put_qp(qp);
}
/**
* queue_qp_for_tid_wait - suspend QP on tid space
* @rcd: the receive context
* @qp: the qp
*
* The qp is inserted at the tail of the rcd
* wait queue and the HFI1_S_WAIT_TID_SPACE s_flag is set.
*
* Must hold the qp s_lock and the exp_lock.
*/
static void queue_qp_for_tid_wait(struct hfi1_ctxtdata *rcd,
struct tid_queue *queue, struct rvt_qp *qp)
__must_hold(&rcd->exp_lock) __must_hold(&qp->s_lock)
{
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
lockdep_assert_held(&rcd->exp_lock);
if (list_empty(&priv->tid_wait)) {
qp->s_flags |= HFI1_S_WAIT_TID_SPACE;
list_add_tail(&priv->tid_wait, &queue->queue_head);
priv->tid_enqueue = ++queue->enqueue;
rcd->dd->verbs_dev.n_tidwait++;
trace_hfi1_qpsleep(qp, HFI1_S_WAIT_TID_SPACE);
rvt_get_qp(qp);
}
}
/**
* __trigger_tid_waiter - trigger tid waiter
* @qp: the qp
*
* This is a private entrance to schedule the qp
* assuming the caller is holding the qp->s_lock.
*/
static void __trigger_tid_waiter(struct rvt_qp *qp)
__must_hold(&qp->s_lock)
{
lockdep_assert_held(&qp->s_lock);
if (!(qp->s_flags & HFI1_S_WAIT_TID_SPACE))
return;
trace_hfi1_qpwakeup(qp, HFI1_S_WAIT_TID_SPACE);
hfi1_schedule_send(qp);
}
/**
* tid_rdma_schedule_tid_wakeup - schedule wakeup for a qp
* @qp - the qp
*
* trigger a schedule or a waiting qp in a deadlock
* safe manner. The qp reference is held prior
* to this call via first_qp().
*
* If the qp trigger was already scheduled (!rval)
* the the reference is dropped, otherwise the resume
* or the destroy cancel will dispatch the reference.
*/
static void tid_rdma_schedule_tid_wakeup(struct rvt_qp *qp)
{
struct hfi1_qp_priv *priv;
struct hfi1_ibport *ibp;
struct hfi1_pportdata *ppd;
struct hfi1_devdata *dd;
bool rval;
if (!qp)
return;
priv = qp->priv;
ibp = to_iport(qp->ibqp.device, qp->port_num);
ppd = ppd_from_ibp(ibp);
dd = dd_from_ibdev(qp->ibqp.device);
rval = queue_work_on(priv->s_sde ?
priv->s_sde->cpu :
cpumask_first(cpumask_of_node(dd->node)),
ppd->hfi1_wq,
&priv->tid_rdma.trigger_work);
if (!rval)
rvt_put_qp(qp);
}
/**
* tid_rdma_trigger_resume - field a trigger work request
* @work - the work item
*
* Complete the off qp trigger processing by directly
* calling the progress routine.
*/
static void tid_rdma_trigger_resume(struct work_struct *work)
{
struct tid_rdma_qp_params *tr;
struct hfi1_qp_priv *priv;
struct rvt_qp *qp;
tr = container_of(work, struct tid_rdma_qp_params, trigger_work);
priv = container_of(tr, struct hfi1_qp_priv, tid_rdma);
qp = priv->owner;
spin_lock_irq(&qp->s_lock);
if (qp->s_flags & HFI1_S_WAIT_TID_SPACE) {
spin_unlock_irq(&qp->s_lock);
hfi1_do_send(priv->owner, true);
} else {
spin_unlock_irq(&qp->s_lock);
}
rvt_put_qp(qp);
}
/**
* tid_rdma_flush_wait - unwind any tid space wait
*
* This is called when resetting a qp to
* allow a destroy or reset to get rid
* of any tid space linkage and reference counts.
*/
static void _tid_rdma_flush_wait(struct rvt_qp *qp, struct tid_queue *queue)
__must_hold(&qp->s_lock)
{
struct hfi1_qp_priv *priv;
if (!qp)
return;
lockdep_assert_held(&qp->s_lock);
priv = qp->priv;
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
spin_lock(&priv->rcd->exp_lock);
if (!list_empty(&priv->tid_wait)) {
list_del_init(&priv->tid_wait);
qp->s_flags &= ~HFI1_S_WAIT_TID_SPACE;
queue->dequeue++;
rvt_put_qp(qp);
}
spin_unlock(&priv->rcd->exp_lock);
}
void hfi1_tid_rdma_flush_wait(struct rvt_qp *qp)
__must_hold(&qp->s_lock)
{
struct hfi1_qp_priv *priv = qp->priv;
_tid_rdma_flush_wait(qp, &priv->rcd->flow_queue);
_tid_rdma_flush_wait(qp, &priv->rcd->rarr_queue);
}
/* Flow functions */
/**
* kern_reserve_flow - allocate a hardware flow
* @rcd - the context to use for allocation
* @last - the index of the preferred flow. Use RXE_NUM_TID_FLOWS to
* signify "don't care".
*
* Use a bit mask based allocation to reserve a hardware
* flow for use in receiving KDETH data packets. If a preferred flow is
* specified the function will attempt to reserve that flow again, if
* available.
*
* The exp_lock must be held.
*
* Return:
* On success: a value postive value between 0 and RXE_NUM_TID_FLOWS - 1
* On failure: -EAGAIN
*/
static int kern_reserve_flow(struct hfi1_ctxtdata *rcd, int last)
__must_hold(&rcd->exp_lock)
{
int nr;
/* Attempt to reserve the preferred flow index */
if (last >= 0 && last < RXE_NUM_TID_FLOWS &&
!test_and_set_bit(last, &rcd->flow_mask))
return last;
nr = ffz(rcd->flow_mask);
BUILD_BUG_ON(RXE_NUM_TID_FLOWS >=
(sizeof(rcd->flow_mask) * BITS_PER_BYTE));
if (nr > (RXE_NUM_TID_FLOWS - 1))
return -EAGAIN;
set_bit(nr, &rcd->flow_mask);
return nr;
}
static void kern_set_hw_flow(struct hfi1_ctxtdata *rcd, u32 generation,
u32 flow_idx)
{
u64 reg;
reg = ((u64)generation << HFI1_KDETH_BTH_SEQ_SHIFT) |
RCV_TID_FLOW_TABLE_CTRL_FLOW_VALID_SMASK |
RCV_TID_FLOW_TABLE_CTRL_KEEP_AFTER_SEQ_ERR_SMASK |
RCV_TID_FLOW_TABLE_CTRL_KEEP_ON_GEN_ERR_SMASK |
RCV_TID_FLOW_TABLE_STATUS_SEQ_MISMATCH_SMASK |
RCV_TID_FLOW_TABLE_STATUS_GEN_MISMATCH_SMASK;
if (generation != KERN_GENERATION_RESERVED)
reg |= RCV_TID_FLOW_TABLE_CTRL_HDR_SUPP_EN_SMASK;
write_uctxt_csr(rcd->dd, rcd->ctxt,
RCV_TID_FLOW_TABLE + 8 * flow_idx, reg);
}
static u32 kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
__must_hold(&rcd->exp_lock)
{
u32 generation = rcd->flows[flow_idx].generation;
kern_set_hw_flow(rcd, generation, flow_idx);
return generation;
}
static u32 kern_flow_generation_next(u32 gen)
{
u32 generation = mask_generation(gen + 1);
if (generation == KERN_GENERATION_RESERVED)
generation = mask_generation(generation + 1);
return generation;
}
static void kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, u32 flow_idx)
__must_hold(&rcd->exp_lock)
{
rcd->flows[flow_idx].generation =
kern_flow_generation_next(rcd->flows[flow_idx].generation);
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, flow_idx);
}
int hfi1_kern_setup_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
struct tid_flow_state *fs = &qpriv->flow_state;
struct rvt_qp *fqp;
unsigned long flags;
int ret = 0;
/* The QP already has an allocated flow */
if (fs->index != RXE_NUM_TID_FLOWS)
return ret;
spin_lock_irqsave(&rcd->exp_lock, flags);
if (kernel_tid_waiters(rcd, &rcd->flow_queue, qp))
goto queue;
ret = kern_reserve_flow(rcd, fs->last_index);
if (ret < 0)
goto queue;
fs->index = ret;
fs->last_index = fs->index;
/* Generation received in a RESYNC overrides default flow generation */
if (fs->generation != KERN_GENERATION_RESERVED)
rcd->flows[fs->index].generation = fs->generation;
fs->generation = kern_setup_hw_flow(rcd, fs->index);
fs->psn = 0;
fs->flags = 0;
dequeue_tid_waiter(rcd, &rcd->flow_queue, qp);
/* get head before dropping lock */
fqp = first_qp(rcd, &rcd->flow_queue);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
tid_rdma_schedule_tid_wakeup(fqp);
return 0;
queue:
queue_qp_for_tid_wait(rcd, &rcd->flow_queue, qp);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
return -EAGAIN;
}
void hfi1_kern_clear_hw_flow(struct hfi1_ctxtdata *rcd, struct rvt_qp *qp)
{
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
struct tid_flow_state *fs = &qpriv->flow_state;
struct rvt_qp *fqp;
unsigned long flags;
if (fs->index >= RXE_NUM_TID_FLOWS)
return;
spin_lock_irqsave(&rcd->exp_lock, flags);
kern_clear_hw_flow(rcd, fs->index);
clear_bit(fs->index, &rcd->flow_mask);
fs->index = RXE_NUM_TID_FLOWS;
fs->psn = 0;
fs->generation = KERN_GENERATION_RESERVED;
/* get head before dropping lock */
fqp = first_qp(rcd, &rcd->flow_queue);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
if (fqp == qp) {
__trigger_tid_waiter(fqp);
rvt_put_qp(fqp);
} else {
tid_rdma_schedule_tid_wakeup(fqp);
}
}
void hfi1_kern_init_ctxt_generations(struct hfi1_ctxtdata *rcd)
{
int i;
for (i = 0; i < RXE_NUM_TID_FLOWS; i++) {
rcd->flows[i].generation = mask_generation(prandom_u32());
kern_set_hw_flow(rcd, KERN_GENERATION_RESERVED, i);
}
}
/* TID allocation functions */
static u8 trdma_pset_order(struct tid_rdma_pageset *s)
{
u8 count = s->count;
return ilog2(count) + 1;
}
/**
* tid_rdma_find_phys_blocks_4k - get groups base on mr info
* @npages - number of pages
* @pages - pointer to an array of page structs
* @list - page set array to return
*
* This routine returns the number of groups associated with
* the current sge information. This implementation is based
* on the expected receive find_phys_blocks() adjusted to
* use the MR information vs. the pfn.
