summaryrefslogtreecommitdiff
path: root/drivers/gpu/drm/msm/dsi/phy/dsi_phy_28nm_8960.c
blob: 31e7910c60506e9cf74b50aa54a27b2b7a609330 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2012-2015, The Linux Foundation. All rights reserved.
 */

#include <linux/clk-provider.h>
#include <linux/delay.h>

#include "dsi_phy.h"
#include "dsi_pll.h"
#include "dsi.xml.h"

/*
 * DSI PLL 28nm (8960/A family) - clock diagram (eg: DSI1):
 *
 *
 *                        +------+
 *  dsi1vco_clk ----o-----| DIV1 |---dsi1pllbit (not exposed as clock)
 *  F * byte_clk    |     +------+
 *                  | bit clock divider (F / 8)
 *                  |
 *                  |     +------+
 *                  o-----| DIV2 |---dsi0pllbyte---o---> To byte RCG
 *                  |     +------+                 | (sets parent rate)
 *                  | byte clock divider (F)       |
 *                  |                              |
 *                  |                              o---> To esc RCG
 *                  |                                (doesn't set parent rate)
 *                  |
 *                  |     +------+
 *                  o-----| DIV3 |----dsi0pll------o---> To dsi RCG
 *                        +------+                 | (sets parent rate)
 *                  dsi clock divider (F * magic)  |
 *                                                 |
 *                                                 o---> To pixel rcg
 *                                                  (doesn't set parent rate)
 */

#define POLL_MAX_READS		8000
#define POLL_TIMEOUT_US		1

#define NUM_PROVIDED_CLKS	2

#define VCO_REF_CLK_RATE	27000000
#define VCO_MIN_RATE		600000000
#define VCO_MAX_RATE		1200000000

#define DSI_BYTE_PLL_CLK	0
#define DSI_PIXEL_PLL_CLK	1

#define VCO_PREF_DIV_RATIO	27

struct pll_28nm_cached_state {
	unsigned long vco_rate;
	u8 postdiv3;
	u8 postdiv2;
	u8 postdiv1;
};

struct clk_bytediv {
	struct clk_hw hw;
	void __iomem *reg;
};

struct dsi_pll_28nm {
	struct msm_dsi_pll base;

	int id;
	struct platform_device *pdev;
	void __iomem *mmio;

	/* custom byte clock divider */
	struct clk_bytediv *bytediv;

	/* private clocks: */
	struct clk *clks[NUM_DSI_CLOCKS_MAX];
	u32 num_clks;

	/* clock-provider: */
	struct clk *provided_clks[NUM_PROVIDED_CLKS];
	struct clk_onecell_data clk_data;

	struct pll_28nm_cached_state cached_state;
};

#define to_pll_28nm(x)	container_of(x, struct dsi_pll_28nm, base)

static bool pll_28nm_poll_for_ready(struct dsi_pll_28nm *pll_28nm,
				    int nb_tries, int timeout_us)
{
	bool pll_locked = false;
	u32 val;

	while (nb_tries--) {
		val = pll_read(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_RDY);
		pll_locked = !!(val & DSI_28nm_8960_PHY_PLL_RDY_PLL_RDY);

		if (pll_locked)
			break;

		udelay(timeout_us);
	}
	DBG("DSI PLL is %slocked", pll_locked ? "" : "*not* ");

	return pll_locked;
}

/*
 * Clock Callbacks
 */
static int dsi_pll_28nm_clk_set_rate(struct clk_hw *hw, unsigned long rate,
				     unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	void __iomem *base = pll_28nm->mmio;
	u32 val, temp, fb_divider;

	DBG("rate=%lu, parent's=%lu", rate, parent_rate);

	temp = rate / 10;
	val = VCO_REF_CLK_RATE / 10;
	fb_divider = (temp * VCO_PREF_DIV_RATIO) / val;
	fb_divider = fb_divider / 2 - 1;
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1,
			fb_divider & 0xff);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2);

	val |= (fb_divider >> 8) & 0x07;

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2,
			val);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);

	val |= (VCO_PREF_DIV_RATIO - 1) & 0x3f;

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3,
			val);

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_6,
			0xf);

