1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
|
/*
* Copyright 2017 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#define NVKM_VMM_LEVELS_MAX 5
#include "vmm.h"
#include <subdev/fb.h>
static void
nvkm_vmm_pt_del(struct nvkm_vmm_pt **ppgt)
{
struct nvkm_vmm_pt *pgt = *ppgt;
if (pgt) {
kvfree(pgt->pde);
kfree(pgt);
*ppgt = NULL;
}
}
static struct nvkm_vmm_pt *
nvkm_vmm_pt_new(const struct nvkm_vmm_desc *desc, bool sparse,
const struct nvkm_vmm_page *page)
{
const u32 pten = 1 << desc->bits;
struct nvkm_vmm_pt *pgt;
u32 lpte = 0;
if (desc->type > PGT) {
if (desc->type == SPT) {
const struct nvkm_vmm_desc *pair = page[-1].desc;
lpte = pten >> (desc->bits - pair->bits);
} else {
lpte = pten;
}
}
if (!(pgt = kzalloc(sizeof(*pgt) + lpte, GFP_KERNEL)))
return NULL;
pgt->page = page ? page->shift : 0;
pgt->sparse = sparse;
if (desc->type == PGD) {
pgt->pde = kvzalloc(sizeof(*pgt->pde) * pten, GFP_KERNEL);
if (!pgt->pde) {
kfree(pgt);
return NULL;
}
}
return pgt;
}
struct nvkm_vmm_iter {
const struct nvkm_vmm_page *page;
const struct nvkm_vmm_desc *desc;
struct nvkm_vmm *vmm;
u64 cnt;
u16 max, lvl;
u32 pte[NVKM_VMM_LEVELS_MAX];
struct nvkm_vmm_pt *pt[NVKM_VMM_LEVELS_MAX];
int flush;
};
#ifdef CONFIG_NOUVEAU_DEBUG_MMU
static const char *
nvkm_vmm_desc_type(const struct nvkm_vmm_desc *desc)
{
switch (desc->type) {
case PGD: return "PGD";
case PGT: return "PGT";
case SPT: return "SPT";
case LPT: return "LPT";
default:
return "UNKNOWN";
}
}
static void
nvkm_vmm_trace(struct nvkm_vmm_iter *it, char *buf)
{
int lvl;
for (lvl = it->max; lvl >= 0; lvl--) {
if (lvl >= it->lvl)
buf += sprintf(buf, "%05x:", it->pte[lvl]);
else
buf += sprintf(buf, "xxxxx:");
}
}
#define TRA(i,f,a...) do { \
char _buf[NVKM_VMM_LEVELS_MAX * 7]; \
struct nvkm_vmm_iter *_it = (i); \
nvkm_vmm_trace(_it, _buf); \
VMM_TRACE(_it->vmm, "%s "f, _buf, ##a); \
} while(0)
#else
#define TRA(i,f,a...)
#endif
static inline void
nvkm_vmm_flush_mark(struct nvkm_vmm_iter *it)
{
it->flush = min(it->flush, it->max - it->lvl);
}
static inline void
nvkm_vmm_flush(struct nvkm_vmm_iter *it)
{
if (it->flush != NVKM_VMM_LEVELS_MAX) {
if (it->vmm->func->flush) {
TRA(it, "flush: %d", it->flush);
it->vmm->func->flush(it->vmm, it->flush);
}
it->flush = NVKM_VMM_LEVELS_MAX;
}
}
static void
nvkm_vmm_unref_pdes(struct nvkm_vmm_iter *it)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc[it->lvl].type == SPT;
struct nvkm_vmm_pt *pgd = it->pt[it->lvl + 1];
struct nvkm_vmm_pt *pgt = it->pt[it->lvl];
struct nvkm_mmu_pt *pt = pgt->pt[type];
struct nvkm_vmm *vmm = it->vmm;
u32 pdei = it->pte[it->lvl + 1];
/* Recurse up the tree, unreferencing/destroying unneeded PDs. */
it->lvl++;
if (--pgd->refs[0]) {
const struct nvkm_vmm_desc_func *func = desc[it->lvl].func;
/* PD has other valid PDEs, so we need a proper update. */
TRA(it, "PDE unmap %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
pgt->pt[type] = NULL;
if (!pgt->refs[!type]) {
/* PDE no longer required. */
if (pgd->pt[0]) {
if (pgt->sparse) {
func->sparse(vmm, pgd->pt[0], pdei, 1);
pgd->pde[pdei] = NVKM_VMM_PDE_SPARSE;
} else {
func->unmap(vmm, pgd->pt[0], pdei, 1);
pgd->pde[pdei] = NULL;
}
} else {
/* Special handling for Tesla-class GPUs,
* where there's no central PD, but each
* instance has its own embedded PD.
*/
func->pde(vmm, pgd, pdei);
pgd->pde[pdei] = NULL;
}
} else {
/* PDE was pointing at dual-PTs and we're removing
* one of them, leaving the other in place.
*/
func->pde(vmm, pgd, pdei);
}
/* GPU may have cached the PTs, flush before freeing. */
nvkm_vmm_flush_mark(it);
nvkm_vmm_flush(it);
} else {
/* PD has no valid PDEs left, so we can just destroy it. */
nvkm_vmm_unref_pdes(it);
}
/* Destroy PD/PT. */
TRA(it, "PDE free %s", nvkm_vmm_desc_type(&desc[it->lvl - 1]));
nvkm_mmu_ptc_put(vmm->mmu, vmm->bootstrapped, &pt);
if (!pgt->refs[!type])
nvkm_vmm_pt_del(&pgt);
it->lvl--;
}
static void
nvkm_vmm_unref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *pair = it->page[-1].desc;
const u32 sptb = desc->bits - pair->bits;
const u32 sptn = 1 << sptb;
struct nvkm_vmm *vmm = it->vmm;
u32 spti = ptei & (sptn - 1), lpti, pteb;
/* Determine how many SPTEs are being touched under each LPTE,
* and drop reference counts.