*
* Return:
* the number of RcvArray entries
*/
static u32 tid_rdma_find_phys_blocks_4k(struct tid_rdma_flow *flow,
struct page **pages,
u32 npages,
struct tid_rdma_pageset *list)
{
u32 pagecount, pageidx, setcount = 0, i;
void *vaddr, *this_vaddr;
if (!npages)
return 0;
/*
* Look for sets of physically contiguous pages in the user buffer.
* This will allow us to optimize Expected RcvArray entry usage by
* using the bigger supported sizes.
*/
vaddr = page_address(pages[0]);
trace_hfi1_tid_flow_page(flow->req->qp, flow, 0, 0, 0, vaddr);
for (pageidx = 0, pagecount = 1, i = 1; i <= npages; i++) {
this_vaddr = i < npages ? page_address(pages[i]) : NULL;
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 0, 0,
this_vaddr);
/*
* If the vaddr's are not sequential, pages are not physically
* contiguous.
*/
if (this_vaddr != (vaddr + PAGE_SIZE)) {
/*
* At this point we have to loop over the set of
* physically contiguous pages and break them down it
* sizes supported by the HW.
* There are two main constraints:
* 1. The max buffer size is MAX_EXPECTED_BUFFER.
* If the total set size is bigger than that
* program only a MAX_EXPECTED_BUFFER chunk.
* 2. The buffer size has to be a power of two. If
* it is not, round down to the closes power of
* 2 and program that size.
*/
while (pagecount) {
int maxpages = pagecount;
u32 bufsize = pagecount * PAGE_SIZE;
if (bufsize > MAX_EXPECTED_BUFFER)
maxpages =
MAX_EXPECTED_BUFFER >>
PAGE_SHIFT;
else if (!is_power_of_2(bufsize))
maxpages =
rounddown_pow_of_two(bufsize) >>
PAGE_SHIFT;
list[setcount].idx = pageidx;
list[setcount].count = maxpages;
trace_hfi1_tid_pageset(flow->req->qp, setcount,
list[setcount].idx,
list[setcount].count);
pagecount -= maxpages;
pageidx += maxpages;
setcount++;
}
pageidx = i;
pagecount = 1;
vaddr = this_vaddr;
} else {
vaddr += PAGE_SIZE;
pagecount++;
}
}
/* insure we always return an even number of sets */
if (setcount & 1)
list[setcount++].count = 0;
return setcount;
}
/**
* tid_flush_pages - dump out pages into pagesets
* @list - list of pagesets
* @idx - pointer to current page index
* @pages - number of pages to dump
* @sets - current number of pagesset
*
* This routine flushes out accumuated pages.
*
* To insure an even number of sets the
* code may add a filler.
*
* This can happen with when pages is not
* a power of 2 or pages is a power of 2
* less than the maximum pages.
*
* Return:
* The new number of sets
*/
static u32 tid_flush_pages(struct tid_rdma_pageset *list,
u32 *idx, u32 pages, u32 sets)
{
while (pages) {
u32 maxpages = pages;
if (maxpages > MAX_EXPECTED_PAGES)
maxpages = MAX_EXPECTED_PAGES;
else if (!is_power_of_2(maxpages))
maxpages = rounddown_pow_of_two(maxpages);
list[sets].idx = *idx;
list[sets++].count = maxpages;
*idx += maxpages;
pages -= maxpages;
}
/* might need a filler */
if (sets & 1)
list[sets++].count = 0;
return sets;
}
/**
* tid_rdma_find_phys_blocks_8k - get groups base on mr info
* @pages - pointer to an array of page structs
* @npages - number of pages
* @list - page set array to return
*
* This routine parses an array of pages to compute pagesets
* in an 8k compatible way.
*
* pages are tested two at a time, i, i + 1 for contiguous
* pages and i - 1 and i contiguous pages.
*
* If any condition is false, any accumlated pages are flushed and
* v0,v1 are emitted as separate PAGE_SIZE pagesets
*
* Otherwise, the current 8k is totaled for a future flush.
*
* Return:
* The number of pagesets
* list set with the returned number of pagesets
*
*/
static u32 tid_rdma_find_phys_blocks_8k(struct tid_rdma_flow *flow,
struct page **pages,
u32 npages,
struct tid_rdma_pageset *list)
{
u32 idx, sets = 0, i;
u32 pagecnt = 0;
void *v0, *v1, *vm1;
if (!npages)
return 0;
for (idx = 0, i = 0, vm1 = NULL; i < npages; i += 2) {
/* get a new v0 */
v0 = page_address(pages[i]);
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 0, v0);
v1 = i + 1 < npages ?
page_address(pages[i + 1]) : NULL;
trace_hfi1_tid_flow_page(flow->req->qp, flow, i, 1, 1, v1);
/* compare i, i + 1 vaddr */
if (v1 != (v0 + PAGE_SIZE)) {
/* flush out pages */
sets = tid_flush_pages(list, &idx, pagecnt, sets);
/* output v0,v1 as two pagesets */
list[sets].idx = idx++;
list[sets++].count = 1;
if (v1) {
list[sets].count = 1;
list[sets++].idx = idx++;
} else {
list[sets++].count = 0;
}
vm1 = NULL;
pagecnt = 0;
continue;
}
/* i,i+1 consecutive, look at i-1,i */
if (vm1 && v0 != (vm1 + PAGE_SIZE)) {
/* flush out pages */
sets = tid_flush_pages(list, &idx, pagecnt, sets);
pagecnt = 0;
}
/* pages will always be a multiple of 8k */
pagecnt += 2;
/* save i-1 */
vm1 = v1;
/* move to next pair */
}
/* dump residual pages at end */
sets = tid_flush_pages(list, &idx, npages - idx, sets);
/* by design cannot be odd sets */
WARN_ON(sets & 1);
return sets;
}
/**
* Find pages for one segment of a sge array represented by @ss. The function
* does not check the sge, the sge must have been checked for alignment with a
* prior call to hfi1_kern_trdma_ok. Other sge checking is done as part of
* rvt_lkey_ok and rvt_rkey_ok. Also, the function only modifies the local sge
* copy maintained in @ss->sge, the original sge is not modified.
*
* Unlike IB RDMA WRITE, we can't decrement ss->num_sge here because we are not
* releasing the MR reference count at the same time. Otherwise, we'll "leak"
* references to the MR. This difference requires that we keep track of progress
* into the sg_list. This is done by the cur_seg cursor in the tid_rdma_request
* structure.
*/
static u32 kern_find_pages(struct tid_rdma_flow *flow,
struct page **pages,
struct rvt_sge_state *ss, bool *last)
{
struct tid_rdma_request *req = flow->req;
struct rvt_sge *sge = &ss->sge;
u32 length = flow->req->seg_len;
u32 len = PAGE_SIZE;
u32 i = 0;
while (length && req->isge < ss->num_sge) {
pages[i++] = virt_to_page(sge->vaddr);
sge->vaddr += len;
sge->length -= len;
sge->sge_length -= len;
if (!sge->sge_length) {
if (++req->isge < ss->num_sge)
*sge = ss->sg_list[req->isge - 1];
} else if (sge->length == 0 && sge->mr->lkey) {
if (++sge->n >= RVT_SEGSZ) {
++sge->m;
sge->n = 0;
}
sge->vaddr = sge->mr->map[sge->m]->segs[sge->n].vaddr;
sge->length = sge->mr->map[sge->m]->segs[sge->n].length;
}
length -= len;
}
flow->length = flow->req->seg_len - length;
*last = req->isge == ss->num_sge ? false : true;
return i;
}
static void dma_unmap_flow(struct tid_rdma_flow *flow)
{
struct hfi1_devdata *dd;
int i;
struct tid_rdma_pageset *pset;
dd = flow->req->rcd->dd;
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
i++, pset++) {
if (pset->count && pset->addr) {
dma_unmap_page(&dd->pcidev->dev,
pset->addr,
PAGE_SIZE * pset->count,
DMA_FROM_DEVICE);
pset->mapped = 0;
}
}
}
static int dma_map_flow(struct tid_rdma_flow *flow, struct page **pages)
{
int i;
struct hfi1_devdata *dd = flow->req->rcd->dd;
struct tid_rdma_pageset *pset;
for (i = 0, pset = &flow->pagesets[0]; i < flow->npagesets;
i++, pset++) {
if (pset->count) {
pset->addr = dma_map_page(&dd->pcidev->dev,
pages[pset->idx],
0,
PAGE_SIZE * pset->count,
DMA_FROM_DEVICE);
if (dma_mapping_error(&dd->pcidev->dev, pset->addr)) {
dma_unmap_flow(flow);
return -ENOMEM;
}
pset->mapped = 1;
}
}
return 0;
}
static inline bool dma_mapped(struct tid_rdma_flow *flow)
{
return !!flow->pagesets[0].mapped;
}
/*
* Get pages pointers and identify contiguous physical memory chunks for a
* segment. All segments are of length flow->req->seg_len.
