summaryrefslogtreecommitdiff
path: root/drivers/i2c/busses/i2c-rk3x.c
blob: 1a33007b03e9e83301da5afdff77e435e499e738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Driver for I2C adapter in Rockchip RK3xxx SoC
 *
 * Max Schwarz <max.schwarz@online.de>
 * based on the patches by Rockchip Inc.
 */

#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/spinlock.h>
#include <linux/clk.h>
#include <linux/wait.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/math64.h>


/* Register Map */
#define REG_CON        0x00 /* control register */
#define REG_CLKDIV     0x04 /* clock divisor register */
#define REG_MRXADDR    0x08 /* slave address for REGISTER_TX */
#define REG_MRXRADDR   0x0c /* slave register address for REGISTER_TX */
#define REG_MTXCNT     0x10 /* number of bytes to be transmitted */
#define REG_MRXCNT     0x14 /* number of bytes to be received */
#define REG_IEN        0x18 /* interrupt enable */
#define REG_IPD        0x1c /* interrupt pending */
#define REG_FCNT       0x20 /* finished count */

/* Data buffer offsets */
#define TXBUFFER_BASE 0x100
#define RXBUFFER_BASE 0x200

/* REG_CON bits */
#define REG_CON_EN        BIT(0)
enum {
	REG_CON_MOD_TX = 0,      /* transmit data */
	REG_CON_MOD_REGISTER_TX, /* select register and restart */
	REG_CON_MOD_RX,          /* receive data */
	REG_CON_MOD_REGISTER_RX, /* broken: transmits read addr AND writes
				  * register addr */
};
#define REG_CON_MOD(mod)  ((mod) << 1)
#define REG_CON_MOD_MASK  (BIT(1) | BIT(2))
#define REG_CON_START     BIT(3)
#define REG_CON_STOP      BIT(4)
#define REG_CON_LASTACK   BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK    BIT(6) /* 1: stop if NACK is received */

#define REG_CON_TUNING_MASK GENMASK_ULL(15, 8)

#define REG_CON_SDA_CFG(cfg) ((cfg) << 8)
#define REG_CON_STA_CFG(cfg) ((cfg) << 12)
#define REG_CON_STO_CFG(cfg) ((cfg) << 14)

/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */

/* REG_IEN/REG_IPD bits */
#define REG_INT_BTF       BIT(0) /* a byte was transmitted */
#define REG_INT_BRF       BIT(1) /* a byte was received */
#define REG_INT_MBTF      BIT(2) /* master data transmit finished */
#define REG_INT_MBRF      BIT(3) /* master data receive finished */
#define REG_INT_START     BIT(4) /* START condition generated */
#define REG_INT_STOP      BIT(5) /* STOP condition generated */
#define REG_INT_NAKRCV    BIT(6) /* NACK received */
#define REG_INT_ALL       0x7f

/* Constants */
#define WAIT_TIMEOUT      1000 /* ms */
#define DEFAULT_SCL_RATE  (100 * 1000) /* Hz */

/**
 * struct i2c_spec_values:
 * @min_hold_start_ns: min hold time (repeated) START condition
 * @min_low_ns: min LOW period of the SCL clock
 * @min_high_ns: min HIGH period of the SCL cloc
 * @min_setup_start_ns: min set-up time for a repeated START conditio
 * @max_data_hold_ns: max data hold time
 * @min_data_setup_ns: min data set-up time
 * @min_setup_stop_ns: min set-up time for STOP condition
 * @min_hold_buffer_ns: min bus free time between a STOP and
 * START condition
 */
struct i2c_spec_values {
	unsigned long min_hold_start_ns;
	unsigned long min_low_ns;
	unsigned long min_high_ns;
	unsigned long min_setup_start_ns;
	unsigned long max_data_hold_ns;
	unsigned long min_data_setup_ns;
	unsigned long min_setup_stop_ns;
	unsigned long min_hold_buffer_ns;
};

static const struct i2c_spec_values standard_mode_spec = {
	.min_hold_start_ns = 4000,
	.min_low_ns = 4700,
	.min_high_ns = 4000,
	.min_setup_start_ns = 4700,
	.max_data_hold_ns = 3450,
	.min_data_setup_ns = 250,
	.min_setup_stop_ns = 4000,
	.min_hold_buffer_ns = 4700,
};

static const struct i2c_spec_values fast_mode_spec = {
	.min_hold_start_ns = 600,
	.min_low_ns = 1300,
	.min_high_ns = 600,
	.min_setup_start_ns = 600,
	.max_data_hold_ns = 900,
	.min_data_setup_ns = 100,
	.min_setup_stop_ns = 600,
	.min_hold_buffer_ns = 1300,
};

static const struct i2c_spec_values fast_mode_plus_spec = {
	.min_hold_start_ns = 260,
	.min_low_ns = 500,
	.min_high_ns = 260,
	.min_setup_start_ns = 260,
	.max_data_hold_ns = 400,
	.min_data_setup_ns = 50,
	.min_setup_stop_ns = 260,
	.min_hold_buffer_ns = 500,
};