*/
for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
const u32 pten = min(sptn - spti, ptes);
pgt->pte[lpti] -= pten;
ptes -= pten;
}
/* We're done here if there's no corresponding LPT. */
if (!pgt->refs[0])
return;
for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
/* Skip over any LPTEs that still have valid SPTEs. */
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPTES) {
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (!(pgt->pte[ptei] & NVKM_VMM_PTE_SPTES))
break;
}
continue;
}
/* As there's no more non-UNMAPPED SPTEs left in the range
* covered by a number of LPTEs, the LPTEs once again take
* control over their address range.
*
* Determine how many LPTEs need to transition state.
*/
pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (pgt->pte[ptei] & NVKM_VMM_PTE_SPTES)
break;
pgt->pte[ptei] &= ~NVKM_VMM_PTE_VALID;
}
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
TRA(it, "LPTE %05x: U -> S %d PTEs", pteb, ptes);
pair->func->sparse(vmm, pgt->pt[0], pteb, ptes);
} else
if (pair->func->invalid) {
/* If the MMU supports it, restore the LPTE to the
* INVALID state to tell the MMU there is no point
* trying to fetch the corresponding SPTEs.
*/
TRA(it, "LPTE %05x: U -> I %d PTEs", pteb, ptes);
pair->func->invalid(vmm, pgt->pt[0], pteb, ptes);
}
}
}
static bool
nvkm_vmm_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = it->pt[0];
/* Drop PTE references. */
pgt->refs[type] -= ptes;
/* Dual-PTs need special handling, unless PDE becoming invalid. */
if (desc->type == SPT && (pgt->refs[0] || pgt->refs[1]))
nvkm_vmm_unref_sptes(it, pgt, desc, ptei, ptes);
/* PT no longer neeed? Destroy it. */
if (!pgt->refs[type]) {
it->lvl++;
TRA(it, "%s empty", nvkm_vmm_desc_type(desc));
it->lvl--;
nvkm_vmm_unref_pdes(it);
return false; /* PTE writes for unmap() not necessary. */
}
return true;
}
static void
nvkm_vmm_ref_sptes(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgt,
const struct nvkm_vmm_desc *desc, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *pair = it->page[-1].desc;
const u32 sptb = desc->bits - pair->bits;
const u32 sptn = 1 << sptb;
struct nvkm_vmm *vmm = it->vmm;
u32 spti = ptei & (sptn - 1), lpti, pteb;
/* Determine how many SPTEs are being touched under each LPTE,
* and increase reference counts.
*/
for (lpti = ptei >> sptb; ptes; spti = 0, lpti++) {
const u32 pten = min(sptn - spti, ptes);
pgt->pte[lpti] += pten;
ptes -= pten;
}
/* We're done here if there's no corresponding LPT. */
if (!pgt->refs[0])
return;
for (ptei = pteb = ptei >> sptb; ptei < lpti; pteb = ptei) {
/* Skip over any LPTEs that already have valid SPTEs. */
if (pgt->pte[pteb] & NVKM_VMM_PTE_VALID) {
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (!(pgt->pte[ptei] & NVKM_VMM_PTE_VALID))
break;
}
continue;
}
/* As there are now non-UNMAPPED SPTEs in the range covered
* by a number of LPTEs, we need to transfer control of the
* address range to the SPTEs.
*
* Determine how many LPTEs need to transition state.
*/
pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
for (ptes = 1, ptei++; ptei < lpti; ptes++, ptei++) {
if (pgt->pte[ptei] & NVKM_VMM_PTE_VALID)
break;
pgt->pte[ptei] |= NVKM_VMM_PTE_VALID;
}
if (pgt->pte[pteb] & NVKM_VMM_PTE_SPARSE) {
const u32 spti = pteb * sptn;
const u32 sptc = ptes * sptn;
/* The entire LPTE is marked as sparse, we need
* to make sure that the SPTEs are too.
*/
TRA(it, "SPTE %05x: U -> S %d PTEs", spti, sptc);
desc->func->sparse(vmm, pgt->pt[1], spti, sptc);
/* Sparse LPTEs prevent SPTEs from being accessed. */
TRA(it, "LPTE %05x: S -> U %d PTEs", pteb, ptes);
pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
} else
if (pair->func->invalid) {
/* MMU supports blocking SPTEs by marking an LPTE
* as INVALID. We need to reverse that here.