*/
static int kern_get_phys_blocks(struct tid_rdma_flow *flow,
struct page **pages,
struct rvt_sge_state *ss, bool *last)
{
u8 npages;
/* Reuse previously computed pagesets, if any */
if (flow->npagesets) {
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head,
flow);
if (!dma_mapped(flow))
return dma_map_flow(flow, pages);
return 0;
}
npages = kern_find_pages(flow, pages, ss, last);
if (flow->req->qp->pmtu == enum_to_mtu(OPA_MTU_4096))
flow->npagesets =
tid_rdma_find_phys_blocks_4k(flow, pages, npages,
flow->pagesets);
else
flow->npagesets =
tid_rdma_find_phys_blocks_8k(flow, pages, npages,
flow->pagesets);
return dma_map_flow(flow, pages);
}
static inline void kern_add_tid_node(struct tid_rdma_flow *flow,
struct hfi1_ctxtdata *rcd, char *s,
struct tid_group *grp, u8 cnt)
{
struct kern_tid_node *node = &flow->tnode[flow->tnode_cnt++];
WARN_ON_ONCE(flow->tnode_cnt >=
(TID_RDMA_MAX_SEGMENT_SIZE >> PAGE_SHIFT));
if (WARN_ON_ONCE(cnt & 1))
dd_dev_err(rcd->dd,
"unexpected odd allocation cnt %u map 0x%x used %u",
cnt, grp->map, grp->used);
node->grp = grp;
node->map = grp->map;
node->cnt = cnt;
trace_hfi1_tid_node_add(flow->req->qp, s, flow->tnode_cnt - 1,
grp->base, grp->map, grp->used, cnt);
}
/*
* Try to allocate pageset_count TID's from TID groups for a context
*
* This function allocates TID's without moving groups between lists or
* modifying grp->map. This is done as follows, being cogizant of the lists
* between which the TID groups will move:
* 1. First allocate complete groups of 8 TID's since this is more efficient,
* these groups will move from group->full without affecting used
* 2. If more TID's are needed allocate from used (will move from used->full or
* stay in used)
* 3. If we still don't have the required number of TID's go back and look again
* at a complete group (will move from group->used)
*/
static int kern_alloc_tids(struct tid_rdma_flow *flow)
{
struct hfi1_ctxtdata *rcd = flow->req->rcd;
struct hfi1_devdata *dd = rcd->dd;
u32 ngroups, pageidx = 0;
struct tid_group *group = NULL, *used;
u8 use;
flow->tnode_cnt = 0;
ngroups = flow->npagesets / dd->rcv_entries.group_size;
if (!ngroups)
goto used_list;
/* First look at complete groups */
list_for_each_entry(group, &rcd->tid_group_list.list, list) {
kern_add_tid_node(flow, rcd, "complete groups", group,
group->size);
pageidx += group->size;
if (!--ngroups)
break;
}
if (pageidx >= flow->npagesets)
goto ok;
used_list:
/* Now look at partially used groups */
list_for_each_entry(used, &rcd->tid_used_list.list, list) {
use = min_t(u32, flow->npagesets - pageidx,
used->size - used->used);
kern_add_tid_node(flow, rcd, "used groups", used, use);
pageidx += use;
if (pageidx >= flow->npagesets)
goto ok;
}
/*
* Look again at a complete group, continuing from where we left.
* However, if we are at the head, we have reached the end of the
* complete groups list from the first loop above
*/
if (group && &group->list == &rcd->tid_group_list.list)
goto bail_eagain;
group = list_prepare_entry(group, &rcd->tid_group_list.list,
list);
if (list_is_last(&group->list, &rcd->tid_group_list.list))
goto bail_eagain;
group = list_next_entry(group, list);
use = min_t(u32, flow->npagesets - pageidx, group->size);
kern_add_tid_node(flow, rcd, "complete continue", group, use);
pageidx += use;
if (pageidx >= flow->npagesets)
goto ok;
bail_eagain:
trace_hfi1_msg_alloc_tids(flow->req->qp, " insufficient tids: needed ",
(u64)flow->npagesets);
return -EAGAIN;
ok:
return 0;
}
static void kern_program_rcv_group(struct tid_rdma_flow *flow, int grp_num,
u32 *pset_idx)
{
struct hfi1_ctxtdata *rcd = flow->req->rcd;
struct hfi1_devdata *dd = rcd->dd;
struct kern_tid_node *node = &flow->tnode[grp_num];
struct tid_group *grp = node->grp;
struct tid_rdma_pageset *pset;
u32 pmtu_pg = flow->req->qp->pmtu >> PAGE_SHIFT;
u32 rcventry, npages = 0, pair = 0, tidctrl;
u8 i, cnt = 0;
for (i = 0; i < grp->size; i++) {
rcventry = grp->base + i;
if (node->map & BIT(i) || cnt >= node->cnt) {
rcv_array_wc_fill(dd, rcventry);
continue;
}
pset = &flow->pagesets[(*pset_idx)++];
if (pset->count) {
hfi1_put_tid(dd, rcventry, PT_EXPECTED,
pset->addr, trdma_pset_order(pset));
} else {
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
}
npages += pset->count;
rcventry -= rcd->expected_base;
tidctrl = pair ? 0x3 : rcventry & 0x1 ? 0x2 : 0x1;
/*
* A single TID entry will be used to use a rcvarr pair (with
* tidctrl 0x3), if ALL these are true (a) the bit pos is even
* (b) the group map shows current and the next bits as free
* indicating two consecutive rcvarry entries are available (c)
* we actually need 2 more entries
*/
pair = !(i & 0x1) && !((node->map >> i) & 0x3) &&
node->cnt >= cnt + 2;
if (!pair) {
if (!pset->count)
tidctrl = 0x1;
flow->tid_entry[flow->tidcnt++] =
EXP_TID_SET(IDX, rcventry >> 1) |
EXP_TID_SET(CTRL, tidctrl) |
EXP_TID_SET(LEN, npages);
trace_hfi1_tid_entry_alloc(/* entry */
flow->req->qp, flow->tidcnt - 1,
flow->tid_entry[flow->tidcnt - 1]);
/* Efficient DIV_ROUND_UP(npages, pmtu_pg) */
flow->npkts += (npages + pmtu_pg - 1) >> ilog2(pmtu_pg);
npages = 0;
}
if (grp->used == grp->size - 1)
tid_group_move(grp, &rcd->tid_used_list,
&rcd->tid_full_list);
else if (!grp->used)
tid_group_move(grp, &rcd->tid_group_list,
&rcd->tid_used_list);
grp->used++;
grp->map |= BIT(i);
cnt++;
}
}
static void kern_unprogram_rcv_group(struct tid_rdma_flow *flow, int grp_num)
{
struct hfi1_ctxtdata *rcd = flow->req->rcd;
struct hfi1_devdata *dd = rcd->dd;
struct kern_tid_node *node = &flow->tnode[grp_num];
struct tid_group *grp = node->grp;
u32 rcventry;
u8 i, cnt = 0;
for (i = 0; i < grp->size; i++) {
rcventry = grp->base + i;
if (node->map & BIT(i) || cnt >= node->cnt) {
rcv_array_wc_fill(dd, rcventry);
continue;
}
hfi1_put_tid(dd, rcventry, PT_INVALID, 0, 0);
grp->used--;
grp->map &= ~BIT(i);
cnt++;
if (grp->used == grp->size - 1)
tid_group_move(grp, &rcd->tid_full_list,
&rcd->tid_used_list);
else if (!grp->used)
tid_group_move(grp, &rcd->tid_used_list,
&rcd->tid_group_list);
}
if (WARN_ON_ONCE(cnt & 1)) {
struct hfi1_ctxtdata *rcd = flow->req->rcd;
struct hfi1_devdata *dd = rcd->dd;
dd_dev_err(dd, "unexpected odd free cnt %u map 0x%x used %u",
cnt, grp->map, grp->used);
}
}
static void kern_program_rcvarray(struct tid_rdma_flow *flow)
{
u32 pset_idx = 0;
int i;
flow->npkts = 0;
flow->tidcnt = 0;
for (i = 0; i < flow->tnode_cnt; i++)
kern_program_rcv_group(flow, i, &pset_idx);
trace_hfi1_tid_flow_alloc(flow->req->qp, flow->req->setup_head, flow);
}
/**
* hfi1_kern_exp_rcv_setup() - setup TID's and flow for one segment of a
* TID RDMA request
*
* @req: TID RDMA request for which the segment/flow is being set up
* @ss: sge state, maintains state across successive segments of a sge
* @last: set to true after the last sge segment has been processed
*
* This function
* (1) finds a free flow entry in the flow circular buffer
* (2) finds pages and continuous physical chunks constituing one segment
* of an sge
* (3) allocates TID group entries for those chunks
* (4) programs rcvarray entries in the hardware corresponding to those
* TID's
* (5) computes a tidarray with formatted TID entries which can be sent
* to the sender
* (6) Reserves and programs HW flows.
* (7) It also manages queing the QP when TID/flow resources are not
* available.
*
* @req points to struct tid_rdma_request of which the segments are a part. The
* function uses qp, rcd and seg_len members of @req. In the absence of errors,
* req->flow_idx is the index of the flow which has been prepared in this
* invocation of function call. With flow = &req->flows[req->flow_idx],
* flow->tid_entry contains the TID array which the sender can use for TID RDMA
* sends and flow->npkts contains number of packets required to send the
* segment.
*
* hfi1_check_sge_align should be called prior to calling this function and if
* it signals error TID RDMA cannot be used for this sge and this function
* should not be called.
*
* For the queuing, caller must hold the flow->req->qp s_lock from the send
* engine and the function will procure the exp_lock.
*
* Return:
* The function returns -EAGAIN if sufficient number of TID/flow resources to
* map the segment could not be allocated. In this case the function should be
* called again with previous arguments to retry the TID allocation. There are
* no other error returns. The function returns 0 on success.
*/
int hfi1_kern_exp_rcv_setup(struct tid_rdma_request *req,
struct rvt_sge_state *ss, bool *last)
__must_hold(&req->qp->s_lock)
{
struct tid_rdma_flow *flow = &req->flows[req->setup_head];
struct hfi1_ctxtdata *rcd = req->rcd;
struct hfi1_qp_priv *qpriv = req->qp->priv;
unsigned long flags;
struct rvt_qp *fqp;
u16 clear_tail = req->clear_tail;
lockdep_assert_held(&req->qp->s_lock);
/*
* We return error if either (a) we don't have space in the flow
* circular buffer, or (b) we already have max entries in the buffer.
* Max entries depend on the type of request we are processing and the
* negotiated TID RDMA parameters.
*/
if (!CIRC_SPACE(req->setup_head, clear_tail, MAX_FLOWS) ||
CIRC_CNT(req->setup_head, clear_tail, MAX_FLOWS) >=
req->n_flows)
return -EINVAL;
/*
* Get pages, identify contiguous physical memory chunks for the segment
* If we can not determine a DMA address mapping we will treat it just
* like if we ran out of space above.
*/
if (kern_get_phys_blocks(flow, qpriv->pages, ss, last)) {
hfi1_wait_kmem(flow->req->qp);
return -ENOMEM;
}
spin_lock_irqsave(&rcd->exp_lock, flags);
if (kernel_tid_waiters(rcd, &rcd->rarr_queue, flow->req->qp))
goto queue;
/*
* At this point we know the number of pagesets and hence the number of
* TID's to map the segment. Allocate the TID's from the TID groups. If
* we cannot allocate the required number we exit and try again later
*/
if (kern_alloc_tids(flow))
goto queue;
/*
* Finally program the TID entries with the pagesets, compute the
* tidarray and enable the HW flow
*/
kern_program_rcvarray(flow);
/*
* Setup the flow state with relevant information.