/**
 * struct rk3x_i2c_calced_timings:
 * @div_low: Divider output for low
 * @div_high: Divider output for high
 * @tuning: Used to adjust setup/hold data time,
 * setup/hold start time and setup stop time for
 * v1's calc_timings, the tuning should all be 0
 * for old hardware anyone using v0's calc_timings.
 */
struct rk3x_i2c_calced_timings {
	unsigned long div_low;
	unsigned long div_high;
	unsigned int tuning;
};

enum rk3x_i2c_state {
	STATE_IDLE,
	STATE_START,
	STATE_READ,
	STATE_WRITE,
	STATE_STOP
};

/**
 * struct rk3x_i2c_soc_data:
 * @grf_offset: offset inside the grf regmap for setting the i2c type
 * @calc_timings: Callback function for i2c timing information calculated
 */
struct rk3x_i2c_soc_data {
	int grf_offset;
	int (*calc_timings)(unsigned long, struct i2c_timings *,
			    struct rk3x_i2c_calced_timings *);
};

/**
 * struct rk3x_i2c - private data of the controller
 * @adap: corresponding I2C adapter
 * @dev: device for this controller
 * @soc_data: related soc data struct
 * @regs: virtual memory area
 * @clk: function clk for rk3399 or function & Bus clks for others
 * @pclk: Bus clk for rk3399
 * @clk_rate_nb: i2c clk rate change notify
 * @t: I2C known timing information
 * @lock: spinlock for the i2c bus
 * @wait: the waitqueue to wait for i2c transfer
 * @busy: the condition for the event to wait for
 * @msg: current i2c message
 * @addr: addr of i2c slave device
 * @mode: mode of i2c transfer
 * @is_last_msg: flag determines whether it is the last msg in this transfer
 * @state: state of i2c transfer
 * @processed: byte length which has been send or received
 * @error: error code for i2c transfer
 */
struct rk3x_i2c {
	struct i2c_adapter adap;
	struct device *dev;
	const struct rk3x_i2c_soc_data *soc_data;

	/* Hardware resources */
	void __iomem *regs;
	struct clk *clk;
	struct clk *pclk;
	struct notifier_block clk_rate_nb;

	/* Settings */
	struct i2c_timings t;

	/* Synchronization & notification */
	spinlock_t lock;
	wait_queue_head_t wait;
	bool busy;

	/* Current message */
	struct i2c_msg *msg;
	u8 addr;
	unsigned int mode;
	bool is_last_msg;

	/* I2C state machine */
	enum rk3x_i2c_state state;
	unsigned int processed;
	int error;
};

static inline void i2c_writel(struct rk3x_i2c *i2c, u32 value,
			      unsigned int offset)
{
	writel(value, i2c->regs + offset);
}

static inline u32 i2c_readl(struct rk3x_i2c *i2c, unsigned int offset)
{
	return readl(i2c->regs + offset);
}

/* Reset all interrupt pending bits */
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
{
	i2c_writel(i2c, REG_INT_ALL, REG_IPD);
}

/**
 * Generate a START condition, which triggers a REG_INT_START interrupt.
 */
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
	u32 val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;

	i2c_writel(i2c, REG_INT_START, REG_IEN);

	/* enable adapter with correct mode, send START condition */
	val |= REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;

	/* if we want to react to NACK, set ACTACK bit */
	if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
		val |= REG_CON_ACTACK;

	i2c_writel(i2c, val, REG_CON);
}

/**
 * Generate a STOP condition, which triggers a REG_INT_STOP interrupt.
 *
 * @error: Error code to return in rk3x_i2c_xfer
 */
static void rk3x_i2c_stop(struct rk3x_i2c *i2c, int error)
{
	unsigned int ctrl;

	i2c->processed = 0;
	i2c->msg = NULL;
	i2c->error = error;

	if (i2c->is_last_msg) {
		/* Enable stop interrupt */
		i2c_writel(i2c, REG_INT_STOP, REG_IEN);

		i2c->state = STATE_STOP;

		ctrl = i2c_readl(i2c, REG_CON);
		ctrl |= REG_CON_STOP;
		i2c_writel(i2c, ctrl, REG_CON);
	} else {
		/* Signal rk3x_i2c_xfer to start the next message. */
		i2c->busy = false;
		i2c->state = STATE_IDLE;

		/*
		 * The HW is actually not capable of REPEATED START. But we can
		 * get the intended effect by resetting its internal state
		 * and issuing an ordinary START.
		 */
		ctrl = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
		i2c_writel(i2c, ctrl, REG_CON);

		/* signal that we are finished with the current msg */
		wake_up(&i2c->wait);
	}
}

/**
 * Setup a read according to i2c->msg
 */
static void rk3x_i2c_prepare_read(struct rk3x_i2c *i2c)
{
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 con;

	con = i2c_readl(i2c, REG_CON);

	/*
	 * The hw can read up to 32 bytes at a time. If we need more than one
	 * chunk, send an ACK after the last byte of the current chunk.
	 */
	if (len > 32) {
		len = 32;
		con &= ~REG_CON_LASTACK;
	} else {
		con |= REG_CON_LASTACK;
	}