*/
TRA(it, "LPTE %05x: I -> U %d PTEs", pteb, ptes);
pair->func->unmap(vmm, pgt->pt[0], pteb, ptes);
}
}
}
static bool
nvkm_vmm_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = it->pt[0];
/* Take PTE references. */
pgt->refs[type] += ptes;
/* Dual-PTs need special handling. */
if (desc->type == SPT)
nvkm_vmm_ref_sptes(it, pgt, desc, ptei, ptes);
return true;
}
static void
nvkm_vmm_sparse_ptes(const struct nvkm_vmm_desc *desc,
struct nvkm_vmm_pt *pgt, u32 ptei, u32 ptes)
{
if (desc->type == PGD) {
while (ptes--)
pgt->pde[ptei++] = NVKM_VMM_PDE_SPARSE;
} else
if (desc->type == LPT) {
memset(&pgt->pte[ptei], NVKM_VMM_PTE_SPARSE, ptes);
}
}
static bool
nvkm_vmm_sparse_unref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
struct nvkm_vmm_pt *pt = it->pt[0];
if (it->desc->type == PGD)
memset(&pt->pde[ptei], 0x00, sizeof(pt->pde[0]) * ptes);
else
if (it->desc->type == LPT)
memset(&pt->pte[ptei], 0x00, sizeof(pt->pte[0]) * ptes);
return nvkm_vmm_unref_ptes(it, ptei, ptes);
}
static bool
nvkm_vmm_sparse_ref_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
nvkm_vmm_sparse_ptes(it->desc, it->pt[0], ptei, ptes);
return nvkm_vmm_ref_ptes(it, ptei, ptes);
}
static bool
nvkm_vmm_ref_hwpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
const int type = desc->type == SPT;
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
const bool zero = !pgt->sparse && !desc->func->invalid;
struct nvkm_vmm *vmm = it->vmm;
struct nvkm_mmu *mmu = vmm->mmu;
struct nvkm_mmu_pt *pt;
u32 pten = 1 << desc->bits;
u32 pteb, ptei, ptes;
u32 size = desc->size * pten;
pgd->refs[0]++;
pgt->pt[type] = nvkm_mmu_ptc_get(mmu, size, desc->align, zero);
if (!pgt->pt[type]) {
it->lvl--;
nvkm_vmm_unref_pdes(it);
return false;
}
if (zero)
goto done;
pt = pgt->pt[type];
if (desc->type == LPT && pgt->refs[1]) {
/* SPT already exists covering the same range as this LPT,
* which means we need to be careful that any LPTEs which
* overlap valid SPTEs are unmapped as opposed to invalid
* or sparse, which would prevent the MMU from looking at
* the SPTEs on some GPUs.
*/
for (ptei = pteb = 0; ptei < pten; pteb = ptei) {
bool spte = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
for (ptes = 1, ptei++; ptei < pten; ptes++, ptei++) {
bool next = pgt->pte[ptei] & NVKM_VMM_PTE_SPTES;
if (spte != next)
break;
}
if (!spte) {
if (pgt->sparse)
desc->func->sparse(vmm, pt, pteb, ptes);
else
desc->func->invalid(vmm, pt, pteb, ptes);
memset(&pgt->pte[pteb], 0x00, ptes);
} else {
desc->func->unmap(vmm, pt, pteb, ptes);
while (ptes--)
pgt->pte[pteb++] |= NVKM_VMM_PTE_VALID;
}
}
} else {
if (pgt->sparse) {
nvkm_vmm_sparse_ptes(desc, pgt, 0, pten);
desc->func->sparse(vmm, pt, 0, pten);
} else {
desc->func->invalid(vmm, pt, 0, pten);
}
}
done:
TRA(it, "PDE write %s", nvkm_vmm_desc_type(desc));
it->desc[it->lvl].func->pde(it->vmm, pgd, pdei);
nvkm_vmm_flush_mark(it);
return true;
}
static bool
nvkm_vmm_ref_swpt(struct nvkm_vmm_iter *it, struct nvkm_vmm_pt *pgd, u32 pdei)
{
const struct nvkm_vmm_desc *desc = &it->desc[it->lvl - 1];
struct nvkm_vmm_pt *pgt = pgd->pde[pdei];
pgt = nvkm_vmm_pt_new(desc, NVKM_VMM_PDE_SPARSED(pgt), it->page);
if (!pgt) {
if (!pgd->refs[0])
nvkm_vmm_unref_pdes(it);
return false;
}
pgd->pde[pdei] = pgt;
return true;
}
static inline u64
nvkm_vmm_iter(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, const char *name, bool ref,
bool (*REF_PTES)(struct nvkm_vmm_iter *, u32, u32),
nvkm_vmm_pte_func MAP_PTES, struct nvkm_vmm_map *map,
nvkm_vmm_pxe_func CLR_PTES)
{
const struct nvkm_vmm_desc *desc = page->desc;
struct nvkm_vmm_iter it;
u64 bits = addr >> page->shift;
it.page = page;
it.desc = desc;
it.vmm = vmm;
it.cnt = size >> page->shift;
it.flush = NVKM_VMM_LEVELS_MAX;
/* Deconstruct address into PTE indices for each mapping level. */
for (it.lvl = 0; desc[it.lvl].bits; it.lvl++) {
it.pte[it.lvl] = bits & ((1 << desc[it.lvl].bits) - 1);
bits >>= desc[it.lvl].bits;
}
it.max = --it.lvl;
it.pt[it.max] = vmm->pd;
it.lvl = 0;
TRA(&it, "%s: %016llx %016llx %d %lld PTEs", name,
addr, size, page->shift, it.cnt);
it.lvl = it.max;
/* Depth-first traversal of page tables. */
while (it.cnt) {
struct nvkm_vmm_pt *pgt = it.pt[it.lvl];
const int type = desc->type == SPT;
const u32 pten = 1 << desc->bits;
const u32 ptei = it.pte[0];
const u32 ptes = min_t(u64, it.cnt, pten - ptei);
/* Walk down the tree, finding page tables for each level. */
for (; it.lvl; it.lvl--) {
const u32 pdei = it.pte[it.lvl];
struct nvkm_vmm_pt *pgd = pgt;
/* Software PT. */
if (ref && NVKM_VMM_PDE_INVALID(pgd->pde[pdei])) {
if (!nvkm_vmm_ref_swpt(&it, pgd, pdei))
goto fail;
}
it.pt[it.lvl - 1] = pgt = pgd->pde[pdei];
/* Hardware PT.
*
* This is a separate step from above due to GF100 and
* newer having dual page tables at some levels, which
* are refcounted independently.