* This information is used for tracking the sequence of data packets
* for the segment.
* The flow is setup here as this is the most accurate time and place
* to do so. Doing at a later time runs the risk of the flow data in
* qpriv getting out of sync.
*/
memset(&flow->flow_state, 0x0, sizeof(flow->flow_state));
flow->idx = qpriv->flow_state.index;
flow->flow_state.generation = qpriv->flow_state.generation;
flow->flow_state.spsn = qpriv->flow_state.psn;
flow->flow_state.lpsn = flow->flow_state.spsn + flow->npkts - 1;
flow->flow_state.r_next_psn =
full_flow_psn(flow, flow->flow_state.spsn);
qpriv->flow_state.psn += flow->npkts;
dequeue_tid_waiter(rcd, &rcd->rarr_queue, flow->req->qp);
/* get head before dropping lock */
fqp = first_qp(rcd, &rcd->rarr_queue);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
tid_rdma_schedule_tid_wakeup(fqp);
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
return 0;
queue:
queue_qp_for_tid_wait(rcd, &rcd->rarr_queue, flow->req->qp);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
return -EAGAIN;
}
static void hfi1_tid_rdma_reset_flow(struct tid_rdma_flow *flow)
{
flow->npagesets = 0;
}
/*
* This function is called after one segment has been successfully sent to
* release the flow and TID HW/SW resources for that segment. The segments for a
* TID RDMA request are setup and cleared in FIFO order which is managed using a
* circular buffer.
*/
int hfi1_kern_exp_rcv_clear(struct tid_rdma_request *req)
__must_hold(&req->qp->s_lock)
{
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
struct hfi1_ctxtdata *rcd = req->rcd;
unsigned long flags;
int i;
struct rvt_qp *fqp;
lockdep_assert_held(&req->qp->s_lock);
/* Exit if we have nothing in the flow circular buffer */
if (!CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS))
return -EINVAL;
spin_lock_irqsave(&rcd->exp_lock, flags);
for (i = 0; i < flow->tnode_cnt; i++)
kern_unprogram_rcv_group(flow, i);
/* To prevent double unprogramming */
flow->tnode_cnt = 0;
/* get head before dropping lock */
fqp = first_qp(rcd, &rcd->rarr_queue);
spin_unlock_irqrestore(&rcd->exp_lock, flags);
dma_unmap_flow(flow);
hfi1_tid_rdma_reset_flow(flow);
req->clear_tail = (req->clear_tail + 1) & (MAX_FLOWS - 1);
if (fqp == req->qp) {
__trigger_tid_waiter(fqp);
rvt_put_qp(fqp);
} else {
tid_rdma_schedule_tid_wakeup(fqp);
}
return 0;
}
/*
* This function is called to release all the tid entries for
* a request.
*/
void hfi1_kern_exp_rcv_clear_all(struct tid_rdma_request *req)
__must_hold(&req->qp->s_lock)
{
/* Use memory barrier for proper ordering */
while (CIRC_CNT(req->setup_head, req->clear_tail, MAX_FLOWS)) {
if (hfi1_kern_exp_rcv_clear(req))
break;
}
}
/**
* hfi1_kern_exp_rcv_free_flows - free priviously allocated flow information
* @req - the tid rdma request to be cleaned
*/
static void hfi1_kern_exp_rcv_free_flows(struct tid_rdma_request *req)
{
kfree(req->flows);
req->flows = NULL;
}
/**
* __trdma_clean_swqe - clean up for large sized QPs
* @qp: the queue patch
* @wqe: the send wqe
*/
void __trdma_clean_swqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
struct hfi1_swqe_priv *p = wqe->priv;
hfi1_kern_exp_rcv_free_flows(&p->tid_req);
}
/*
* This can be called at QP create time or in the data path.
*/
static int hfi1_kern_exp_rcv_alloc_flows(struct tid_rdma_request *req,
gfp_t gfp)
{
struct tid_rdma_flow *flows;
int i;
if (likely(req->flows))
return 0;
flows = kmalloc_node(MAX_FLOWS * sizeof(*flows), gfp,
req->rcd->numa_id);
if (!flows)
return -ENOMEM;
/* mini init */
for (i = 0; i < MAX_FLOWS; i++) {
flows[i].req = req;
flows[i].npagesets = 0;
flows[i].pagesets[0].mapped = 0;
}
req->flows = flows;
return 0;
}
static void hfi1_init_trdma_req(struct rvt_qp *qp,
struct tid_rdma_request *req)
{
struct hfi1_qp_priv *qpriv = qp->priv;
/*
* Initialize various TID RDMA request variables.
* These variables are "static", which is why they
* can be pre-initialized here before the WRs has
* even been submitted.
* However, non-NULL values for these variables do not
* imply that this WQE has been enabled for TID RDMA.
* Drivers should check the WQE's opcode to determine
* if a request is a TID RDMA one or not.
*/
req->qp = qp;
req->rcd = qpriv->rcd;
}
u64 hfi1_access_sw_tid_wait(const struct cntr_entry *entry,
void *context, int vl, int mode, u64 data)
{
struct hfi1_devdata *dd = context;
return dd->verbs_dev.n_tidwait;
}
static struct tid_rdma_flow *find_flow_ib(struct tid_rdma_request *req,
u32 psn, u16 *fidx)
{
u16 head, tail;
struct tid_rdma_flow *flow;
head = req->setup_head;
tail = req->clear_tail;
for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
tail = CIRC_NEXT(tail, MAX_FLOWS)) {
flow = &req->flows[tail];
if (cmp_psn(psn, flow->flow_state.ib_spsn) >= 0 &&
cmp_psn(psn, flow->flow_state.ib_lpsn) <= 0) {
if (fidx)
*fidx = tail;
return flow;
}
}
return NULL;
}
static struct tid_rdma_flow *
__find_flow_ranged(struct tid_rdma_request *req, u16 head, u16 tail,
u32 psn, u16 *fidx)
{
for ( ; CIRC_CNT(head, tail, MAX_FLOWS);
tail = CIRC_NEXT(tail, MAX_FLOWS)) {
struct tid_rdma_flow *flow = &req->flows[tail];
u32 spsn, lpsn;
spsn = full_flow_psn(flow, flow->flow_state.spsn);
lpsn = full_flow_psn(flow, flow->flow_state.lpsn);
if (cmp_psn(psn, spsn) >= 0 && cmp_psn(psn, lpsn) <= 0) {
if (fidx)
*fidx = tail;
return flow;
}
}
return NULL;
}
static struct tid_rdma_flow *find_flow(struct tid_rdma_request *req,
u32 psn, u16 *fidx)
{
return __find_flow_ranged(req, req->setup_head, req->clear_tail, psn,
fidx);
}
/* TID RDMA READ functions */
u32 hfi1_build_tid_rdma_read_packet(struct rvt_swqe *wqe,
struct ib_other_headers *ohdr, u32 *bth1,
u32 *bth2, u32 *len)
{
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
struct tid_rdma_flow *flow = &req->flows[req->flow_idx];
struct rvt_qp *qp = req->qp;
struct hfi1_qp_priv *qpriv = qp->priv;
struct hfi1_swqe_priv *wpriv = wqe->priv;
struct tid_rdma_read_req *rreq = &ohdr->u.tid_rdma.r_req;
struct tid_rdma_params *remote;
u32 req_len = 0;
void *req_addr = NULL;
/* This is the IB psn used to send the request */
*bth2 = mask_psn(flow->flow_state.ib_spsn + flow->pkt);
trace_hfi1_tid_flow_build_read_pkt(qp, req->flow_idx, flow);
/* TID Entries for TID RDMA READ payload */
req_addr = &flow->tid_entry[flow->tid_idx];
req_len = sizeof(*flow->tid_entry) *
(flow->tidcnt - flow->tid_idx);
memset(&ohdr->u.tid_rdma.r_req, 0, sizeof(ohdr->u.tid_rdma.r_req));
wpriv->ss.sge.vaddr = req_addr;
wpriv->ss.sge.sge_length = req_len;
wpriv->ss.sge.length = wpriv->ss.sge.sge_length;
/*
* We can safely zero these out. Since the first SGE covers the
* entire packet, nothing else should even look at the MR.
*/
wpriv->ss.sge.mr = NULL;
wpriv->ss.sge.m = 0;
wpriv->ss.sge.n = 0;
wpriv->ss.sg_list = NULL;
wpriv->ss.total_len = wpriv->ss.sge.sge_length;
wpriv->ss.num_sge = 1;
/* Construct the TID RDMA READ REQ packet header */
rcu_read_lock();
remote = rcu_dereference(qpriv->tid_rdma.remote);
KDETH_RESET(rreq->kdeth0, KVER, 0x1);
KDETH_RESET(rreq->kdeth1, JKEY, remote->jkey);
rreq->reth.vaddr = cpu_to_be64(wqe->rdma_wr.remote_addr +
req->cur_seg * req->seg_len + flow->sent);
rreq->reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey);
rreq->reth.length = cpu_to_be32(*len);
rreq->tid_flow_psn =
cpu_to_be32((flow->flow_state.generation <<
HFI1_KDETH_BTH_SEQ_SHIFT) |
((flow->flow_state.spsn + flow->pkt) &
HFI1_KDETH_BTH_SEQ_MASK));
rreq->tid_flow_qp =
cpu_to_be32(qpriv->tid_rdma.local.qp |
((flow->idx & TID_RDMA_DESTQP_FLOW_MASK) <<
TID_RDMA_DESTQP_FLOW_SHIFT) |
qpriv->rcd->ctxt);
rreq->verbs_qp = cpu_to_be32(qp->remote_qpn);
*bth1 &= ~RVT_QPN_MASK;
*bth1 |= remote->qp;
*bth2 |= IB_BTH_REQ_ACK;
rcu_read_unlock();
/* We are done with this segment */
flow->sent += *len;
req->cur_seg++;
qp->s_state = TID_OP(READ_REQ);
req->ack_pending++;
req->flow_idx = (req->flow_idx + 1) & (MAX_FLOWS - 1);
qpriv->pending_tid_r_segs++;
qp->s_num_rd_atomic++;
/* Set the TID RDMA READ request payload size */
*len = req_len;
return sizeof(ohdr->u.tid_rdma.r_req) / sizeof(u32);
}
/*
* @len: contains the data length to read upon entry and the read request
* payload length upon exit.