	/* make sure we are in plain RX mode if we read a second chunk */
	if (i2c->processed != 0) {
		con &= ~REG_CON_MOD_MASK;
		con |= REG_CON_MOD(REG_CON_MOD_RX);
	}

	i2c_writel(i2c, con, REG_CON);
	i2c_writel(i2c, len, REG_MRXCNT);
}

/**
 * Fill the transmit buffer with data from i2c->msg
 */
static void rk3x_i2c_fill_transmit_buf(struct rk3x_i2c *i2c)
{
	unsigned int i, j;
	u32 cnt = 0;
	u32 val;
	u8 byte;

	for (i = 0; i < 8; ++i) {
		val = 0;
		for (j = 0; j < 4; ++j) {
			if ((i2c->processed == i2c->msg->len) && (cnt != 0))
				break;

			if (i2c->processed == 0 && cnt == 0)
				byte = (i2c->addr & 0x7f) << 1;
			else
				byte = i2c->msg->buf[i2c->processed++];

			val |= byte << (j * 8);
			cnt++;
		}

		i2c_writel(i2c, val, TXBUFFER_BASE + 4 * i);

		if (i2c->processed == i2c->msg->len)
			break;
	}

	i2c_writel(i2c, cnt, REG_MTXCNT);
}


/* IRQ handlers for individual states */

static void rk3x_i2c_handle_start(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_START)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_warn(i2c->dev, "unexpected irq in START: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_START, REG_IPD);

	/* disable start bit */
	i2c_writel(i2c, i2c_readl(i2c, REG_CON) & ~REG_CON_START, REG_CON);

	/* enable appropriate interrupts and transition */
	if (i2c->mode == REG_CON_MOD_TX) {
		i2c_writel(i2c, REG_INT_MBTF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_WRITE;
		rk3x_i2c_fill_transmit_buf(i2c);
	} else {
		/* in any other case, we are going to be reading. */
		i2c_writel(i2c, REG_INT_MBRF | REG_INT_NAKRCV, REG_IEN);
		i2c->state = STATE_READ;
		rk3x_i2c_prepare_read(i2c);
	}
}

static void rk3x_i2c_handle_write(struct rk3x_i2c *i2c, unsigned int ipd)
{
	if (!(ipd & REG_INT_MBTF)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in WRITE: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBTF, REG_IPD);

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_fill_transmit_buf(i2c);
}

static void rk3x_i2c_handle_read(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int i;
	unsigned int len = i2c->msg->len - i2c->processed;
	u32 uninitialized_var(val);
	u8 byte;

	/* we only care for MBRF here. */
	if (!(ipd & REG_INT_MBRF))
		return;

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_MBRF, REG_IPD);

	/* Can only handle a maximum of 32 bytes at a time */
	if (len > 32)
		len = 32;

	/* read the data from receive buffer */
	for (i = 0; i < len; ++i) {
		if (i % 4 == 0)
			val = i2c_readl(i2c, RXBUFFER_BASE + (i / 4) * 4);

		byte = (val >> ((i % 4) * 8)) & 0xff;
		i2c->msg->buf[i2c->processed++] = byte;
	}

	/* are we finished? */
	if (i2c->processed == i2c->msg->len)
		rk3x_i2c_stop(i2c, i2c->error);
	else
		rk3x_i2c_prepare_read(i2c);
}

static void rk3x_i2c_handle_stop(struct rk3x_i2c *i2c, unsigned int ipd)
{
	unsigned int con;

	if (!(ipd & REG_INT_STOP)) {
		rk3x_i2c_stop(i2c, -EIO);
		dev_err(i2c->dev, "unexpected irq in STOP: 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		return;
	}

	/* ack interrupt */
	i2c_writel(i2c, REG_INT_STOP, REG_IPD);

	/* disable STOP bit */
	con = i2c_readl(i2c, REG_CON);
	con &= ~REG_CON_STOP;
	i2c_writel(i2c, con, REG_CON);

	i2c->busy = false;
	i2c->state = STATE_IDLE;

	/* signal rk3x_i2c_xfer that we are finished */
	wake_up(&i2c->wait);
}

static irqreturn_t rk3x_i2c_irq(int irqno, void *dev_id)
{
	struct rk3x_i2c *i2c = dev_id;
	unsigned int ipd;

	spin_lock(&i2c->lock);

	ipd = i2c_readl(i2c, REG_IPD);
	if (i2c->state == STATE_IDLE) {
		dev_warn(i2c->dev, "irq in STATE_IDLE, ipd = 0x%x\n", ipd);
		rk3x_i2c_clean_ipd(i2c);
		goto out;
	}

	dev_dbg(i2c->dev, "IRQ: state %d, ipd: %x\n", i2c->state, ipd);

	/* Clean interrupt bits we don't care about */
	ipd &= ~(REG_INT_BRF | REG_INT_BTF);

	if (ipd & REG_INT_NAKRCV) {
		/*
		 * We got a NACK in the last operation. Depending on whether
		 * IGNORE_NAK is set, we have to stop the operation and report
		 * an error.
		 */
		i2c_writel(i2c, REG_INT_NAKRCV, REG_IPD);

		ipd &= ~REG_INT_NAKRCV;

		if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
			rk3x_i2c_stop(i2c, -ENXIO);
	}

