1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
|
// SPDX-License-Identifier: GPL-2.0
/*
* PNI RM3100 3-axis geomagnetic sensor driver core.
*
* Copyright (C) 2018 Song Qiang <songqiang1304521@gmail.com>
*
* User Manual available at
* <https://www.pnicorp.com/download/rm3100-user-manual/>
*
* TODO: event generation, pm.
*/
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/iio/buffer.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/trigger.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/iio/trigger_consumer.h>
#include <asm/unaligned.h>
#include "rm3100.h"
/* Cycle Count Registers. */
#define RM3100_REG_CC_X 0x05
#define RM3100_REG_CC_Y 0x07
#define RM3100_REG_CC_Z 0x09
/* Poll Measurement Mode register. */
#define RM3100_REG_POLL 0x00
#define RM3100_POLL_X BIT(4)
#define RM3100_POLL_Y BIT(5)
#define RM3100_POLL_Z BIT(6)
/* Continuous Measurement Mode register. */
#define RM3100_REG_CMM 0x01
#define RM3100_CMM_START BIT(0)
#define RM3100_CMM_X BIT(4)
#define RM3100_CMM_Y BIT(5)
#define RM3100_CMM_Z BIT(6)
/* TiMe Rate Configuration register. */
#define RM3100_REG_TMRC 0x0B
#define RM3100_TMRC_OFFSET 0x92
/* Result Status register. */
#define RM3100_REG_STATUS 0x34
#define RM3100_STATUS_DRDY BIT(7)
/* Measurement result registers. */
#define RM3100_REG_MX2 0x24
#define RM3100_REG_MY2 0x27
#define RM3100_REG_MZ2 0x2a
#define RM3100_W_REG_START RM3100_REG_POLL
#define RM3100_W_REG_END RM3100_REG_TMRC
#define RM3100_R_REG_START RM3100_REG_POLL
#define RM3100_R_REG_END RM3100_REG_STATUS
#define RM3100_V_REG_START RM3100_REG_POLL
#define RM3100_V_REG_END RM3100_REG_STATUS
/*
* This is computed by hand, is the sum of channel storage bits and padding
* bits, which is 4+4+4+12=24 in here.
*/
#define RM3100_SCAN_BYTES 24
#define RM3100_CMM_AXIS_SHIFT 4
struct rm3100_data {
struct regmap *regmap;
struct completion measuring_done;
bool use_interrupt;
int conversion_time;
int scale;
u8 buffer[RM3100_SCAN_BYTES];
struct iio_trigger *drdy_trig;
/*
* This lock is for protecting the consistency of series of i2c
* operations, that is, to make sure a measurement process will
* not be interrupted by a set frequency operation, which should
* be taken where a series of i2c operation starts, released where
* the operation ends.
*/
struct mutex lock;
};
static const struct regmap_range rm3100_readable_ranges[] = {
regmap_reg_range(RM3100_R_REG_START, RM3100_R_REG_END),
};
const struct regmap_access_table rm3100_readable_table = {
.yes_ranges = rm3100_readable_ranges,
.n_yes_ranges = ARRAY_SIZE(rm3100_readable_ranges),
};
EXPORT_SYMBOL_GPL(rm3100_readable_table);
static const struct regmap_range rm3100_writable_ranges[] = {
regmap_reg_range(RM3100_W_REG_START, RM3100_W_REG_END),
};
const struct regmap_access_table rm3100_writable_table = {
.yes_ranges = rm3100_writable_ranges,
.n_yes_ranges = ARRAY_SIZE(rm3100_writable_ranges),
};
EXPORT_SYMBOL_GPL(rm3100_writable_table);
static const struct regmap_range rm3100_volatile_ranges[] = {
regmap_reg_range(RM3100_V_REG_START, RM3100_V_REG_END),
};
const struct regmap_access_table rm3100_volatile_table = {
.yes_ranges = rm3100_volatile_ranges,
.n_yes_ranges = ARRAY_SIZE(rm3100_volatile_ranges),
};
EXPORT_SYMBOL_GPL(rm3100_volatile_table);
static irqreturn_t rm3100_thread_fn(int irq, void *d)
{
struct iio_dev *indio_dev = d;
struct rm3100_data *data = iio_priv(indio_dev);
/*
* Write operation to any register or read operation
* to first byte of results will clear the interrupt.