*/
u32 hfi1_build_tid_rdma_read_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr, u32 *bth1,
u32 *bth2, u32 *len)
__must_hold(&qp->s_lock)
{
struct hfi1_qp_priv *qpriv = qp->priv;
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
struct tid_rdma_flow *flow = NULL;
u32 hdwords = 0;
bool last;
bool retry = true;
u32 npkts = rvt_div_round_up_mtu(qp, *len);
trace_hfi1_tid_req_build_read_req(qp, 0, wqe->wr.opcode, wqe->psn,
wqe->lpsn, req);
/*
* Check sync conditions. Make sure that there are no pending
* segments before freeing the flow.
*/
sync_check:
if (req->state == TID_REQUEST_SYNC) {
if (qpriv->pending_tid_r_segs)
goto done;
hfi1_kern_clear_hw_flow(req->rcd, qp);
req->state = TID_REQUEST_ACTIVE;
}
/*
* If the request for this segment is resent, the tid resources should
* have been allocated before. In this case, req->flow_idx should
* fall behind req->setup_head.
*/
if (req->flow_idx == req->setup_head) {
retry = false;
if (req->state == TID_REQUEST_RESEND) {
/*
* This is the first new segment for a request whose
* earlier segments have been re-sent. We need to
* set up the sge pointer correctly.
*/
restart_sge(&qp->s_sge, wqe, req->s_next_psn,
qp->pmtu);
req->isge = 0;
req->state = TID_REQUEST_ACTIVE;
}
/*
* Check sync. The last PSN of each generation is reserved for
* RESYNC.
*/
if ((qpriv->flow_state.psn + npkts) > MAX_TID_FLOW_PSN - 1) {
req->state = TID_REQUEST_SYNC;
goto sync_check;
}
/* Allocate the flow if not yet */
if (hfi1_kern_setup_hw_flow(qpriv->rcd, qp))
goto done;
/*
* The following call will advance req->setup_head after
* allocating the tid entries.
*/
if (hfi1_kern_exp_rcv_setup(req, &qp->s_sge, &last)) {
req->state = TID_REQUEST_QUEUED;
/*
* We don't have resources for this segment. The QP has
* already been queued.
*/
goto done;
}
}
/* req->flow_idx should only be one slot behind req->setup_head */
flow = &req->flows[req->flow_idx];
flow->pkt = 0;
flow->tid_idx = 0;
flow->sent = 0;
if (!retry) {
/* Set the first and last IB PSN for the flow in use.*/
flow->flow_state.ib_spsn = req->s_next_psn;
flow->flow_state.ib_lpsn =
flow->flow_state.ib_spsn + flow->npkts - 1;
}
/* Calculate the next segment start psn.*/
req->s_next_psn += flow->npkts;
/* Build the packet header */
hdwords = hfi1_build_tid_rdma_read_packet(wqe, ohdr, bth1, bth2, len);
done:
return hdwords;
}
/*
* Validate and accept the TID RDMA READ request parameters.
* Return 0 if the request is accepted successfully;
* Return 1 otherwise.
*/
static int tid_rdma_rcv_read_request(struct rvt_qp *qp,
struct rvt_ack_entry *e,
struct hfi1_packet *packet,
struct ib_other_headers *ohdr,
u32 bth0, u32 psn, u64 vaddr, u32 len)
{
struct hfi1_qp_priv *qpriv = qp->priv;
struct tid_rdma_request *req;
struct tid_rdma_flow *flow;
u32 flow_psn, i, tidlen = 0, pktlen, tlen;
req = ack_to_tid_req(e);
/* Validate the payload first */
flow = &req->flows[req->setup_head];
/* payload length = packet length - (header length + ICRC length) */
pktlen = packet->tlen - (packet->hlen + 4);
if (pktlen > sizeof(flow->tid_entry))
return 1;
memcpy(flow->tid_entry, packet->ebuf, pktlen);
flow->tidcnt = pktlen / sizeof(*flow->tid_entry);
/*
* Walk the TID_ENTRY list to make sure we have enough space for a
* complete segment. Also calculate the number of required packets.
*/
flow->npkts = rvt_div_round_up_mtu(qp, len);
for (i = 0; i < flow->tidcnt; i++) {
trace_hfi1_tid_entry_rcv_read_req(qp, i,
flow->tid_entry[i]);
tlen = EXP_TID_GET(flow->tid_entry[i], LEN);
if (!tlen)
return 1;
/*
* For tid pair (tidctr == 3), the buffer size of the pair
* should be the sum of the buffer size described by each
* tid entry. However, only the first entry needs to be
* specified in the request (see WFR HAS Section 8.5.7.1).
*/
tidlen += tlen;
}
if (tidlen * PAGE_SIZE < len)
return 1;
/* Empty the flow array */
req->clear_tail = req->setup_head;
flow->pkt = 0;
flow->tid_idx = 0;
flow->tid_offset = 0;
flow->sent = 0;
flow->tid_qpn = be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_qp);
flow->idx = (flow->tid_qpn >> TID_RDMA_DESTQP_FLOW_SHIFT) &
TID_RDMA_DESTQP_FLOW_MASK;
flow_psn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_req.tid_flow_psn));
flow->flow_state.generation = flow_psn >> HFI1_KDETH_BTH_SEQ_SHIFT;
flow->flow_state.spsn = flow_psn & HFI1_KDETH_BTH_SEQ_MASK;
flow->length = len;
flow->flow_state.lpsn = flow->flow_state.spsn +
flow->npkts - 1;
flow->flow_state.ib_spsn = psn;
flow->flow_state.ib_lpsn = flow->flow_state.ib_spsn + flow->npkts - 1;
trace_hfi1_tid_flow_rcv_read_req(qp, req->setup_head, flow);
/* Set the initial flow index to the current flow. */
req->flow_idx = req->setup_head;
/* advance circular buffer head */
req->setup_head = (req->setup_head + 1) & (MAX_FLOWS - 1);
/*
* Compute last PSN for request.
*/
e->opcode = (bth0 >> 24) & 0xff;
e->psn = psn;
e->lpsn = psn + flow->npkts - 1;
e->sent = 0;
req->n_flows = qpriv->tid_rdma.local.max_read;
req->state = TID_REQUEST_ACTIVE;
req->cur_seg = 0;
req->comp_seg = 0;
req->ack_seg = 0;
req->isge = 0;
req->seg_len = qpriv->tid_rdma.local.max_len;
req->total_len = len;
req->total_segs = 1;
req->r_flow_psn = e->psn;
trace_hfi1_tid_req_rcv_read_req(qp, 0, e->opcode, e->psn, e->lpsn,
req);
return 0;
}
static int tid_rdma_rcv_error(struct hfi1_packet *packet,
struct ib_other_headers *ohdr,
struct rvt_qp *qp, u32 psn, int diff)
{
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct hfi1_ctxtdata *rcd = ((struct hfi1_qp_priv *)qp->priv)->rcd;
struct rvt_ack_entry *e;
struct tid_rdma_request *req;
unsigned long flags;
u8 prev;
bool old_req;
trace_hfi1_rsp_tid_rcv_error(qp, psn);
trace_hfi1_tid_rdma_rcv_err(qp, 0, psn, diff);
if (diff > 0) {
/* sequence error */
if (!qp->r_nak_state) {
ibp->rvp.n_rc_seqnak++;
qp->r_nak_state = IB_NAK_PSN_ERROR;
qp->r_ack_psn = qp->r_psn;
rc_defered_ack(rcd, qp);
}
goto done;
}
ibp->rvp.n_rc_dupreq++;
spin_lock_irqsave(&qp->s_lock, flags);
e = find_prev_entry(qp, psn, &prev, NULL, &old_req);
if (!e || e->opcode != TID_OP(READ_REQ))
goto unlock;
req = ack_to_tid_req(e);
req->r_flow_psn = psn;
trace_hfi1_tid_req_rcv_err(qp, 0, e->opcode, e->psn, e->lpsn, req);
if (e->opcode == TID_OP(READ_REQ)) {
struct ib_reth *reth;
u32 offset;
u32 len;
u32 rkey;
u64 vaddr;
int ok;
u32 bth0;
reth = &ohdr->u.tid_rdma.r_req.reth;
/*
* The requester always restarts from the start of the original
* request.
*/
offset = delta_psn(psn, e->psn) * qp->pmtu;
len = be32_to_cpu(reth->length);
if (psn != e->psn || len != req->total_len)
goto unlock;
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
rkey = be32_to_cpu(reth->rkey);
vaddr = get_ib_reth_vaddr(reth);
qp->r_len = len;
ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey,
IB_ACCESS_REMOTE_READ);
if (unlikely(!ok))
goto unlock;
/*
* If all the response packets for the current request have
* been sent out and this request is complete (old_request
* == false) and the TID flow may be unusable (the
* req->clear_tail is advanced). However, when an earlier
* request is received, this request will not be complete any
* more (qp->s_tail_ack_queue is moved back, see below).
* Consequently, we need to update the TID flow info everytime
* a duplicate request is received.
*/
bth0 = be32_to_cpu(ohdr->bth[0]);
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn,
vaddr, len))
goto unlock;
/*
* True if the request is already scheduled (between
* qp->s_tail_ack_queue and qp->r_head_ack_queue);
*/
if (old_req)
goto unlock;
}
/* Re-process old requests.*/
qp->s_tail_ack_queue = prev;
/*
* Since the qp->s_tail_ack_queue is modified, the
* qp->s_ack_state must be changed to re-initialize
* qp->s_ack_rdma_sge; Otherwise, we will end up in
* wrong memory region.
*/
qp->s_ack_state = OP(ACKNOWLEDGE);
qp->r_state = e->opcode;
qp->r_nak_state = 0;
qp->s_flags |= RVT_S_RESP_PENDING;
hfi1_schedule_send(qp);
unlock:
spin_unlock_irqrestore(&qp->s_lock, flags);
done:
return 1;
}
void hfi1_rc_rcv_tid_rdma_read_req(struct hfi1_packet *packet)
{
/* HANDLER FOR TID RDMA READ REQUEST packet (Responder side)*/
/*
* 1. Verify TID RDMA READ REQ as per IB_OPCODE_RC_RDMA_READ
* (see hfi1_rc_rcv())
* 2. Put TID RDMA READ REQ into the response queueu (s_ack_queue)
* - Setup struct tid_rdma_req with request info
* - Initialize struct tid_rdma_flow info;
* - Copy TID entries;
* 3. Set the qp->s_ack_state.
* 4. Set RVT_S_RESP_PENDING in s_flags.