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
	val |= 0x7 << 4;
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
			val);

	return 0;
}

static int dsi_pll_28nm_clk_is_enabled(struct clk_hw *hw)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	return pll_28nm_poll_for_ready(pll_28nm, POLL_MAX_READS,
					POLL_TIMEOUT_US);
}

static unsigned long dsi_pll_28nm_clk_recalc_rate(struct clk_hw *hw,
						  unsigned long parent_rate)
{
	struct msm_dsi_pll *pll = hw_clk_to_pll(hw);
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	void __iomem *base = pll_28nm->mmio;
	unsigned long vco_rate;
	u32 status, fb_divider, temp, ref_divider;

	VERB("parent_rate=%lu", parent_rate);

	status = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0);

	if (status & DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE) {
		fb_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_1);
		fb_divider &= 0xff;
		temp = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_2) & 0x07;
		fb_divider = (temp << 8) | fb_divider;
		fb_divider += 1;

		ref_divider = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_3);
		ref_divider &= 0x3f;
		ref_divider += 1;

		/* multiply by 2 */
		vco_rate = (parent_rate / ref_divider) * fb_divider * 2;
	} else {
		vco_rate = 0;
	}

	DBG("returning vco rate = %lu", vco_rate);

	return vco_rate;
}

static const struct clk_ops clk_ops_dsi_pll_28nm_vco = {
	.round_rate = msm_dsi_pll_helper_clk_round_rate,
	.set_rate = dsi_pll_28nm_clk_set_rate,
	.recalc_rate = dsi_pll_28nm_clk_recalc_rate,
	.prepare = msm_dsi_pll_helper_clk_prepare,
	.unprepare = msm_dsi_pll_helper_clk_unprepare,
	.is_enabled = dsi_pll_28nm_clk_is_enabled,
};

/*
 * Custom byte clock divier clk_ops
 *
 * This clock is the entry point to configuring the PLL. The user (dsi host)
 * will set this clock's rate to the desired byte clock rate. The VCO lock
 * frequency is a multiple of the byte clock rate. The multiplication factor
 * (shown as F in the diagram above) is a function of the byte clock rate.
 *
 * This custom divider clock ensures that its parent (VCO) is set to the
 * desired rate, and that the byte clock postdivider (POSTDIV2) is configured
 * accordingly
 */
#define to_clk_bytediv(_hw) container_of(_hw, struct clk_bytediv, hw)

static unsigned long clk_bytediv_recalc_rate(struct clk_hw *hw,
		unsigned long parent_rate)
{
	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
	unsigned int div;

	div = pll_read(bytediv->reg) & 0xff;

	return parent_rate / (div + 1);
}

/* find multiplication factor(wrt byte clock) at which the VCO should be set */
static unsigned int get_vco_mul_factor(unsigned long byte_clk_rate)
{
	unsigned long bit_mhz;

	/* convert to bit clock in Mhz */
	bit_mhz = (byte_clk_rate * 8) / 1000000;

	if (bit_mhz < 125)
		return 64;
	else if (bit_mhz < 250)
		return 32;
	else if (bit_mhz < 600)
		return 16;
	else
		return 8;
}

static long clk_bytediv_round_rate(struct clk_hw *hw, unsigned long rate,
				   unsigned long *prate)
{
	unsigned long best_parent;
	unsigned int factor;

	factor = get_vco_mul_factor(rate);

	best_parent = rate * factor;
	*prate = clk_hw_round_rate(clk_hw_get_parent(hw), best_parent);

	return *prate / factor;
}

static int clk_bytediv_set_rate(struct clk_hw *hw, unsigned long rate,
				unsigned long parent_rate)
{
	struct clk_bytediv *bytediv = to_clk_bytediv(hw);
	u32 val;
	unsigned int factor;

	factor = get_vco_mul_factor(rate);

	val = pll_read(bytediv->reg);
	val |= (factor - 1) & 0xff;
	pll_write(bytediv->reg, val);

	return 0;
}

/* Our special byte clock divider ops */
static const struct clk_ops clk_bytediv_ops = {
	.round_rate = clk_bytediv_round_rate,
	.set_rate = clk_bytediv_set_rate,
	.recalc_rate = clk_bytediv_recalc_rate,
};

/*
 * PLL Callbacks
 */
static int dsi_pll_28nm_enable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct device *dev = &pll_28nm->pdev->dev;
	void __iomem *base = pll_28nm->mmio;
	bool locked;
	unsigned int bit_div, byte_div;
	int max_reads = 1000, timeout_us = 100;
	u32 val;

	DBG("id=%d", pll_28nm->id);