*/
if (ref && !pgt->refs[desc[it.lvl - 1].type == SPT]) {
if (!nvkm_vmm_ref_hwpt(&it, pgd, pdei))
goto fail;
}
}
/* Handle PTE updates. */
if (!REF_PTES || REF_PTES(&it, ptei, ptes)) {
struct nvkm_mmu_pt *pt = pgt->pt[type];
if (MAP_PTES || CLR_PTES) {
if (MAP_PTES)
MAP_PTES(vmm, pt, ptei, ptes, map);
else
CLR_PTES(vmm, pt, ptei, ptes);
nvkm_vmm_flush_mark(&it);
}
}
/* Walk back up the tree to the next position. */
it.pte[it.lvl] += ptes;
it.cnt -= ptes;
if (it.cnt) {
while (it.pte[it.lvl] == (1 << desc[it.lvl].bits)) {
it.pte[it.lvl++] = 0;
it.pte[it.lvl]++;
}
}
};
nvkm_vmm_flush(&it);
return ~0ULL;
fail:
/* Reconstruct the failure address so the caller is able to
* reverse any partially completed operations.
*/
addr = it.pte[it.max--];
do {
addr = addr << desc[it.max].bits;
addr |= it.pte[it.max];
} while (it.max--);
return addr << page->shift;
}
static void
nvkm_vmm_ptes_sparse_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
nvkm_vmm_iter(vmm, page, addr, size, "sparse unref", false,
nvkm_vmm_sparse_unref_ptes, NULL, NULL,
page->desc->func->invalid ?
page->desc->func->invalid : page->desc->func->unmap);
}
static int
nvkm_vmm_ptes_sparse_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
if ((page->type & NVKM_VMM_PAGE_SPARSE)) {
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "sparse ref",
true, nvkm_vmm_sparse_ref_ptes, NULL,
NULL, page->desc->func->sparse);
if (fail != ~0ULL) {
if ((size = fail - addr))
nvkm_vmm_ptes_sparse_put(vmm, page, addr, size);
return -ENOMEM;
}
return 0;
}
return -EINVAL;
}
static int
nvkm_vmm_ptes_sparse(struct nvkm_vmm *vmm, u64 addr, u64 size, bool ref)
{
const struct nvkm_vmm_page *page = vmm->func->page;
int m = 0, i;
u64 start = addr;
u64 block;
while (size) {
/* Limit maximum page size based on remaining size. */
while (size < (1ULL << page[m].shift))
m++;
i = m;
/* Find largest page size suitable for alignment. */
while (!IS_ALIGNED(addr, 1ULL << page[i].shift))
i++;
/* Determine number of PTEs at this page size. */
if (i != m) {
/* Limited to alignment boundary of next page size. */
u64 next = 1ULL << page[i - 1].shift;
u64 part = ALIGN(addr, next) - addr;
if (size - part >= next)
block = (part >> page[i].shift) << page[i].shift;
else
block = (size >> page[i].shift) << page[i].shift;
} else {
block = (size >> page[i].shift) << page[i].shift;;
}
/* Perform operation. */
if (ref) {
int ret = nvkm_vmm_ptes_sparse_get(vmm, &page[i], addr, block);
if (ret) {
if ((size = addr - start))
nvkm_vmm_ptes_sparse(vmm, start, size, false);
return ret;
}
} else {
nvkm_vmm_ptes_sparse_put(vmm, &page[i], addr, block);
}
size -= block;
addr += block;
}
return 0;
}
static void
nvkm_vmm_ptes_unmap_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, bool sparse)
{
const struct nvkm_vmm_desc_func *func = page->desc->func;
nvkm_vmm_iter(vmm, page, addr, size, "unmap + unref",
false, nvkm_vmm_unref_ptes, NULL, NULL,
sparse ? func->sparse : func->invalid ? func->invalid :
func->unmap);
}
static int
nvkm_vmm_ptes_get_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, struct nvkm_vmm_map *map,
nvkm_vmm_pte_func func)
{
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref + map", true,
nvkm_vmm_ref_ptes, func, map, NULL);
if (fail != ~0ULL) {
if ((size = fail - addr))
nvkm_vmm_ptes_unmap_put(vmm, page, addr, size, false);
return -ENOMEM;
}
return 0;
}
static void
nvkm_vmm_ptes_unmap(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, bool sparse)
{
const struct nvkm_vmm_desc_func *func = page->desc->func;
nvkm_vmm_iter(vmm, page, addr, size, "unmap", false, NULL, NULL, NULL,
sparse ? func->sparse : func->invalid ? func->invalid :
func->unmap);
}
void
nvkm_vmm_ptes_map(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size, struct nvkm_vmm_map *map,
nvkm_vmm_pte_func func)
{
nvkm_vmm_iter(vmm, page, addr, size, "map", false,
NULL, func, map, NULL);
}
static void
nvkm_vmm_ptes_put(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
nvkm_vmm_iter(vmm, page, addr, size, "unref", false,
nvkm_vmm_unref_ptes, NULL, NULL, NULL);
}
static int
nvkm_vmm_ptes_get(struct nvkm_vmm *vmm, const struct nvkm_vmm_page *page,
u64 addr, u64 size)
{
u64 fail = nvkm_vmm_iter(vmm, page, addr, size, "ref", true,
nvkm_vmm_ref_ptes, NULL, NULL, NULL);
if (fail != ~0ULL) {
if (fail != addr)