	/* is there anything left to handle? */
	if ((ipd & REG_INT_ALL) == 0)
		goto out;

	switch (i2c->state) {
	case STATE_START:
		rk3x_i2c_handle_start(i2c, ipd);
		break;
	case STATE_WRITE:
		rk3x_i2c_handle_write(i2c, ipd);
		break;
	case STATE_READ:
		rk3x_i2c_handle_read(i2c, ipd);
		break;
	case STATE_STOP:
		rk3x_i2c_handle_stop(i2c, ipd);
		break;
	case STATE_IDLE:
		break;
	}

out:
	spin_unlock(&i2c->lock);
	return IRQ_HANDLED;
}

/**
 * Get timing values of I2C specification
 *
 * @speed: Desired SCL frequency
 *
 * Returns: Matched i2c spec values.
 */
static const struct i2c_spec_values *rk3x_i2c_get_spec(unsigned int speed)
{
	if (speed <= 100000)
		return &standard_mode_spec;
	else if (speed <= 400000)
		return &fast_mode_spec;
	else
		return &fast_mode_plus_spec;
}

/**
 * Calculate divider values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 */
static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
{
	unsigned long min_low_ns, min_high_ns;
	unsigned long max_low_ns, min_total_ns;

	unsigned long clk_rate_khz, scl_rate_khz;

	unsigned long min_low_div, min_high_div;
	unsigned long max_low_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div, ideal_low_div;

	unsigned long data_hold_buffer_ns = 50;
	const struct i2c_spec_values *spec;
	int ret = 0;

	/* Only support standard-mode and fast-mode */
	if (WARN_ON(t->bus_freq_hz > 400000))
		t->bus_freq_hz = 400000;

	/* prevent scl_rate_khz from becoming 0 */
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;

	/*
	 * min_low_ns:  The minimum number of ns we need to hold low to
	 *		meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *		meet I2C specification, should include rise time.
	 * max_low_ns:  The maximum number of ns we can hold low to meet
	 *		I2C specification.
	 *
	 * Note: max_low_ns should be (maximum data hold time * 2 - buffer)
	 *	 This is because the i2c host on Rockchip holds the data line
	 *	 for half the low time.
	 */
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);
	min_high_ns = t->scl_rise_ns + spec->min_high_ns;

	/*
	 * Timings for repeated start:
	 * - controller appears to drop SDA at .875x (7/8) programmed clk high.
	 * - controller appears to keep SCL high for 2x programmed clk high.
	 *
	 * We need to account for those rules in picking our "high" time so
	 * we meet tSU;STA and tHD;STA times.
	 */
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns) * 1000, 875));
	min_high_ns = max(min_high_ns, DIV_ROUND_UP(
		(t->scl_rise_ns + spec->min_setup_start_ns + t->sda_fall_ns +
		spec->min_high_ns), 2));

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	max_low_ns =  spec->max_data_hold_ns * 2 - data_hold_buffer_ns;
	min_total_ns = min_low_ns + min_high_ns;

	/* Adjust to avoid overflow */
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
	scl_rate_khz = t->bus_freq_hz / 1000;

	/*
	 * We need the total div to be >= this number
	 * so we don't clock too fast.
	 */
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);

	/* These are the min dividers needed for min hold times. */
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
	min_div_for_hold = (min_low_div + min_high_div);

	/*
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
	 */
	max_low_div = clk_rate_khz * max_low_ns / (8 * 1000000);

	if (min_low_div > max_low_div) {
		WARN_ONCE(true,
			  "Conflicting, min_low_div %lu, max_low_div %lu\n",
			  min_low_div, max_low_div);
		max_low_div = min_low_div;
	}

	if (min_div_for_hold > min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 */
		extra_div = min_total_div - min_div_for_hold;

		/*
		 * We'll try to split things up perfectly evenly,
		 * biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
		ideal_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns,
					     scl_rate_khz * 8 * min_total_ns);

		/* Don't allow it to go over the maximum */
		if (ideal_low_div > max_low_div)
			ideal_low_div = max_low_div;

		/*
		 * Handle when the ideal low div is going to take up
		 * more than we have.
		 */
		if (ideal_low_div > min_low_div + extra_div)
			ideal_low_div = min_low_div + extra_div;

		/* Give low the "ideal" and give high whatever extra is left */
		extra_low_div = ideal_low_div - min_low_div;
		t_calc->div_low = ideal_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
	 * Adjust to the fact that the hardware has an implicit "+1".
	 * NOTE: Above calculations always produce div_low > 0 and div_high > 0.
	 */
	t_calc->div_low--;
	t_calc->div_high--;

	/* Give the tuning value 0, that would not update con register */
	t_calc->tuning = 0;
	/* Maximum divider supported by hw is 0xffff */
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
		ret = -EINVAL;
	}