	/*
	 * before enabling the PLL, configure the bit clock divider since we
	 * don't expose it as a clock to the outside world
	 * 1: read back the byte clock divider that should already be set
	 * 2: divide by 8 to get bit clock divider
	 * 3: write it to POSTDIV1
	 */
	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
	byte_div = val + 1;
	bit_div = byte_div / 8;

	val = pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);
	val &= ~0xf;
	val |= (bit_div - 1);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8, val);

	/* enable the PLL */
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_0,
			DSI_28nm_8960_PHY_PLL_CTRL_0_ENABLE);

	locked = pll_28nm_poll_for_ready(pll_28nm, max_reads, timeout_us);

	if (unlikely(!locked))
		DRM_DEV_ERROR(dev, "DSI PLL lock failed\n");
	else
		DBG("DSI PLL lock success");

	return locked ? 0 : -EINVAL;
}

static void dsi_pll_28nm_disable_seq(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	DBG("id=%d", pll_28nm->id);
	pll_write(pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_0, 0x00);
}

static void dsi_pll_28nm_save_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
	void __iomem *base = pll_28nm->mmio;

	cached_state->postdiv3 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10);
	cached_state->postdiv2 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9);
	cached_state->postdiv1 =
			pll_read(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8);

	cached_state->vco_rate = clk_hw_get_rate(&pll->clk_hw);
}

static int dsi_pll_28nm_restore_state(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);
	struct pll_28nm_cached_state *cached_state = &pll_28nm->cached_state;
	void __iomem *base = pll_28nm->mmio;
	int ret;

	ret = dsi_pll_28nm_clk_set_rate(&pll->clk_hw,
					cached_state->vco_rate, 0);
	if (ret) {
		DRM_DEV_ERROR(&pll_28nm->pdev->dev,
			"restore vco rate failed. ret=%d\n", ret);
		return ret;
	}

	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
			cached_state->postdiv3);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_9,
			cached_state->postdiv2);
	pll_write(base + REG_DSI_28nm_8960_PHY_PLL_CTRL_8,
			cached_state->postdiv1);

	return 0;
}

static int dsi_pll_28nm_get_provider(struct msm_dsi_pll *pll,
				struct clk **byte_clk_provider,
				struct clk **pixel_clk_provider)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	if (byte_clk_provider)
		*byte_clk_provider = pll_28nm->provided_clks[DSI_BYTE_PLL_CLK];
	if (pixel_clk_provider)
		*pixel_clk_provider =
				pll_28nm->provided_clks[DSI_PIXEL_PLL_CLK];

	return 0;
}

static void dsi_pll_28nm_destroy(struct msm_dsi_pll *pll)
{
	struct dsi_pll_28nm *pll_28nm = to_pll_28nm(pll);

	msm_dsi_pll_helper_unregister_clks(pll_28nm->pdev,
					pll_28nm->clks, pll_28nm->num_clks);
}

static int pll_28nm_register(struct dsi_pll_28nm *pll_28nm)
{
	char *clk_name, *parent_name, *vco_name;
	struct clk_init_data vco_init = {
		.parent_names = (const char *[]){ "pxo" },
		.num_parents = 1,
		.flags = CLK_IGNORE_UNUSED,
		.ops = &clk_ops_dsi_pll_28nm_vco,
	};
	struct device *dev = &pll_28nm->pdev->dev;
	struct clk **clks = pll_28nm->clks;
	struct clk **provided_clks = pll_28nm->provided_clks;
	struct clk_bytediv *bytediv;
	struct clk_init_data bytediv_init = { };
	int ret, num = 0;

	DBG("%d", pll_28nm->id);

	bytediv = devm_kzalloc(dev, sizeof(*bytediv), GFP_KERNEL);
	if (!bytediv)
		return -ENOMEM;

	vco_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!vco_name)
		return -ENOMEM;

	parent_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!parent_name)
		return -ENOMEM;

	clk_name = devm_kzalloc(dev, 32, GFP_KERNEL);
	if (!clk_name)
		return -ENOMEM;

	pll_28nm->bytediv = bytediv;

	snprintf(vco_name, 32, "dsi%dvco_clk", pll_28nm->id);
	vco_init.name = vco_name;

	pll_28nm->base.clk_hw.init = &vco_init;

	clks[num++] = clk_register(dev, &pll_28nm->base.clk_hw);