nvkm_vmm_ptes_put(vmm, page, addr, fail - addr);
return -ENOMEM;
}
return 0;
}
static inline struct nvkm_vma *
nvkm_vma_new(u64 addr, u64 size)
{
struct nvkm_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
if (vma) {
vma->addr = addr;
vma->size = size;
vma->page = NVKM_VMA_PAGE_NONE;
vma->refd = NVKM_VMA_PAGE_NONE;
}
return vma;
}
struct nvkm_vma *
nvkm_vma_tail(struct nvkm_vma *vma, u64 tail)
{
struct nvkm_vma *new;
BUG_ON(vma->size == tail);
if (!(new = nvkm_vma_new(vma->addr + (vma->size - tail), tail)))
return NULL;
vma->size -= tail;
new->mapref = vma->mapref;
new->sparse = vma->sparse;
new->page = vma->page;
new->refd = vma->refd;
new->used = vma->used;
new->part = vma->part;
new->user = vma->user;
new->busy = vma->busy;
list_add(&new->head, &vma->head);
return new;
}
static void
nvkm_vmm_free_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct rb_node **ptr = &vmm->free.rb_node;
struct rb_node *parent = NULL;
while (*ptr) {
struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
parent = *ptr;
if (vma->size < this->size)
ptr = &parent->rb_left;
else
if (vma->size > this->size)
ptr = &parent->rb_right;
else
if (vma->addr < this->addr)
ptr = &parent->rb_left;
else
if (vma->addr > this->addr)
ptr = &parent->rb_right;
else
BUG();
}
rb_link_node(&vma->tree, parent, ptr);
rb_insert_color(&vma->tree, &vmm->free);
}
void
nvkm_vmm_node_insert(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct rb_node **ptr = &vmm->root.rb_node;
struct rb_node *parent = NULL;
while (*ptr) {
struct nvkm_vma *this = rb_entry(*ptr, typeof(*this), tree);
parent = *ptr;
if (vma->addr < this->addr)
ptr = &parent->rb_left;
else
if (vma->addr > this->addr)
ptr = &parent->rb_right;
else
BUG();
}
rb_link_node(&vma->tree, parent, ptr);
rb_insert_color(&vma->tree, &vmm->root);
}
struct nvkm_vma *
nvkm_vmm_node_search(struct nvkm_vmm *vmm, u64 addr)
{
struct rb_node *node = vmm->root.rb_node;
while (node) {
struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
if (addr < vma->addr)
node = node->rb_left;
else
if (addr >= vma->addr + vma->size)
node = node->rb_right;
else
return vma;
}
return NULL;
}
static void
nvkm_vmm_dtor(struct nvkm_vmm *vmm)
{
struct nvkm_vma *vma;
struct rb_node *node;
while ((node = rb_first(&vmm->root))) {
struct nvkm_vma *vma = rb_entry(node, typeof(*vma), tree);
nvkm_vmm_put(vmm, &vma);
}
if (vmm->bootstrapped) {
const struct nvkm_vmm_page *page = vmm->func->page;
const u64 limit = vmm->limit - vmm->start;
while (page[1].shift)
page++;
nvkm_mmu_ptc_dump(vmm->mmu);
nvkm_vmm_ptes_put(vmm, page, vmm->start, limit);
}
vma = list_first_entry(&vmm->list, typeof(*vma), head);
list_del(&vma->head);
kfree(vma);
WARN_ON(!list_empty(&vmm->list));
if (vmm->nullp) {
dma_free_coherent(vmm->mmu->subdev.device->dev, 16 * 1024,
vmm->nullp, vmm->null);
}
if (vmm->pd) {
nvkm_mmu_ptc_put(vmm->mmu, true, &vmm->pd->pt[0]);
nvkm_vmm_pt_del(&vmm->pd);
}
}
int
nvkm_vmm_ctor(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
u32 pd_header, u64 addr, u64 size, struct lock_class_key *key,
const char *name, struct nvkm_vmm *vmm)
{
static struct lock_class_key _key;
const struct nvkm_vmm_page *page = func->page;
const struct nvkm_vmm_desc *desc;
struct nvkm_vma *vma;
int levels, bits = 0;
vmm->func = func;
vmm->mmu = mmu;
vmm->name = name;
vmm->debug = mmu->subdev.debug;
kref_init(&vmm->kref);
__mutex_init(&vmm->mutex, "&vmm->mutex", key ? key : &_key);
/* Locate the smallest page size supported by the backend, it will
* have the the deepest nesting of page tables.
*/
while (page[1].shift)
page++;
/* Locate the structure that describes the layout of the top-level
* page table, and determine the number of valid bits in a virtual
* address.
*/
for (levels = 0, desc = page->desc; desc->bits; desc++, levels++)
bits += desc->bits;
bits += page->shift;
desc--;
if (WARN_ON(levels > NVKM_VMM_LEVELS_MAX))
return -EINVAL;
vmm->start = addr;
vmm->limit = size ? (addr + size) : (1ULL << bits);
if (vmm->start > vmm->limit || vmm->limit > (1ULL << bits))
return -EINVAL;
/* Allocate top-level page table. */
vmm->pd = nvkm_vmm_pt_new(desc, false, NULL);
if (!vmm->pd)
return -ENOMEM;
vmm->pd->refs[0] = 1;
INIT_LIST_HEAD(&vmm->join);
/* ... and the GPU storage for it, except on Tesla-class GPUs that
* have the PD embedded in the instance structure.