*/
regmap_write(data->regmap, RM3100_REG_POLL, 0);
return IRQ_HANDLED;
}
static irqreturn_t rm3100_irq_handler(int irq, void *d)
{
struct iio_dev *indio_dev = d;
struct rm3100_data *data = iio_priv(indio_dev);
switch (indio_dev->currentmode) {
case INDIO_DIRECT_MODE:
complete(&data->measuring_done);
break;
case INDIO_BUFFER_TRIGGERED:
iio_trigger_poll(data->drdy_trig);
break;
default:
dev_err(indio_dev->dev.parent,
"device mode out of control, current mode: %d",
indio_dev->currentmode);
}
return IRQ_WAKE_THREAD;
}
static int rm3100_wait_measurement(struct rm3100_data *data)
{
struct regmap *regmap = data->regmap;
unsigned int val;
int tries = 20;
int ret;
/*
* A read cycle of 400kbits i2c bus is about 20us, plus the time
* used for scheduling, a read cycle of fast mode of this device
* can reach 1.7ms, it may be possible for data to arrive just
* after we check the RM3100_REG_STATUS. In this case, irq_handler is
* called before measuring_done is reinitialized, it will wait
* forever for data that has already been ready.
* Reinitialize measuring_done before looking up makes sure we
* will always capture interrupt no matter when it happens.
*/
if (data->use_interrupt)
reinit_completion(&data->measuring_done);
ret = regmap_read(regmap, RM3100_REG_STATUS, &val);
if (ret < 0)
return ret;
if ((val & RM3100_STATUS_DRDY) != RM3100_STATUS_DRDY) {
if (data->use_interrupt) {
ret = wait_for_completion_timeout(&data->measuring_done,
msecs_to_jiffies(data->conversion_time));
if (!ret)
return -ETIMEDOUT;
} else {
do {
usleep_range(1000, 5000);
ret = regmap_read(regmap, RM3100_REG_STATUS,
&val);
if (ret < 0)
return ret;
if (val & RM3100_STATUS_DRDY)
break;
} while (--tries);
if (!tries)
return -ETIMEDOUT;
}
}
return 0;
}
static int rm3100_read_mag(struct rm3100_data *data, int idx, int *val)
{
struct regmap *regmap = data->regmap;
u8 buffer[3];
int ret;
mutex_lock(&data->lock);
ret = regmap_write(regmap, RM3100_REG_POLL, BIT(4 + idx));
if (ret < 0)
goto unlock_return;
ret = rm3100_wait_measurement(data);
if (ret < 0)
goto unlock_return;
ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * idx, buffer, 3);
if (ret < 0)
goto unlock_return;
mutex_unlock(&data->lock);
*val = sign_extend32(get_unaligned_be24(&buffer[0]), 23);
return IIO_VAL_INT;
unlock_return:
mutex_unlock(&data->lock);
return ret;
}
#define RM3100_CHANNEL(axis, idx) \
{ \
.type = IIO_MAGN, \
.modified = 1, \
.channel2 = IIO_MOD_##axis, \
.info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
BIT(IIO_CHAN_INFO_SAMP_FREQ), \
.scan_index = idx, \
.scan_type = { \
.sign = 's', \
.realbits = 24, \
.storagebits = 32, \
.shift = 8, \
.endianness = IIO_BE, \
}, \
}
static const struct iio_chan_spec rm3100_channels[] = {
RM3100_CHANNEL(X, 0),
RM3100_CHANNEL(Y, 1),
RM3100_CHANNEL(Z, 2),
IIO_CHAN_SOFT_TIMESTAMP(3),
};
static IIO_CONST_ATTR_SAMP_FREQ_AVAIL(
"600 300 150 75 37 18 9 4.5 2.3 1.2 0.6 0.3 0.015 0.075"
);
static struct attribute *rm3100_attributes[] = {
&iio_const_attr_sampling_frequency_available.dev_attr.attr,
NULL,
};
static const struct attribute_group rm3100_attribute_group = {
.attrs = rm3100_attributes,
};
#define RM3100_SAMP_NUM 14
/*
* Frequency : rm3100_samp_rates[][0].rm3100_samp_rates[][1]Hz.
* Time between reading: rm3100_sam_rates[][2]ms.
* The first one is actually 1.7ms.
*/
static const int rm3100_samp_rates[RM3100_SAMP_NUM][3] = {
{600, 0, 2}, {300, 0, 3}, {150, 0, 7}, {75, 0, 13}, {37, 0, 27},
{18, 0, 55}, {9, 0, 110}, {4, 500000, 220}, {2, 300000, 440},
{1, 200000, 800}, {0, 600000, 1600}, {0, 300000, 3300},
{0, 15000, 6700}, {0, 75000, 13000}
};
static int rm3100_get_samp_freq(struct rm3100_data *data, int *val, int *val2)
{
unsigned int tmp;
int ret;
mutex_lock(&data->lock);
ret = regmap_read(data->regmap, RM3100_REG_TMRC, &tmp);
mutex_unlock(&data->lock);
if (ret < 0)
return ret;
*val = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][0];
*val2 = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][1];
return IIO_VAL_INT_PLUS_MICRO;
}
static int rm3100_set_cycle_count(struct rm3100_data *data, int val)
{
int ret;
u8 i;
for (i = 0; i < 3; i++) {
ret = regmap_write(data->regmap, RM3100_REG_CC_X + 2 * i, val);
if (ret < 0)
return ret;
}
/*
* The scale of this sensor depends on the cycle count value, these
* three values are corresponding to the cycle count value 50, 100,
* 200. scale = output / gain * 10^4.