	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
}

/**
 * Calculate timing values for desired SCL frequency
 *
 * @clk_rate: I2C input clock rate
 * @t: Known I2C timing information
 * @t_calc: Caculated rk3x private timings that would be written into regs
 *
 * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
 * a best-effort divider value is returned in divs. If the target rate is
 * too high, we silently use the highest possible rate.
 * The following formulas are v1's method to calculate timings.
 *
 * l = divl + 1;
 * h = divh + 1;
 * s = sda_update_config + 1;
 * u = start_setup_config + 1;
 * p = stop_setup_config + 1;
 * T = Tclk_i2c;
 *
 * tHigh = 8 * h * T;
 * tLow = 8 * l * T;
 *
 * tHD;sda = (l * s + 1) * T;
 * tSU;sda = [(8 - s) * l + 1] * T;
 * tI2C = 8 * (l + h) * T;
 *
 * tSU;sta = (8h * u + 1) * T;
 * tHD;sta = [8h * (u + 1) - 1] * T;
 * tSU;sto = (8h * p + 1) * T;
 */
static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
				    struct i2c_timings *t,
				    struct rk3x_i2c_calced_timings *t_calc)
{
	unsigned long min_low_ns, min_high_ns;
	unsigned long min_setup_start_ns, min_setup_data_ns;
	unsigned long min_setup_stop_ns, max_hold_data_ns;

	unsigned long clk_rate_khz, scl_rate_khz;

	unsigned long min_low_div, min_high_div;

	unsigned long min_div_for_hold, min_total_div;
	unsigned long extra_div, extra_low_div;
	unsigned long sda_update_cfg, stp_sta_cfg, stp_sto_cfg;

	const struct i2c_spec_values *spec;
	int ret = 0;

	/* Support standard-mode, fast-mode and fast-mode plus */
	if (WARN_ON(t->bus_freq_hz > 1000000))
		t->bus_freq_hz = 1000000;

	/* prevent scl_rate_khz from becoming 0 */
	if (WARN_ON(t->bus_freq_hz < 1000))
		t->bus_freq_hz = 1000;

	/*
	 * min_low_ns: The minimum number of ns we need to hold low to
	 *	       meet I2C specification, should include fall time.
	 * min_high_ns: The minimum number of ns we need to hold high to
	 *	        meet I2C specification, should include rise time.
	 */
	spec = rk3x_i2c_get_spec(t->bus_freq_hz);

	/* calculate min-divh and min-divl */
	clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
	scl_rate_khz = t->bus_freq_hz / 1000;
	min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);

	min_high_ns = t->scl_rise_ns + spec->min_high_ns;
	min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);

	min_low_ns = t->scl_fall_ns + spec->min_low_ns;
	min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);

	/*
	 * Final divh and divl must be greater than 0, otherwise the
	 * hardware would not output the i2c clk.
	 */
	min_high_div = (min_high_div < 1) ? 2 : min_high_div;
	min_low_div = (min_low_div < 1) ? 2 : min_low_div;

	/* These are the min dividers needed for min hold times. */
	min_div_for_hold = (min_low_div + min_high_div);

	/*
	 * This is the maximum divider so we don't go over the maximum.
	 * We don't round up here (we round down) since this is a maximum.
	 */
	if (min_div_for_hold >= min_total_div) {
		/*
		 * Time needed to meet hold requirements is important.
		 * Just use that.
		 */
		t_calc->div_low = min_low_div;
		t_calc->div_high = min_high_div;
	} else {
		/*
		 * We've got to distribute some time among the low and high
		 * so we don't run too fast.
		 * We'll try to split things up by the scale of min_low_div and
		 * min_high_div, biasing slightly towards having a higher div
		 * for low (spend more time low).
		 */
		extra_div = min_total_div - min_div_for_hold;
		extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
					     min_div_for_hold);

		t_calc->div_low = min_low_div + extra_low_div;
		t_calc->div_high = min_high_div + (extra_div - extra_low_div);
	}

	/*
	 * calculate sda data hold count by the rules, data_upd_st:3
	 * is a appropriate value to reduce calculated times.
	 */
	for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
		max_hold_data_ns =  DIV_ROUND_UP((sda_update_cfg
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		min_setup_data_ns =  DIV_ROUND_UP(((8 - sda_update_cfg)
						 * (t_calc->div_low) + 1)
						 * 1000000, clk_rate_khz);
		if ((max_hold_data_ns < spec->max_data_hold_ns) &&
		    (min_setup_data_ns > spec->min_data_setup_ns))
			break;
	}

	/* calculate setup start config */
	min_setup_start_ns = t->scl_rise_ns + spec->min_setup_start_ns;
	stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	/* calculate setup stop config */
	min_setup_stop_ns = t->scl_rise_ns + spec->min_setup_stop_ns;
	stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_stop_ns
			   - 1000000, 8 * 1000000 * (t_calc->div_high));

	t_calc->tuning = REG_CON_SDA_CFG(--sda_update_cfg) |
			 REG_CON_STA_CFG(--stp_sta_cfg) |
			 REG_CON_STO_CFG(--stp_sto_cfg);

	t_calc->div_low--;
	t_calc->div_high--;