* 5. Kick the send engine (hfi1_schedule_send())
*/
struct hfi1_ctxtdata *rcd = packet->rcd;
struct rvt_qp *qp = packet->qp;
struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
struct ib_other_headers *ohdr = packet->ohdr;
struct rvt_ack_entry *e;
unsigned long flags;
struct ib_reth *reth;
struct hfi1_qp_priv *qpriv = qp->priv;
u32 bth0, psn, len, rkey;
bool is_fecn;
u8 next;
u64 vaddr;
int diff;
u8 nack_state = IB_NAK_INVALID_REQUEST;
bth0 = be32_to_cpu(ohdr->bth[0]);
if (hfi1_ruc_check_hdr(ibp, packet))
return;
is_fecn = process_ecn(qp, packet);
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
trace_hfi1_rsp_rcv_tid_read_req(qp, psn);
if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST))
rvt_comm_est(qp);
if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ)))
goto nack_inv;
reth = &ohdr->u.tid_rdma.r_req.reth;
vaddr = be64_to_cpu(reth->vaddr);
len = be32_to_cpu(reth->length);
/* The length needs to be in multiples of PAGE_SIZE */
if (!len || len & ~PAGE_MASK || len > qpriv->tid_rdma.local.max_len)
goto nack_inv;
diff = delta_psn(psn, qp->r_psn);
if (unlikely(diff)) {
if (tid_rdma_rcv_error(packet, ohdr, qp, psn, diff))
return;
goto send_ack;
}
/* We've verified the request, insert it into the ack queue. */
next = qp->r_head_ack_queue + 1;
if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device)))
next = 0;
spin_lock_irqsave(&qp->s_lock, flags);
if (unlikely(next == qp->s_tail_ack_queue)) {
if (!qp->s_ack_queue[next].sent) {
nack_state = IB_NAK_REMOTE_OPERATIONAL_ERROR;
goto nack_inv_unlock;
}
update_ack_queue(qp, next);
}
e = &qp->s_ack_queue[qp->r_head_ack_queue];
if (e->rdma_sge.mr) {
rvt_put_mr(e->rdma_sge.mr);
e->rdma_sge.mr = NULL;
}
rkey = be32_to_cpu(reth->rkey);
qp->r_len = len;
if (unlikely(!rvt_rkey_ok(qp, &e->rdma_sge, qp->r_len, vaddr,
rkey, IB_ACCESS_REMOTE_READ)))
goto nack_acc;
/* Accept the request parameters */
if (tid_rdma_rcv_read_request(qp, e, packet, ohdr, bth0, psn, vaddr,
len))
goto nack_inv_unlock;
qp->r_state = e->opcode;
qp->r_nak_state = 0;
/*
* We need to increment the MSN here instead of when we
* finish sending the result since a duplicate request would
* increment it more than once.
*/
qp->r_msn++;
qp->r_psn += e->lpsn - e->psn + 1;
qp->r_head_ack_queue = next;
/* Schedule the send tasklet. */
qp->s_flags |= RVT_S_RESP_PENDING;
hfi1_schedule_send(qp);
spin_unlock_irqrestore(&qp->s_lock, flags);
if (is_fecn)
goto send_ack;
return;
nack_inv_unlock:
spin_unlock_irqrestore(&qp->s_lock, flags);
nack_inv:
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
qp->r_nak_state = nack_state;
qp->r_ack_psn = qp->r_psn;
/* Queue NAK for later */
rc_defered_ack(rcd, qp);
return;
nack_acc:
spin_unlock_irqrestore(&qp->s_lock, flags);
rvt_rc_error(qp, IB_WC_LOC_PROT_ERR);
qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR;
qp->r_ack_psn = qp->r_psn;
send_ack:
hfi1_send_rc_ack(packet, is_fecn);
}
u32 hfi1_build_tid_rdma_read_resp(struct rvt_qp *qp, struct rvt_ack_entry *e,
struct ib_other_headers *ohdr, u32 *bth0,
u32 *bth1, u32 *bth2, u32 *len, bool *last)
{
struct hfi1_ack_priv *epriv = e->priv;
struct tid_rdma_request *req = &epriv->tid_req;
struct hfi1_qp_priv *qpriv = qp->priv;
struct tid_rdma_flow *flow = &req->flows[req->clear_tail];
u32 tidentry = flow->tid_entry[flow->tid_idx];
u32 tidlen = EXP_TID_GET(tidentry, LEN) << PAGE_SHIFT;
struct tid_rdma_read_resp *resp = &ohdr->u.tid_rdma.r_rsp;
u32 next_offset, om = KDETH_OM_LARGE;
bool last_pkt;
u32 hdwords = 0;
struct tid_rdma_params *remote;
*len = min_t(u32, qp->pmtu, tidlen - flow->tid_offset);
flow->sent += *len;
next_offset = flow->tid_offset + *len;
last_pkt = (flow->sent >= flow->length);
trace_hfi1_tid_entry_build_read_resp(qp, flow->tid_idx, tidentry);
trace_hfi1_tid_flow_build_read_resp(qp, req->clear_tail, flow);
rcu_read_lock();
remote = rcu_dereference(qpriv->tid_rdma.remote);
if (!remote) {
rcu_read_unlock();
goto done;
}
KDETH_RESET(resp->kdeth0, KVER, 0x1);
KDETH_SET(resp->kdeth0, SH, !last_pkt);
KDETH_SET(resp->kdeth0, INTR, !!(!last_pkt && remote->urg));
KDETH_SET(resp->kdeth0, TIDCTRL, EXP_TID_GET(tidentry, CTRL));
KDETH_SET(resp->kdeth0, TID, EXP_TID_GET(tidentry, IDX));
KDETH_SET(resp->kdeth0, OM, om == KDETH_OM_LARGE);
KDETH_SET(resp->kdeth0, OFFSET, flow->tid_offset / om);
KDETH_RESET(resp->kdeth1, JKEY, remote->jkey);
resp->verbs_qp = cpu_to_be32(qp->remote_qpn);
rcu_read_unlock();
resp->aeth = rvt_compute_aeth(qp);
resp->verbs_psn = cpu_to_be32(mask_psn(flow->flow_state.ib_spsn +
flow->pkt));
*bth0 = TID_OP(READ_RESP) << 24;
*bth1 = flow->tid_qpn;
*bth2 = mask_psn(((flow->flow_state.spsn + flow->pkt++) &
HFI1_KDETH_BTH_SEQ_MASK) |
(flow->flow_state.generation <<
HFI1_KDETH_BTH_SEQ_SHIFT));
*last = last_pkt;
if (last_pkt)
/* Advance to next flow */
req->clear_tail = (req->clear_tail + 1) &
(MAX_FLOWS - 1);
if (next_offset >= tidlen) {
flow->tid_offset = 0;
flow->tid_idx++;
} else {
flow->tid_offset = next_offset;
}
hdwords = sizeof(ohdr->u.tid_rdma.r_rsp) / sizeof(u32);
done:
return hdwords;
}
static inline struct tid_rdma_request *
find_tid_request(struct rvt_qp *qp, u32 psn, enum ib_wr_opcode opcode)
__must_hold(&qp->s_lock)
{
struct rvt_swqe *wqe;
struct tid_rdma_request *req = NULL;
u32 i, end;
end = qp->s_cur + 1;
if (end == qp->s_size)
end = 0;
for (i = qp->s_acked; i != end;) {
wqe = rvt_get_swqe_ptr(qp, i);
if (cmp_psn(psn, wqe->psn) >= 0 &&
cmp_psn(psn, wqe->lpsn) <= 0) {
if (wqe->wr.opcode == opcode)
req = wqe_to_tid_req(wqe);
break;
}
if (++i == qp->s_size)
i = 0;
}
return req;
}
void hfi1_rc_rcv_tid_rdma_read_resp(struct hfi1_packet *packet)
{
/* HANDLER FOR TID RDMA READ RESPONSE packet (Requestor side */
/*
* 1. Find matching SWQE
* 2. Check that the entire segment has been read.
* 3. Remove HFI1_S_WAIT_TID_RESP from s_flags.
* 4. Free the TID flow resources.
* 5. Kick the send engine (hfi1_schedule_send())
*/
struct ib_other_headers *ohdr = packet->ohdr;
struct rvt_qp *qp = packet->qp;
struct hfi1_qp_priv *priv = qp->priv;
struct hfi1_ctxtdata *rcd = packet->rcd;
struct tid_rdma_request *req;
struct tid_rdma_flow *flow;
u32 opcode, aeth;
bool is_fecn;
unsigned long flags;
u32 kpsn, ipsn;
trace_hfi1_sender_rcv_tid_read_resp(qp);
is_fecn = process_ecn(qp, packet);
kpsn = mask_psn(be32_to_cpu(ohdr->bth[2]));
aeth = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.aeth);
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
spin_lock_irqsave(&qp->s_lock, flags);
ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
req = find_tid_request(qp, ipsn, IB_WR_TID_RDMA_READ);
if (unlikely(!req))
goto ack_op_err;
flow = &req->flows[req->clear_tail];
/* When header suppression is disabled */
if (cmp_psn(ipsn, flow->flow_state.ib_lpsn))
goto ack_done;
req->ack_pending--;
priv->pending_tid_r_segs--;
qp->s_num_rd_atomic--;
if ((qp->s_flags & RVT_S_WAIT_FENCE) &&
!qp->s_num_rd_atomic) {
qp->s_flags &= ~(RVT_S_WAIT_FENCE |
RVT_S_WAIT_ACK);
hfi1_schedule_send(qp);
}
if (qp->s_flags & RVT_S_WAIT_RDMAR) {
qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK);
hfi1_schedule_send(qp);
}
trace_hfi1_ack(qp, ipsn);
trace_hfi1_tid_req_rcv_read_resp(qp, 0, req->e.swqe->wr.opcode,
req->e.swqe->psn, req->e.swqe->lpsn,
req);
trace_hfi1_tid_flow_rcv_read_resp(qp, req->clear_tail, flow);
/* Release the tid resources */
hfi1_kern_exp_rcv_clear(req);
if (!do_rc_ack(qp, aeth, ipsn, opcode, 0, rcd))
goto ack_done;
/* If not done yet, build next read request */
if (++req->comp_seg >= req->total_segs) {
priv->tid_r_comp++;
req->state = TID_REQUEST_COMPLETE;
}
/*
* Clear the hw flow under two conditions:
* 1. This request is a sync point and it is complete;
* 2. Current request is completed and there are no more requests.