*/
if (desc->size) {
const u32 size = pd_header + desc->size * (1 << desc->bits);
vmm->pd->pt[0] = nvkm_mmu_ptc_get(mmu, size, desc->align, true);
if (!vmm->pd->pt[0])
return -ENOMEM;
}
/* Initialise address-space MM. */
INIT_LIST_HEAD(&vmm->list);
vmm->free = RB_ROOT;
vmm->root = RB_ROOT;
if (!(vma = nvkm_vma_new(vmm->start, vmm->limit - vmm->start)))
return -ENOMEM;
nvkm_vmm_free_insert(vmm, vma);
list_add(&vma->head, &vmm->list);
return 0;
}
int
nvkm_vmm_new_(const struct nvkm_vmm_func *func, struct nvkm_mmu *mmu,
u32 hdr, u64 addr, u64 size, struct lock_class_key *key,
const char *name, struct nvkm_vmm **pvmm)
{
if (!(*pvmm = kzalloc(sizeof(**pvmm), GFP_KERNEL)))
return -ENOMEM;
return nvkm_vmm_ctor(func, mmu, hdr, addr, size, key, name, *pvmm);
}
#define node(root, dir) ((root)->head.dir == &vmm->list) ? NULL : \
list_entry((root)->head.dir, struct nvkm_vma, head)
void
nvkm_vmm_unmap_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct nvkm_vma *next;
nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
nvkm_memory_unref(&vma->memory);
if (vma->part) {
struct nvkm_vma *prev = node(vma, prev);
if (!prev->memory) {
prev->size += vma->size;
rb_erase(&vma->tree, &vmm->root);
list_del(&vma->head);
kfree(vma);
vma = prev;
}
}
next = node(vma, next);
if (next && next->part) {
if (!next->memory) {
vma->size += next->size;
rb_erase(&next->tree, &vmm->root);
list_del(&next->head);
kfree(next);
}
}
}
void
nvkm_vmm_unmap_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
const struct nvkm_vmm_page *page = &vmm->func->page[vma->refd];
if (vma->mapref) {
nvkm_vmm_ptes_unmap_put(vmm, page, vma->addr, vma->size, vma->sparse);
vma->refd = NVKM_VMA_PAGE_NONE;
} else {
nvkm_vmm_ptes_unmap(vmm, page, vma->addr, vma->size, vma->sparse);
}
nvkm_vmm_unmap_region(vmm, vma);
}
void
nvkm_vmm_unmap(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
if (vma->memory) {
mutex_lock(&vmm->mutex);
nvkm_vmm_unmap_locked(vmm, vma);
mutex_unlock(&vmm->mutex);
}
}
static int
nvkm_vmm_map_valid(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
switch (nvkm_memory_target(map->memory)) {
case NVKM_MEM_TARGET_VRAM:
if (!(map->page->type & NVKM_VMM_PAGE_VRAM)) {
VMM_DEBUG(vmm, "%d !VRAM", map->page->shift);
return -EINVAL;
}
break;
case NVKM_MEM_TARGET_HOST:
case NVKM_MEM_TARGET_NCOH:
if (!(map->page->type & NVKM_VMM_PAGE_HOST)) {
VMM_DEBUG(vmm, "%d !HOST", map->page->shift);
return -EINVAL;
}
break;
default:
WARN_ON(1);
return -ENOSYS;
}
if (!IS_ALIGNED( vma->addr, 1ULL << map->page->shift) ||
!IS_ALIGNED((u64)vma->size, 1ULL << map->page->shift) ||
!IS_ALIGNED( map->offset, 1ULL << map->page->shift) ||
nvkm_memory_page(map->memory) < map->page->shift) {
VMM_DEBUG(vmm, "alignment %016llx %016llx %016llx %d %d",
vma->addr, (u64)vma->size, map->offset, map->page->shift,
nvkm_memory_page(map->memory));
return -EINVAL;
}
return vmm->func->valid(vmm, argv, argc, map);
}
static int
nvkm_vmm_map_choose(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
for (map->page = vmm->func->page; map->page->shift; map->page++) {
VMM_DEBUG(vmm, "trying %d", map->page->shift);
if (!nvkm_vmm_map_valid(vmm, vma, argv, argc, map))
return 0;
}
return -EINVAL;
}
static int
nvkm_vmm_map_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma,
void *argv, u32 argc, struct nvkm_vmm_map *map)
{
nvkm_vmm_pte_func func;
int ret;
/* Make sure we won't overrun the end of the memory object. */
if (unlikely(nvkm_memory_size(map->memory) < map->offset + vma->size)) {
VMM_DEBUG(vmm, "overrun %016llx %016llx %016llx",
nvkm_memory_size(map->memory),
map->offset, (u64)vma->size);
return -EINVAL;
}
/* Check remaining arguments for validity. */
if (vma->page == NVKM_VMA_PAGE_NONE &&
vma->refd == NVKM_VMA_PAGE_NONE) {
/* Find the largest page size we can perform the mapping at. */
const u32 debug = vmm->debug;
vmm->debug = 0;
ret = nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
vmm->debug = debug;
if (ret) {
VMM_DEBUG(vmm, "invalid at any page size");
nvkm_vmm_map_choose(vmm, vma, argv, argc, map);
return -EINVAL;
}
} else {
/* Page size of the VMA is already pre-determined. */
if (vma->refd != NVKM_VMA_PAGE_NONE)
map->page = &vmm->func->page[vma->refd];
else
map->page = &vmm->func->page[vma->page];
ret = nvkm_vmm_map_valid(vmm, vma, argv, argc, map);
if (ret) {
VMM_DEBUG(vmm, "invalid %d\n", ret);
return ret;
}
}
/* Deal with the 'offset' argument, and fetch the backend function. */
map->off = map->offset;
if (map->mem) {
for (; map->off; map->mem = map->mem->next) {
u64 size = (u64)map->mem->length << NVKM_RAM_MM_SHIFT;
if (size > map->off)
break;
map->off -= size;
}
func = map->page->desc->func->mem;
} else
if (map->sgl) {
for (; map->off; map->sgl = sg_next(map->sgl)) {
u64 size = sg_dma_len(map->sgl);
if (size > map->off)
break;
map->off -= size;
}
func = map->page->desc->func->sgl;
} else {
map->dma += map->offset >> PAGE_SHIFT;