*/
switch (val) {
case 50:
data->scale = 500;
break;
case 100:
data->scale = 263;
break;
/*
* case 200:
* This function will never be called by users' code, so here we
* assume that it will never get a wrong parameter.
*/
default:
data->scale = 133;
}
return 0;
}
static int rm3100_set_samp_freq(struct iio_dev *indio_dev, int val, int val2)
{
struct rm3100_data *data = iio_priv(indio_dev);
struct regmap *regmap = data->regmap;
unsigned int cycle_count;
int ret;
int i;
mutex_lock(&data->lock);
/* All cycle count registers use the same value. */
ret = regmap_read(regmap, RM3100_REG_CC_X, &cycle_count);
if (ret < 0)
goto unlock_return;
for (i = 0; i < RM3100_SAMP_NUM; i++) {
if (val == rm3100_samp_rates[i][0] &&
val2 == rm3100_samp_rates[i][1])
break;
}
if (i == RM3100_SAMP_NUM) {
ret = -EINVAL;
goto unlock_return;
}
ret = regmap_write(regmap, RM3100_REG_TMRC, i + RM3100_TMRC_OFFSET);
if (ret < 0)
goto unlock_return;
/* Checking if cycle count registers need changing. */
if (val == 600 && cycle_count == 200) {
ret = rm3100_set_cycle_count(data, 100);
if (ret < 0)
goto unlock_return;
} else if (val != 600 && cycle_count == 100) {
ret = rm3100_set_cycle_count(data, 200);
if (ret < 0)
goto unlock_return;
}
if (indio_dev->currentmode == INDIO_BUFFER_TRIGGERED) {
/* Writing TMRC registers requires CMM reset. */
ret = regmap_write(regmap, RM3100_REG_CMM, 0);
if (ret < 0)
goto unlock_return;
ret = regmap_write(data->regmap, RM3100_REG_CMM,
(*indio_dev->active_scan_mask & 0x7) <<
RM3100_CMM_AXIS_SHIFT | RM3100_CMM_START);
if (ret < 0)
goto unlock_return;
}
mutex_unlock(&data->lock);
data->conversion_time = rm3100_samp_rates[i][2] * 2;
return 0;
unlock_return:
mutex_unlock(&data->lock);
return ret;
}
static int rm3100_read_raw(struct iio_dev *indio_dev,
const struct iio_chan_spec *chan,
int *val, int *val2, long mask)
{
struct rm3100_data *data = iio_priv(indio_dev);
int ret;
switch (mask) {
case IIO_CHAN_INFO_RAW:
ret = iio_device_claim_direct_mode(indio_dev);
if (ret < 0)
return ret;
ret = rm3100_read_mag(data, chan->scan_index, val);
iio_device_release_direct_mode(indio_dev);
return ret;
case IIO_CHAN_INFO_SCALE:
*val = 0;
*val2 = data->scale;
return IIO_VAL_INT_PLUS_MICRO;
case IIO_CHAN_INFO_SAMP_FREQ:
return rm3100_get_samp_freq(data, val, val2);
default:
return -EINVAL;
}
}
static int rm3100_write_raw(struct iio_dev *indio_dev,
struct iio_chan_spec const *chan,
int val, int val2, long mask)
{
switch (mask) {
case IIO_CHAN_INFO_SAMP_FREQ:
return rm3100_set_samp_freq(indio_dev, val, val2);
default:
return -EINVAL;
}
}
static const struct iio_info rm3100_info = {
.attrs = &rm3100_attribute_group,
.read_raw = rm3100_read_raw,
.write_raw = rm3100_write_raw,
};
static int rm3100_buffer_preenable(struct iio_dev *indio_dev)
{
struct rm3100_data *data = iio_priv(indio_dev);
/* Starting channels enabled. */
return regmap_write(data->regmap, RM3100_REG_CMM,
(*indio_dev->active_scan_mask & 0x7) << RM3100_CMM_AXIS_SHIFT |
RM3100_CMM_START);
}
static int rm3100_buffer_postdisable(struct iio_dev *indio_dev)
{
struct rm3100_data *data = iio_priv(indio_dev);
return regmap_write(data->regmap, RM3100_REG_CMM, 0);
}
static const struct iio_buffer_setup_ops rm3100_buffer_ops = {
.preenable = rm3100_buffer_preenable,
.postenable = iio_triggered_buffer_postenable,
.predisable = iio_triggered_buffer_predisable,
.postdisable = rm3100_buffer_postdisable,
};
static irqreturn_t rm3100_trigger_handler(int irq, void *p)
{
struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev;