	/* Maximum divider supported by hw is 0xffff */
	if (t_calc->div_low > 0xffff) {
		t_calc->div_low = 0xffff;
		ret = -EINVAL;
	}

	if (t_calc->div_high > 0xffff) {
		t_calc->div_high = 0xffff;
		ret = -EINVAL;
	}

	return ret;
}

static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
{
	struct i2c_timings *t = &i2c->t;
	struct rk3x_i2c_calced_timings calc;
	u64 t_low_ns, t_high_ns;
	unsigned long flags;
	u32 val;
	int ret;

	ret = i2c->soc_data->calc_timings(clk_rate, t, &calc);
	WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);

	clk_enable(i2c->pclk);

	spin_lock_irqsave(&i2c->lock, flags);
	val = i2c_readl(i2c, REG_CON);
	val &= ~REG_CON_TUNING_MASK;
	val |= calc.tuning;
	i2c_writel(i2c, val, REG_CON);
	i2c_writel(i2c, (calc.div_high << 16) | (calc.div_low & 0xffff),
		   REG_CLKDIV);
	spin_unlock_irqrestore(&i2c->lock, flags);

	clk_disable(i2c->pclk);

	t_low_ns = div_u64(((u64)calc.div_low + 1) * 8 * 1000000000, clk_rate);
	t_high_ns = div_u64(((u64)calc.div_high + 1) * 8 * 1000000000,
			    clk_rate);
	dev_dbg(i2c->dev,
		"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
		clk_rate / 1000,
		1000000000 / t->bus_freq_hz,
		t_low_ns, t_high_ns);
}

/**
 * rk3x_i2c_clk_notifier_cb - Clock rate change callback
 * @nb:		Pointer to notifier block
 * @event:	Notification reason
 * @data:	Pointer to notification data object
 *
 * The callback checks whether a valid bus frequency can be generated after the
 * change. If so, the change is acknowledged, otherwise the change is aborted.
 * New dividers are written to the HW in the pre- or post change notification
 * depending on the scaling direction.
 *
 * Code adapted from i2c-cadence.c.
 *
 * Return:	NOTIFY_STOP if the rate change should be aborted, NOTIFY_OK
 *		to acknowledge the change, NOTIFY_DONE if the notification is
 *		considered irrelevant.
 */
static int rk3x_i2c_clk_notifier_cb(struct notifier_block *nb, unsigned long
				    event, void *data)
{
	struct clk_notifier_data *ndata = data;
	struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
	struct rk3x_i2c_calced_timings calc;

	switch (event) {
	case PRE_RATE_CHANGE:
		/*
		 * Try the calculation (but don't store the result) ahead of
		 * time to see if we need to block the clock change.  Timings
		 * shouldn't actually take effect until rk3x_i2c_adapt_div().
		 */
		if (i2c->soc_data->calc_timings(ndata->new_rate, &i2c->t,
						&calc) != 0)
			return NOTIFY_STOP;

		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);

		return NOTIFY_OK;
	case POST_RATE_CHANGE:
		/* scale down */
		if (ndata->new_rate < ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->new_rate);
		return NOTIFY_OK;
	case ABORT_RATE_CHANGE:
		/* scale up */
		if (ndata->new_rate > ndata->old_rate)
			rk3x_i2c_adapt_div(i2c, ndata->old_rate);
		return NOTIFY_OK;
	default:
		return NOTIFY_DONE;
	}
}

/**
 * Setup I2C registers for an I2C operation specified by msgs, num.
 *
 * Must be called with i2c->lock held.
 *
 * @msgs: I2C msgs to process
 * @num: Number of msgs
 *
 * returns: Number of I2C msgs processed or negative in case of error
 */
static int rk3x_i2c_setup(struct rk3x_i2c *i2c, struct i2c_msg *msgs, int num)
{
	u32 addr = (msgs[0].addr & 0x7f) << 1;
	int ret = 0;

	/*
	 * The I2C adapter can issue a small (len < 4) write packet before
	 * reading. This speeds up SMBus-style register reads.
	 * The MRXADDR/MRXRADDR hold the slave address and the slave register
	 * address in this case.
	 */

	if (num >= 2 && msgs[0].len < 4 &&
	    !(msgs[0].flags & I2C_M_RD) && (msgs[1].flags & I2C_M_RD)) {
		u32 reg_addr = 0;
		int i;

		dev_dbg(i2c->dev, "Combined write/read from addr 0x%x\n",
			addr >> 1);

		/* Fill MRXRADDR with the register address(es) */
		for (i = 0; i < msgs[0].len; ++i) {
			reg_addr |= msgs[0].buf[i] << (i * 8);
			reg_addr |= REG_MRXADDR_VALID(i);
		}