*/
if ((req->state == TID_REQUEST_SYNC &&
req->comp_seg == req->cur_seg) ||
priv->tid_r_comp == priv->tid_r_reqs) {
hfi1_kern_clear_hw_flow(priv->rcd, qp);
if (req->state == TID_REQUEST_SYNC)
req->state = TID_REQUEST_ACTIVE;
}
hfi1_schedule_send(qp);
goto ack_done;
ack_op_err:
/*
* The test indicates that the send engine has finished its cleanup
* after sending the request and it's now safe to put the QP into error
* state. However, if the wqe queue is empty (qp->s_acked == qp->s_tail
* == qp->s_head), it would be unsafe to complete the wqe pointed by
* qp->s_acked here. Putting the qp into error state will safely flush
* all remaining requests.
*/
if (qp->s_last == qp->s_acked)
rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
ack_done:
spin_unlock_irqrestore(&qp->s_lock, flags);
if (is_fecn)
hfi1_send_rc_ack(packet, is_fecn);
}
void hfi1_kern_read_tid_flow_free(struct rvt_qp *qp)
__must_hold(&qp->s_lock)
{
u32 n = qp->s_acked;
struct rvt_swqe *wqe;
struct tid_rdma_request *req;
struct hfi1_qp_priv *priv = qp->priv;
lockdep_assert_held(&qp->s_lock);
/* Free any TID entries */
while (n != qp->s_tail) {
wqe = rvt_get_swqe_ptr(qp, n);
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
req = wqe_to_tid_req(wqe);
hfi1_kern_exp_rcv_clear_all(req);
}
if (++n == qp->s_size)
n = 0;
}
/* Free flow */
hfi1_kern_clear_hw_flow(priv->rcd, qp);
}
static bool tid_rdma_tid_err(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet, u8 rcv_type,
u8 opcode)
{
struct rvt_qp *qp = packet->qp;
u32 ipsn;
struct ib_other_headers *ohdr = packet->ohdr;
if (rcv_type >= RHF_RCV_TYPE_IB)
goto done;
spin_lock(&qp->s_lock);
/*
* For TID READ response, error out QP after freeing the tid
* resources.
*/
if (opcode == TID_OP(READ_RESP)) {
ipsn = mask_psn(be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn));
if (cmp_psn(ipsn, qp->s_last_psn) > 0 &&
cmp_psn(ipsn, qp->s_psn) < 0) {
hfi1_kern_read_tid_flow_free(qp);
spin_unlock(&qp->s_lock);
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
goto done;
}
}
spin_unlock(&qp->s_lock);
done:
return true;
}
static void restart_tid_rdma_read_req(struct hfi1_ctxtdata *rcd,
struct rvt_qp *qp, struct rvt_swqe *wqe)
{
struct tid_rdma_request *req;
struct tid_rdma_flow *flow;
/* Start from the right segment */
qp->r_flags |= RVT_R_RDMAR_SEQ;
req = wqe_to_tid_req(wqe);
flow = &req->flows[req->clear_tail];
hfi1_restart_rc(qp, flow->flow_state.ib_spsn, 0);
if (list_empty(&qp->rspwait)) {
qp->r_flags |= RVT_R_RSP_SEND;
rvt_get_qp(qp);
list_add_tail(&qp->rspwait, &rcd->qp_wait_list);
}
}
/*
* Handle the KDETH eflags for TID RDMA READ response.
*
* Return true if the last packet for a segment has been received and it is
* time to process the response normally; otherwise, return true.
*
* The caller must hold the packet->qp->r_lock and the rcu_read_lock.
*/
static bool handle_read_kdeth_eflags(struct hfi1_ctxtdata *rcd,
struct hfi1_packet *packet, u8 rcv_type,
u8 rte, u32 psn, u32 ibpsn)
__must_hold(&packet->qp->r_lock) __must_hold(RCU)
{
struct hfi1_pportdata *ppd = rcd->ppd;
struct hfi1_devdata *dd = ppd->dd;
struct hfi1_ibport *ibp;
struct rvt_swqe *wqe;
struct tid_rdma_request *req;
struct tid_rdma_flow *flow;
u32 ack_psn;
struct rvt_qp *qp = packet->qp;
struct hfi1_qp_priv *priv = qp->priv;
bool ret = true;
int diff = 0;
u32 fpsn;
lockdep_assert_held(&qp->r_lock);
/* If the psn is out of valid range, drop the packet */
if (cmp_psn(ibpsn, qp->s_last_psn) < 0 ||
cmp_psn(ibpsn, qp->s_psn) > 0)
return ret;
spin_lock(&qp->s_lock);
/*
* Note that NAKs implicitly ACK outstanding SEND and RDMA write
* requests and implicitly NAK RDMA read and atomic requests issued
* before the NAK'ed request.
*/
ack_psn = ibpsn - 1;
wqe = rvt_get_swqe_ptr(qp, qp->s_acked);
ibp = to_iport(qp->ibqp.device, qp->port_num);
/* Complete WQEs that the PSN finishes. */
while ((int)delta_psn(ack_psn, wqe->lpsn) >= 0) {
/*
* If this request is a RDMA read or atomic, and the NACK is
* for a later operation, this NACK NAKs the RDMA read or
* atomic.
*/
if (wqe->wr.opcode == IB_WR_RDMA_READ ||
wqe->wr.opcode == IB_WR_TID_RDMA_READ ||
wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP ||
wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) {
/* Retry this request. */
if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) {
qp->r_flags |= RVT_R_RDMAR_SEQ;
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
restart_tid_rdma_read_req(rcd, qp,
wqe);
} else {
hfi1_restart_rc(qp, qp->s_last_psn + 1,
0);
if (list_empty(&qp->rspwait)) {
qp->r_flags |= RVT_R_RSP_SEND;
rvt_get_qp(qp);
list_add_tail(/* wait */
&qp->rspwait,
&rcd->qp_wait_list);
}
}
}
/*
* No need to process the NAK since we are
* restarting an earlier request.
*/
break;
}
wqe = do_rc_completion(qp, wqe, ibp);
if (qp->s_acked == qp->s_tail)
break;
}
/* Handle the eflags for the request */
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
goto s_unlock;
req = wqe_to_tid_req(wqe);
switch (rcv_type) {
case RHF_RCV_TYPE_EXPECTED:
switch (rte) {
case RHF_RTE_EXPECTED_FLOW_SEQ_ERR:
/*
* On the first occurrence of a Flow Sequence error,
* the flag TID_FLOW_SW_PSN is set.
*
* After that, the flow is *not* reprogrammed and the
* protocol falls back to SW PSN checking. This is done
* to prevent continuous Flow Sequence errors for any
* packets that could be still in the fabric.
*/
flow = find_flow(req, psn, NULL);
if (!flow) {
/*
* We can't find the IB PSN matching the
* received KDETH PSN. The only thing we can
* do at this point is report the error to
* the QP.
*/
hfi1_kern_read_tid_flow_free(qp);
spin_unlock(&qp->s_lock);
rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR);
return ret;
}
if (priv->flow_state.flags & TID_FLOW_SW_PSN) {
diff = cmp_psn(psn,
priv->flow_state.r_next_psn);
if (diff > 0) {
if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
restart_tid_rdma_read_req(rcd,
qp,
wqe);
/* Drop the packet.*/
goto s_unlock;
} else if (diff < 0) {
/*
* If a response packet for a restarted
* request has come back, reset the
* restart flag.
*/
if (qp->r_flags & RVT_R_RDMAR_SEQ)
qp->r_flags &=
~RVT_R_RDMAR_SEQ;
/* Drop the packet.*/
goto s_unlock;
}
/*
* If SW PSN verification is successful and
* this is the last packet in the segment, tell
* the caller to process it as a normal packet.
*/
fpsn = full_flow_psn(flow,
flow->flow_state.lpsn);
if (cmp_psn(fpsn, psn) == 0) {
ret = false;
if (qp->r_flags & RVT_R_RDMAR_SEQ)
qp->r_flags &=
~RVT_R_RDMAR_SEQ;
}
priv->flow_state.r_next_psn++;
} else {
u64 reg;
u32 last_psn;
/*
* The only sane way to get the amount of
* progress is to read the HW flow state.
*/
reg = read_uctxt_csr(dd, rcd->ctxt,
RCV_TID_FLOW_TABLE +
(8 * flow->idx));
last_psn = mask_psn(reg);
priv->flow_state.r_next_psn = last_psn;
priv->flow_state.flags |= TID_FLOW_SW_PSN;
/*
* If no request has been restarted yet,
* restart the current one.
*/
if (!(qp->r_flags & RVT_R_RDMAR_SEQ))
restart_tid_rdma_read_req(rcd, qp,
wqe);
}
break;
case RHF_RTE_EXPECTED_FLOW_GEN_ERR:
/*
* Since the TID flow is able to ride through
* generation mismatch, drop this stale packet.
*/
break;
default:
break;
}
break;
case RHF_RCV_TYPE_ERROR:
switch (rte) {
case RHF_RTE_ERROR_OP_CODE_ERR:
case RHF_RTE_ERROR_KHDR_MIN_LEN_ERR:
case RHF_RTE_ERROR_KHDR_HCRC_ERR:
case RHF_RTE_ERROR_KHDR_KVER_ERR:
case RHF_RTE_ERROR_CONTEXT_ERR:
case RHF_RTE_ERROR_KHDR_TID_ERR:
default:
break;
}
default:
break;
}
s_unlock:
spin_unlock(&qp->s_lock);
return ret;
}
bool hfi1_handle_kdeth_eflags(struct hfi1_ctxtdata *rcd,
struct hfi1_pportdata *ppd,
struct hfi1_packet *packet)
{
struct hfi1_ibport *ibp = &ppd->ibport_data;
struct hfi1_devdata *dd = ppd->dd;
struct rvt_dev_info *rdi = &dd->verbs_dev.rdi;
u8 rcv_type = rhf_rcv_type(packet->rhf);
u8 rte = rhf_rcv_type_err(packet->rhf);
struct ib_header *hdr = packet->hdr;
struct ib_other_headers *ohdr = NULL;
int lnh = be16_to_cpu(hdr->lrh[0]) & 3;
u16 lid = be16_to_cpu(hdr->lrh[1]);
u8 opcode;
u32 qp_num, psn, ibpsn;
struct rvt_qp *qp;
unsigned long flags;
bool ret = true;
trace_hfi1_msg_handle_kdeth_eflags(NULL, "Kdeth error: rhf ",
packet->rhf);
if (packet->rhf & (RHF_VCRC_ERR | RHF_ICRC_ERR))
return ret;
packet->ohdr = &hdr->u.oth;
ohdr = packet->ohdr;
trace_input_ibhdr(rcd->dd, packet, !!(rhf_dc_info(packet->rhf)));
/* Get the destination QP number. */
qp_num = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_qp) &
RVT_QPN_MASK;
if (lid >= be16_to_cpu(IB_MULTICAST_LID_BASE))
goto drop;
psn = mask_psn(be32_to_cpu(ohdr->bth[2]));
opcode = (be32_to_cpu(ohdr->bth[0]) >> 24) & 0xff;
rcu_read_lock();
qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num);
if (!qp)
goto rcu_unlock;
packet->qp = qp;
/* Check for valid receive state. */
spin_lock_irqsave(&qp->r_lock, flags);
if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) {
ibp->rvp.n_pkt_drops++;
goto r_unlock;
}
if (packet->rhf & RHF_TID_ERR) {
/* For TIDERR and RC QPs preemptively schedule a NAK */
u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */
/* Sanity check packet */
if (tlen < 24)
goto r_unlock;
/*
* Check for GRH. We should never get packets with GRH in this
* path.