unsigned long scan_mask = *indio_dev->active_scan_mask;
unsigned int mask_len = indio_dev->masklength;
struct rm3100_data *data = iio_priv(indio_dev);
struct regmap *regmap = data->regmap;
int ret, i, bit;
mutex_lock(&data->lock);
switch (scan_mask) {
case BIT(0) | BIT(1) | BIT(2):
ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
mutex_unlock(&data->lock);
if (ret < 0)
goto done;
/* Convert XXXYYYZZZxxx to XXXxYYYxZZZx. x for paddings. */
for (i = 2; i > 0; i--)
memmove(data->buffer + i * 4, data->buffer + i * 3, 3);
break;
case BIT(0) | BIT(1):
ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 6);
mutex_unlock(&data->lock);
if (ret < 0)
goto done;
memmove(data->buffer + 4, data->buffer + 3, 3);
break;
case BIT(1) | BIT(2):
ret = regmap_bulk_read(regmap, RM3100_REG_MY2, data->buffer, 6);
mutex_unlock(&data->lock);
if (ret < 0)
goto done;
memmove(data->buffer + 4, data->buffer + 3, 3);
break;
case BIT(0) | BIT(2):
ret = regmap_bulk_read(regmap, RM3100_REG_MX2, data->buffer, 9);
mutex_unlock(&data->lock);
if (ret < 0)
goto done;
memmove(data->buffer + 4, data->buffer + 6, 3);
break;
default:
for_each_set_bit(bit, &scan_mask, mask_len) {
ret = regmap_bulk_read(regmap, RM3100_REG_MX2 + 3 * bit,
data->buffer, 3);
if (ret < 0) {
mutex_unlock(&data->lock);
goto done;
}
}
mutex_unlock(&data->lock);
}
/*
* Always using the same buffer so that we wouldn't need to set the
* paddings to 0 in case of leaking any data.
*/
iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
pf->timestamp);
done:
iio_trigger_notify_done(indio_dev->trig);
return IRQ_HANDLED;
}
int rm3100_common_probe(struct device *dev, struct regmap *regmap, int irq)
{
struct iio_dev *indio_dev;
struct rm3100_data *data;
unsigned int tmp;
int ret;
indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
if (!indio_dev)
return -ENOMEM;
data = iio_priv(indio_dev);
data->regmap = regmap;
mutex_init(&data->lock);
indio_dev->name = "rm3100";
indio_dev->info = &rm3100_info;
indio_dev->channels = rm3100_channels;
indio_dev->num_channels = ARRAY_SIZE(rm3100_channels);
indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_TRIGGERED;
indio_dev->currentmode = INDIO_DIRECT_MODE;
if (!irq)
data->use_interrupt = false;
else {
data->use_interrupt = true;
init_completion(&data->measuring_done);
ret = devm_request_threaded_irq(dev,
irq,
rm3100_irq_handler,
rm3100_thread_fn,
IRQF_TRIGGER_HIGH |
IRQF_ONESHOT,
indio_dev->name,
indio_dev);
if (ret < 0) {
dev_err(dev, "request irq line failed.\n");
return ret;
}
data->drdy_trig = devm_iio_trigger_alloc(dev, "%s-drdy%d",
indio_dev->name,
indio_dev->id);
if (!data->drdy_trig)
return -ENOMEM;
data->drdy_trig->dev.parent = dev;
ret = devm_iio_trigger_register(dev, data->drdy_trig);
if (ret < 0)
return ret;
}
ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
&iio_pollfunc_store_time,
rm3100_trigger_handler,
&rm3100_buffer_ops);
if (ret < 0)
return ret;
ret = regmap_read(regmap, RM3100_REG_TMRC, &tmp);
if (ret < 0)
return ret;
/* Initializing max wait time, which is double conversion time. */
data->conversion_time = rm3100_samp_rates[tmp - RM3100_TMRC_OFFSET][2]
* 2;
/* Cycle count values may not be what we want. */
if ((tmp - RM3100_TMRC_OFFSET) == 0)
rm3100_set_cycle_count(data, 100);
else
rm3100_set_cycle_count(data, 200);
return devm_iio_device_register(dev, indio_dev);
}
EXPORT_SYMBOL_GPL(rm3100_common_probe);
MODULE_AUTHOR("Song Qiang <songqiang1304521@gmail.com>");
MODULE_DESCRIPTION("PNI RM3100 3-axis magnetometer i2c driver");
MODULE_LICENSE("GPL v2");
|