map->off = map->offset & PAGE_MASK;
func = map->page->desc->func->dma;
}
/* Perform the map. */
if (vma->refd == NVKM_VMA_PAGE_NONE) {
ret = nvkm_vmm_ptes_get_map(vmm, map->page, vma->addr, vma->size, map, func);
if (ret)
return ret;
vma->refd = map->page - vmm->func->page;
} else {
nvkm_vmm_ptes_map(vmm, map->page, vma->addr, vma->size, map, func);
}
nvkm_memory_tags_put(vma->memory, vmm->mmu->subdev.device, &vma->tags);
nvkm_memory_unref(&vma->memory);
vma->memory = nvkm_memory_ref(map->memory);
vma->tags = map->tags;
return 0;
}
int
nvkm_vmm_map(struct nvkm_vmm *vmm, struct nvkm_vma *vma, void *argv, u32 argc,
struct nvkm_vmm_map *map)
{
int ret;
mutex_lock(&vmm->mutex);
ret = nvkm_vmm_map_locked(vmm, vma, argv, argc, map);
vma->busy = false;
mutex_unlock(&vmm->mutex);
return ret;
}
static void
nvkm_vmm_put_region(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
struct nvkm_vma *prev, *next;
if ((prev = node(vma, prev)) && !prev->used) {
rb_erase(&prev->tree, &vmm->free);
list_del(&prev->head);
vma->addr = prev->addr;
vma->size += prev->size;
kfree(prev);
}
if ((next = node(vma, next)) && !next->used) {
rb_erase(&next->tree, &vmm->free);
list_del(&next->head);
vma->size += next->size;
kfree(next);
}
nvkm_vmm_free_insert(vmm, vma);
}
void
nvkm_vmm_put_locked(struct nvkm_vmm *vmm, struct nvkm_vma *vma)
{
const struct nvkm_vmm_page *page = vmm->func->page;
struct nvkm_vma *next = vma;
BUG_ON(vma->part);
if (vma->mapref || !vma->sparse) {
do {
const bool map = next->memory != NULL;
const u8 refd = next->refd;
const u64 addr = next->addr;
u64 size = next->size;
/* Merge regions that are in the same state. */
while ((next = node(next, next)) && next->part &&
(next->memory != NULL) == map &&
(next->refd == refd))
size += next->size;
if (map) {
/* Region(s) are mapped, merge the unmap
* and dereference into a single walk of
* the page tree.
*/
nvkm_vmm_ptes_unmap_put(vmm, &page[refd], addr,
size, vma->sparse);
} else
if (refd != NVKM_VMA_PAGE_NONE) {
/* Drop allocation-time PTE references. */
nvkm_vmm_ptes_put(vmm, &page[refd], addr, size);
}
} while (next && next->part);
}
/* Merge any mapped regions that were split from the initial
* address-space allocation back into the allocated VMA, and
* release memory/compression resources.
*/
next = vma;
do {
if (next->memory)
nvkm_vmm_unmap_region(vmm, next);
} while ((next = node(vma, next)) && next->part);
if (vma->sparse && !vma->mapref) {
/* Sparse region that was allocated with a fixed page size,
* meaning all relevant PTEs were referenced once when the
* region was allocated, and remained that way, regardless
* of whether memory was mapped into it afterwards.
*
* The process of unmapping, unsparsing, and dereferencing
* PTEs can be done in a single page tree walk.
*/
nvkm_vmm_ptes_sparse_put(vmm, &page[vma->refd], vma->addr, vma->size);
} else
if (vma->sparse) {
/* Sparse region that wasn't allocated with a fixed page size,
* PTE references were taken both at allocation time (to make
* the GPU see the region as sparse), and when mapping memory
* into the region.
*
* The latter was handled above, and the remaining references
* are dealt with here.
*/
nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, false);
}
/* Remove VMA from the list of allocated nodes. */
rb_erase(&vma->tree, &vmm->root);
/* Merge VMA back into the free list. */
vma->page = NVKM_VMA_PAGE_NONE;
vma->refd = NVKM_VMA_PAGE_NONE;
vma->used = false;
vma->user = false;
nvkm_vmm_put_region(vmm, vma);
}
void
nvkm_vmm_put(struct nvkm_vmm *vmm, struct nvkm_vma **pvma)
{
struct nvkm_vma *vma = *pvma;
if (vma) {
mutex_lock(&vmm->mutex);
nvkm_vmm_put_locked(vmm, vma);
mutex_unlock(&vmm->mutex);
*pvma = NULL;
}
}
int
nvkm_vmm_get_locked(struct nvkm_vmm *vmm, bool getref, bool mapref, bool sparse,
u8 shift, u8 align, u64 size, struct nvkm_vma **pvma)
{
const struct nvkm_vmm_page *page = &vmm->func->page[NVKM_VMA_PAGE_NONE];
struct rb_node *node = NULL, *temp;
struct nvkm_vma *vma = NULL, *tmp;
u64 addr, tail;
int ret;
VMM_TRACE(vmm, "getref %d mapref %d sparse %d "
"shift: %d align: %d size: %016llx",
getref, mapref, sparse, shift, align, size);
/* Zero-sized, or lazily-allocated sparse VMAs, make no sense. */
if (unlikely(!size || (!getref && !mapref && sparse))) {
VMM_DEBUG(vmm, "args %016llx %d %d %d",
size, getref, mapref, sparse);
return -EINVAL;
}
/* Tesla-class GPUs can only select page size per-PDE, which means
* we're required to know the mapping granularity up-front to find
* a suitable region of address-space.
*
* The same goes if we're requesting up-front allocation of PTES.
*/
if (unlikely((getref || vmm->func->page_block) && !shift)) {
VMM_DEBUG(vmm, "page size required: %d %016llx",
getref, vmm->func->page_block);
return -EINVAL;
}
/* If a specific page size was requested, determine its index and
* make sure the requested size is a multiple of the page size.