*/
if (lnh == HFI1_LRH_GRH)
goto r_unlock;
if (tid_rdma_tid_err(rcd, packet, rcv_type, opcode))
goto r_unlock;
}
/* handle TID RDMA READ */
if (opcode == TID_OP(READ_RESP)) {
ibpsn = be32_to_cpu(ohdr->u.tid_rdma.r_rsp.verbs_psn);
ibpsn = mask_psn(ibpsn);
ret = handle_read_kdeth_eflags(rcd, packet, rcv_type, rte, psn,
ibpsn);
}
r_unlock:
spin_unlock_irqrestore(&qp->r_lock, flags);
rcu_unlock:
rcu_read_unlock();
drop:
return ret;
}
/*
* "Rewind" the TID request information.
* This means that we reset the state back to ACTIVE,
* find the proper flow, set the flow index to that flow,
* and reset the flow information.
*/
void hfi1_tid_rdma_restart_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
u32 *bth2)
{
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
struct tid_rdma_flow *flow;
int diff;
u32 tididx = 0;
u16 fidx;
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
*bth2 = mask_psn(qp->s_psn);
flow = find_flow_ib(req, *bth2, &fidx);
if (!flow) {
trace_hfi1_msg_tid_restart_req(/* msg */
qp, "!!!!!! Could not find flow to restart: bth2 ",
(u64)*bth2);
trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode,
wqe->psn, wqe->lpsn,
req);
return;
}
} else {
return;
}
trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
diff = delta_psn(*bth2, flow->flow_state.ib_spsn);
flow->sent = 0;
flow->pkt = 0;
flow->tid_idx = 0;
flow->tid_offset = 0;
if (diff) {
for (tididx = 0; tididx < flow->tidcnt; tididx++) {
u32 tidentry = flow->tid_entry[tididx], tidlen,
tidnpkts, npkts;
flow->tid_offset = 0;
tidlen = EXP_TID_GET(tidentry, LEN) * PAGE_SIZE;
tidnpkts = rvt_div_round_up_mtu(qp, tidlen);
npkts = min_t(u32, diff, tidnpkts);
flow->pkt += npkts;
flow->sent += (npkts == tidnpkts ? tidlen :
npkts * qp->pmtu);
flow->tid_offset += npkts * qp->pmtu;
diff -= npkts;
if (!diff)
break;
}
}
if (flow->tid_offset ==
EXP_TID_GET(flow->tid_entry[tididx], LEN) * PAGE_SIZE) {
tididx++;
flow->tid_offset = 0;
}
flow->tid_idx = tididx;
/* Move flow_idx to correct index */
req->flow_idx = fidx;
trace_hfi1_tid_flow_restart_req(qp, fidx, flow);
trace_hfi1_tid_req_restart_req(qp, 0, wqe->wr.opcode, wqe->psn,
wqe->lpsn, req);
req->state = TID_REQUEST_ACTIVE;
}
void hfi1_qp_kern_exp_rcv_clear_all(struct rvt_qp *qp)
{
int i, ret;
struct hfi1_qp_priv *qpriv = qp->priv;
struct tid_flow_state *fs;
if (qp->ibqp.qp_type != IB_QPT_RC || !HFI1_CAP_IS_KSET(TID_RDMA))
return;
/*
* First, clear the flow to help prevent any delayed packets from
* being delivered.
*/
fs = &qpriv->flow_state;
if (fs->index != RXE_NUM_TID_FLOWS)
hfi1_kern_clear_hw_flow(qpriv->rcd, qp);
for (i = qp->s_acked; i != qp->s_head;) {
struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, i);
if (++i == qp->s_size)
i = 0;
/* Free only locally allocated TID entries */
if (wqe->wr.opcode != IB_WR_TID_RDMA_READ)
continue;
do {
struct hfi1_swqe_priv *priv = wqe->priv;
ret = hfi1_kern_exp_rcv_clear(&priv->tid_req);
} while (!ret);
}
}
bool hfi1_tid_rdma_wqe_interlock(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
struct rvt_swqe *prev;
struct hfi1_qp_priv *priv = qp->priv;
u32 s_prev;
s_prev = (qp->s_cur == 0 ? qp->s_size : qp->s_cur) - 1;
prev = rvt_get_swqe_ptr(qp, s_prev);
switch (wqe->wr.opcode) {
case IB_WR_SEND:
case IB_WR_SEND_WITH_IMM:
case IB_WR_SEND_WITH_INV:
case IB_WR_ATOMIC_CMP_AND_SWP:
case IB_WR_ATOMIC_FETCH_AND_ADD:
case IB_WR_RDMA_WRITE:
case IB_WR_RDMA_READ:
break;
case IB_WR_TID_RDMA_READ:
switch (prev->wr.opcode) {
case IB_WR_RDMA_READ:
if (qp->s_acked != qp->s_cur)
goto interlock;
break;
default:
break;
}
default:
break;
}
return false;
interlock:
priv->s_flags |= HFI1_S_TID_WAIT_INTERLCK;
return true;
}
/* Does @sge meet the alignment requirements for tid rdma? */
static inline bool hfi1_check_sge_align(struct rvt_qp *qp,
struct rvt_sge *sge, int num_sge)
{
int i;
for (i = 0; i < num_sge; i++, sge++) {
trace_hfi1_sge_check_align(qp, i, sge);
if ((u64)sge->vaddr & ~PAGE_MASK ||
sge->sge_length & ~PAGE_MASK)
return false;
}
return true;
}
void setup_tid_rdma_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe)
{
struct hfi1_qp_priv *qpriv = (struct hfi1_qp_priv *)qp->priv;
struct hfi1_swqe_priv *priv = wqe->priv;
struct tid_rdma_params *remote;
enum ib_wr_opcode new_opcode;
bool do_tid_rdma = false;
struct hfi1_pportdata *ppd = qpriv->rcd->ppd;
if ((rdma_ah_get_dlid(&qp->remote_ah_attr) & ~((1 << ppd->lmc) - 1)) ==
ppd->lid)
return;
if (qpriv->hdr_type != HFI1_PKT_TYPE_9B)
return;
rcu_read_lock();
remote = rcu_dereference(qpriv->tid_rdma.remote);
/*
* If TID RDMA is disabled by the negotiation, don't
* use it.
*/
if (!remote)
goto exit;
if (wqe->wr.opcode == IB_WR_RDMA_READ) {
if (hfi1_check_sge_align(qp, &wqe->sg_list[0],
wqe->wr.num_sge)) {
new_opcode = IB_WR_TID_RDMA_READ;
do_tid_rdma = true;
}
}
if (do_tid_rdma) {
if (hfi1_kern_exp_rcv_alloc_flows(&priv->tid_req, GFP_ATOMIC))
goto exit;
wqe->wr.opcode = new_opcode;
priv->tid_req.seg_len =
min_t(u32, remote->max_len, wqe->length);
priv->tid_req.total_segs =
DIV_ROUND_UP(wqe->length, priv->tid_req.seg_len);
/* Compute the last PSN of the request */
wqe->lpsn = wqe->psn;
if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) {
priv->tid_req.n_flows = remote->max_read;
qpriv->tid_r_reqs++;
wqe->lpsn += rvt_div_round_up_mtu(qp, wqe->length) - 1;
}
priv->tid_req.cur_seg = 0;
priv->tid_req.comp_seg = 0;
priv->tid_req.ack_seg = 0;
priv->tid_req.state = TID_REQUEST_INACTIVE;
trace_hfi1_tid_req_setup_tid_wqe(qp, 1, wqe->wr.opcode,
wqe->psn, wqe->lpsn,
&priv->tid_req);
}
exit:
rcu_read_unlock();
}
/* TID RDMA WRITE functions */
u32 hfi1_build_tid_rdma_write_req(struct rvt_qp *qp, struct rvt_swqe *wqe,
struct ib_other_headers *ohdr,
u32 *bth1, u32 *bth2, u32 *len)
{
struct hfi1_qp_priv *qpriv = qp->priv;
struct tid_rdma_request *req = wqe_to_tid_req(wqe);
struct tid_rdma_params *remote;
rcu_read_lock();
remote = rcu_dereference(qpriv->tid_rdma.remote);
/*
* Set the number of flow to be used based on negotiated
* parameters.
*/
req->n_flows = remote->max_write;
req->state = TID_REQUEST_ACTIVE;
KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth0, KVER, 0x1);
KDETH_RESET(ohdr->u.tid_rdma.w_req.kdeth1, JKEY, remote->jkey);
ohdr->u.tid_rdma.w_req.reth.vaddr =
cpu_to_be64(wqe->rdma_wr.remote_addr + (wqe->length - *len));
ohdr->u.tid_rdma.w_req.reth.rkey =
cpu_to_be32(wqe->rdma_wr.rkey);
ohdr->u.tid_rdma.w_req.reth.length = cpu_to_be32(*len);
ohdr->u.tid_rdma.w_req.verbs_qp = cpu_to_be32(qp->remote_qpn);
*bth1 &= ~RVT_QPN_MASK;
*bth1 |= remote->qp;
qp->s_state = TID_OP(WRITE_REQ);
qp->s_flags |= HFI1_S_WAIT_TID_RESP;
*bth2 |= IB_BTH_REQ_ACK;
*len = 0;
rcu_read_unlock();
return sizeof(ohdr->u.tid_rdma.w_req) / sizeof(u32);
}
|