		/* msgs[0] is handled by hw. */
		i2c->msg = &msgs[1];

		i2c->mode = REG_CON_MOD_REGISTER_TX;

		i2c_writel(i2c, addr | REG_MRXADDR_VALID(0), REG_MRXADDR);
		i2c_writel(i2c, reg_addr, REG_MRXRADDR);

		ret = 2;
	} else {
		/*
		 * We'll have to do it the boring way and process the msgs
		 * one-by-one.
		 */

		if (msgs[0].flags & I2C_M_RD) {
			addr |= 1; /* set read bit */

			/*
			 * We have to transmit the slave addr first. Use
			 * MOD_REGISTER_TX for that purpose.
			 */
			i2c->mode = REG_CON_MOD_REGISTER_TX;
			i2c_writel(i2c, addr | REG_MRXADDR_VALID(0),
				   REG_MRXADDR);
			i2c_writel(i2c, 0, REG_MRXRADDR);
		} else {
			i2c->mode = REG_CON_MOD_TX;
		}

		i2c->msg = &msgs[0];

		ret = 1;
	}

	i2c->addr = msgs[0].addr;
	i2c->busy = true;
	i2c->state = STATE_START;
	i2c->processed = 0;
	i2c->error = 0;

	rk3x_i2c_clean_ipd(i2c);

	return ret;
}

static int rk3x_i2c_xfer(struct i2c_adapter *adap,
			 struct i2c_msg *msgs, int num)
{
	struct rk3x_i2c *i2c = (struct rk3x_i2c *)adap->algo_data;
	unsigned long timeout, flags;
	u32 val;
	int ret = 0;
	int i;

	spin_lock_irqsave(&i2c->lock, flags);

	clk_enable(i2c->clk);
	clk_enable(i2c->pclk);

	i2c->is_last_msg = false;

	/*
	 * Process msgs. We can handle more than one message at once (see
	 * rk3x_i2c_setup()).
	 */
	for (i = 0; i < num; i += ret) {
		ret = rk3x_i2c_setup(i2c, msgs + i, num - i);

		if (ret < 0) {
			dev_err(i2c->dev, "rk3x_i2c_setup() failed\n");
			break;
		}

		if (i + ret >= num)
			i2c->is_last_msg = true;

		spin_unlock_irqrestore(&i2c->lock, flags);

		rk3x_i2c_start(i2c);

		timeout = wait_event_timeout(i2c->wait, !i2c->busy,
					     msecs_to_jiffies(WAIT_TIMEOUT));

		spin_lock_irqsave(&i2c->lock, flags);

		if (timeout == 0) {
			dev_err(i2c->dev, "timeout, ipd: 0x%02x, state: %d\n",
				i2c_readl(i2c, REG_IPD), i2c->state);

			/* Force a STOP condition without interrupt */
			i2c_writel(i2c, 0, REG_IEN);
			val = i2c_readl(i2c, REG_CON) & REG_CON_TUNING_MASK;
			val |= REG_CON_EN | REG_CON_STOP;
			i2c_writel(i2c, val, REG_CON);

			i2c->state = STATE_IDLE;

			ret = -ETIMEDOUT;
			break;
		}

		if (i2c->error) {
			ret = i2c->error;
			break;
		}
	}

	clk_disable(i2c->pclk);
	clk_disable(i2c->clk);

	spin_unlock_irqrestore(&i2c->lock, flags);

	return ret < 0 ? ret : num;
}

static __maybe_unused int rk3x_i2c_resume(struct device *dev)
{
	struct rk3x_i2c *i2c = dev_get_drvdata(dev);

	rk3x_i2c_adapt_div(i2c, clk_get_rate(i2c->clk));

	return 0;
}

static u32 rk3x_i2c_func(struct i2c_adapter *adap)
{
	return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL | I2C_FUNC_PROTOCOL_MANGLING;
}

static const struct i2c_algorithm rk3x_i2c_algorithm = {
	.master_xfer		= rk3x_i2c_xfer,
	.functionality		= rk3x_i2c_func,
};

static const struct rk3x_i2c_soc_data rv1108_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v1_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3066_soc_data = {
	.grf_offset = 0x154,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3188_soc_data = {
	.grf_offset = 0x0a4,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3228_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3288_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v0_calc_timings,
};

static const struct rk3x_i2c_soc_data rk3399_soc_data = {
	.grf_offset = -1,
	.calc_timings = rk3x_i2c_v1_calc_timings,
};

static const struct of_device_id rk3x_i2c_match[] = {
	{
		.compatible = "rockchip,rv1108-i2c",
		.data = &rv1108_soc_data
	},
	{
		.compatible = "rockchip,rk3066-i2c",
		.data = &rk3066_soc_data
	},
	{
		.compatible = "rockchip,rk3188-i2c",
		.data = &rk3188_soc_data
	},
	{
		.compatible = "rockchip,rk3228-i2c",
		.data = &rk3228_soc_data
	},
	{
		.compatible = "rockchip,rk3288-i2c",
		.data = &rk3288_soc_data
	},
	{
		.compatible = "rockchip,rk3399-i2c",
		.data = &rk3399_soc_data
	},
	{},
};
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);

static int rk3x_i2c_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	const struct of_device_id *match;
	struct rk3x_i2c *i2c;
	struct resource *mem;
	int ret = 0;
	int bus_nr;
	u32 value;
	int irq;
	unsigned long clk_rate;

	i2c = devm_kzalloc(&pdev->dev, sizeof(struct rk3x_i2c), GFP_KERNEL);
	if (!i2c)
		return -ENOMEM;

	match = of_match_node(rk3x_i2c_match, np);
	i2c->soc_data = match->data;