*/
if (shift) {
for (page = vmm->func->page; page->shift; page++) {
if (shift == page->shift)
break;
}
if (!page->shift || !IS_ALIGNED(size, 1ULL << page->shift)) {
VMM_DEBUG(vmm, "page %d %016llx", shift, size);
return -EINVAL;
}
align = max_t(u8, align, shift);
} else {
align = max_t(u8, align, 12);
}
/* Locate smallest block that can possibly satisfy the allocation. */
temp = vmm->free.rb_node;
while (temp) {
struct nvkm_vma *this = rb_entry(temp, typeof(*this), tree);
if (this->size < size) {
temp = temp->rb_right;
} else {
node = temp;
temp = temp->rb_left;
}
}
if (unlikely(!node))
return -ENOSPC;
/* Take into account alignment restrictions, trying larger blocks
* in turn until we find a suitable free block.
*/
do {
struct nvkm_vma *this = rb_entry(node, typeof(*this), tree);
struct nvkm_vma *prev = node(this, prev);
struct nvkm_vma *next = node(this, next);
const int p = page - vmm->func->page;
addr = this->addr;
if (vmm->func->page_block && prev && prev->page != p)
addr = roundup(addr, vmm->func->page_block);
addr = ALIGN(addr, 1ULL << align);
tail = this->addr + this->size;
if (vmm->func->page_block && next && next->page != p)
tail = rounddown(tail, vmm->func->page_block);
if (addr <= tail && tail - addr >= size) {
rb_erase(&this->tree, &vmm->free);
vma = this;
break;
}
} while ((node = rb_next(node)));
if (unlikely(!vma))
return -ENOSPC;
/* If the VMA we found isn't already exactly the requested size,
* it needs to be split, and the remaining free blocks returned.
*/
if (addr != vma->addr) {
if (!(tmp = nvkm_vma_tail(vma, vma->size + vma->addr - addr))) {
nvkm_vmm_put_region(vmm, vma);
return -ENOMEM;
}
nvkm_vmm_free_insert(vmm, vma);
vma = tmp;
}
if (size != vma->size) {
if (!(tmp = nvkm_vma_tail(vma, vma->size - size))) {
nvkm_vmm_put_region(vmm, vma);
return -ENOMEM;
}
nvkm_vmm_free_insert(vmm, tmp);
}
/* Pre-allocate page tables and/or setup sparse mappings. */
if (sparse && getref)
ret = nvkm_vmm_ptes_sparse_get(vmm, page, vma->addr, vma->size);
else if (sparse)
ret = nvkm_vmm_ptes_sparse(vmm, vma->addr, vma->size, true);
else if (getref)
ret = nvkm_vmm_ptes_get(vmm, page, vma->addr, vma->size);
else
ret = 0;
if (ret) {
nvkm_vmm_put_region(vmm, vma);
return ret;
}
vma->mapref = mapref && !getref;
vma->sparse = sparse;
vma->page = page - vmm->func->page;
vma->refd = getref ? vma->page : NVKM_VMA_PAGE_NONE;
vma->used = true;
nvkm_vmm_node_insert(vmm, vma);
*pvma = vma;
return 0;
}
int
nvkm_vmm_get(struct nvkm_vmm *vmm, u8 page, u64 size, struct nvkm_vma **pvma)
{
int ret;
mutex_lock(&vmm->mutex);
ret = nvkm_vmm_get_locked(vmm, false, true, false, page, 0, size, pvma);
mutex_unlock(&vmm->mutex);
return ret;
}
void
nvkm_vmm_part(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
if (vmm->func->part && inst) {
mutex_lock(&vmm->mutex);
vmm->func->part(vmm, inst);
mutex_unlock(&vmm->mutex);
}
}
int
nvkm_vmm_join(struct nvkm_vmm *vmm, struct nvkm_memory *inst)
{
int ret = 0;
if (vmm->func->join) {
mutex_lock(&vmm->mutex);
ret = vmm->func->join(vmm, inst);
mutex_unlock(&vmm->mutex);
}
return ret;
}
static bool
nvkm_vmm_boot_ptes(struct nvkm_vmm_iter *it, u32 ptei, u32 ptes)
{
const struct nvkm_vmm_desc *desc = it->desc;
const int type = desc->type == SPT;
nvkm_memory_boot(it->pt[0]->pt[type]->memory, it->vmm);
return false;
}
int
nvkm_vmm_boot(struct nvkm_vmm *vmm)
{
const struct nvkm_vmm_page *page = vmm->func->page;
const u64 limit = vmm->limit - vmm->start;
int ret;
while (page[1].shift)
page++;
ret = nvkm_vmm_ptes_get(vmm, page, vmm->start, limit);
if (ret)
return ret;
nvkm_vmm_iter(vmm, page, vmm->start, limit, "bootstrap", false,
nvkm_vmm_boot_ptes, NULL, NULL, NULL);
vmm->bootstrapped = true;
return 0;
}
static void
nvkm_vmm_del(struct kref *kref)
{
struct nvkm_vmm *vmm = container_of(kref, typeof(*vmm), kref);
nvkm_vmm_dtor(vmm);
kfree(vmm);
}
void
nvkm_vmm_unref(struct nvkm_vmm **pvmm)
{
struct nvkm_vmm *vmm = *pvmm;
if (vmm) {
kref_put(&vmm->kref, nvkm_vmm_del);
*pvmm = NULL;
}
}
struct nvkm_vmm *
nvkm_vmm_ref(struct nvkm_vmm *vmm)
{
if (vmm)
kref_get(&vmm->kref);
return vmm;
}
int
nvkm_vmm_new(struct nvkm_device *device, u64 addr, u64 size, void *argv,
u32 argc, struct lock_class_key *key, const char *name,
struct nvkm_vmm **pvmm)
{
struct nvkm_mmu *mmu = device->mmu;
struct nvkm_vmm *vmm = NULL;
int ret;
ret = mmu->func->vmm.ctor(mmu, addr, size, argv, argc, key, name, &vmm);
if (ret)
nvkm_vmm_unref(&vmm);
*pvmm = vmm;
return ret;
}
|