	/* use common interface to get I2C timing properties */
	i2c_parse_fw_timings(&pdev->dev, &i2c->t, true);

	strlcpy(i2c->adap.name, "rk3x-i2c", sizeof(i2c->adap.name));
	i2c->adap.owner = THIS_MODULE;
	i2c->adap.algo = &rk3x_i2c_algorithm;
	i2c->adap.retries = 3;
	i2c->adap.dev.of_node = np;
	i2c->adap.algo_data = i2c;
	i2c->adap.dev.parent = &pdev->dev;

	i2c->dev = &pdev->dev;

	spin_lock_init(&i2c->lock);
	init_waitqueue_head(&i2c->wait);

	mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
	if (IS_ERR(i2c->regs))
		return PTR_ERR(i2c->regs);

	/* Try to set the I2C adapter number from dt */
	bus_nr = of_alias_get_id(np, "i2c");

	/*
	 * Switch to new interface if the SoC also offers the old one.
	 * The control bit is located in the GRF register space.
	 */
	if (i2c->soc_data->grf_offset >= 0) {
		struct regmap *grf;

		grf = syscon_regmap_lookup_by_phandle(np, "rockchip,grf");
		if (IS_ERR(grf)) {
			dev_err(&pdev->dev,
				"rk3x-i2c needs 'rockchip,grf' property\n");
			return PTR_ERR(grf);
		}

		if (bus_nr < 0) {
			dev_err(&pdev->dev, "rk3x-i2c needs i2cX alias");
			return -EINVAL;
		}

		/* 27+i: write mask, 11+i: value */
		value = BIT(27 + bus_nr) | BIT(11 + bus_nr);

		ret = regmap_write(grf, i2c->soc_data->grf_offset, value);
		if (ret != 0) {
			dev_err(i2c->dev, "Could not write to GRF: %d\n", ret);
			return ret;
		}
	}

	/* IRQ setup */
	irq = platform_get_irq(pdev, 0);
	if (irq < 0) {
		dev_err(&pdev->dev, "cannot find rk3x IRQ\n");
		return irq;
	}

	ret = devm_request_irq(&pdev->dev, irq, rk3x_i2c_irq,
			       0, dev_name(&pdev->dev), i2c);
	if (ret < 0) {
		dev_err(&pdev->dev, "cannot request IRQ\n");
		return ret;
	}

	platform_set_drvdata(pdev, i2c);

	if (i2c->soc_data->calc_timings == rk3x_i2c_v0_calc_timings) {
		/* Only one clock to use for bus clock and peripheral clock */
		i2c->clk = devm_clk_get(&pdev->dev, NULL);
		i2c->pclk = i2c->clk;
	} else {
		i2c->clk = devm_clk_get(&pdev->dev, "i2c");
		i2c->pclk = devm_clk_get(&pdev->dev, "pclk");
	}

	if (IS_ERR(i2c->clk)) {
		ret = PTR_ERR(i2c->clk);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Can't get bus clk: %d\n", ret);
		return ret;
	}
	if (IS_ERR(i2c->pclk)) {
		ret = PTR_ERR(i2c->pclk);
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "Can't get periph clk: %d\n", ret);
		return ret;
	}

	ret = clk_prepare(i2c->clk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't prepare bus clk: %d\n", ret);
		return ret;
	}
	ret = clk_prepare(i2c->pclk);
	if (ret < 0) {
		dev_err(&pdev->dev, "Can't prepare periph clock: %d\n", ret);
		goto err_clk;
	}

	i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
	ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
	if (ret != 0) {
		dev_err(&pdev->dev, "Unable to register clock notifier\n");
		goto err_pclk;
	}

	clk_rate = clk_get_rate(i2c->clk);
	rk3x_i2c_adapt_div(i2c, clk_rate);

	ret = i2c_add_adapter(&i2c->adap);
	if (ret < 0)
		goto err_clk_notifier;

	return 0;

err_clk_notifier:
	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
err_pclk:
	clk_unprepare(i2c->pclk);
err_clk:
	clk_unprepare(i2c->clk);
	return ret;
}

static int rk3x_i2c_remove(struct platform_device *pdev)
{
	struct rk3x_i2c *i2c = platform_get_drvdata(pdev);

	i2c_del_adapter(&i2c->adap);

	clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
	clk_unprepare(i2c->pclk);
	clk_unprepare(i2c->clk);

	return 0;
}

static SIMPLE_DEV_PM_OPS(rk3x_i2c_pm_ops, NULL, rk3x_i2c_resume);

static struct platform_driver rk3x_i2c_driver = {
	.probe   = rk3x_i2c_probe,
	.remove  = rk3x_i2c_remove,
	.driver  = {
		.name  = "rk3x-i2c",
		.of_match_table = rk3x_i2c_match,
		.pm = &rk3x_i2c_pm_ops,
	},
};

module_platform_driver(rk3x_i2c_driver);

MODULE_DESCRIPTION("Rockchip RK3xxx I2C Bus driver");
MODULE_AUTHOR("Max Schwarz <max.schwarz@online.de>");
MODULE_LICENSE("GPL v2");