	/* prepare and register bytediv */
	bytediv->hw.init = &bytediv_init;
	bytediv->reg = pll_28nm->mmio + REG_DSI_28nm_8960_PHY_PLL_CTRL_9;

	snprintf(parent_name, 32, "dsi%dvco_clk", pll_28nm->id);
	snprintf(clk_name, 32, "dsi%dpllbyte", pll_28nm->id);

	bytediv_init.name = clk_name;
	bytediv_init.ops = &clk_bytediv_ops;
	bytediv_init.flags = CLK_SET_RATE_PARENT;
	bytediv_init.parent_names = (const char * const *) &parent_name;
	bytediv_init.num_parents = 1;

	/* DIV2 */
	clks[num++] = provided_clks[DSI_BYTE_PLL_CLK] =
			clk_register(dev, &bytediv->hw);

	snprintf(clk_name, 32, "dsi%dpll", pll_28nm->id);
	/* DIV3 */
	clks[num++] = provided_clks[DSI_PIXEL_PLL_CLK] =
			clk_register_divider(dev, clk_name,
				parent_name, 0, pll_28nm->mmio +
				REG_DSI_28nm_8960_PHY_PLL_CTRL_10,
				0, 8, 0, NULL);

	pll_28nm->num_clks = num;

	pll_28nm->clk_data.clk_num = NUM_PROVIDED_CLKS;
	pll_28nm->clk_data.clks = provided_clks;

	ret = of_clk_add_provider(dev->of_node,
			of_clk_src_onecell_get, &pll_28nm->clk_data);
	if (ret) {
		DRM_DEV_ERROR(dev, "failed to register clk provider: %d\n", ret);
		return ret;
	}

	return 0;
}

static int dsi_pll_28nm_8960_init(struct msm_dsi_phy *phy)
{
	struct platform_device *pdev = phy->pdev;
	int id = phy->id;
	struct dsi_pll_28nm *pll_28nm;
	struct msm_dsi_pll *pll;
	int ret;

	if (!pdev)
		return -ENODEV;

	pll_28nm = devm_kzalloc(&pdev->dev, sizeof(*pll_28nm), GFP_KERNEL);
	if (!pll_28nm)
		return -ENOMEM;

	pll_28nm->pdev = pdev;
	pll_28nm->id = id + 1;

	pll_28nm->mmio = msm_ioremap(pdev, "dsi_pll", "DSI_PLL");
	if (IS_ERR_OR_NULL(pll_28nm->mmio)) {
		DRM_DEV_ERROR(&pdev->dev, "%s: failed to map pll base\n", __func__);
		return -ENOMEM;
	}

	pll = &pll_28nm->base;

	pll->cfg = phy->cfg;

	ret = pll_28nm_register(pll_28nm);
	if (ret) {
		DRM_DEV_ERROR(&pdev->dev, "failed to register PLL: %d\n", ret);
		return ret;
	}

	phy->pll = pll;

	return 0;
}

static void dsi_28nm_dphy_set_timing(struct msm_dsi_phy *phy,
		struct msm_dsi_dphy_timing *timing)
{
	void __iomem *base = phy->base;

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_0,
		DSI_28nm_8960_PHY_TIMING_CTRL_0_CLK_ZERO(timing->clk_zero));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_1,
		DSI_28nm_8960_PHY_TIMING_CTRL_1_CLK_TRAIL(timing->clk_trail));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_2,
		DSI_28nm_8960_PHY_TIMING_CTRL_2_CLK_PREPARE(timing->clk_prepare));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_3, 0x0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_4,
		DSI_28nm_8960_PHY_TIMING_CTRL_4_HS_EXIT(timing->hs_exit));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_5,
		DSI_28nm_8960_PHY_TIMING_CTRL_5_HS_ZERO(timing->hs_zero));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_6,
		DSI_28nm_8960_PHY_TIMING_CTRL_6_HS_PREPARE(timing->hs_prepare));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_7,
		DSI_28nm_8960_PHY_TIMING_CTRL_7_HS_TRAIL(timing->hs_trail));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_8,
		DSI_28nm_8960_PHY_TIMING_CTRL_8_HS_RQST(timing->hs_rqst));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_9,
		DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_GO(timing->ta_go) |
		DSI_28nm_8960_PHY_TIMING_CTRL_9_TA_SURE(timing->ta_sure));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_10,
		DSI_28nm_8960_PHY_TIMING_CTRL_10_TA_GET(timing->ta_get));
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_TIMING_CTRL_11,
		DSI_28nm_8960_PHY_TIMING_CTRL_11_TRIG3_CMD(0));
}

static void dsi_28nm_phy_regulator_init(struct msm_dsi_phy *phy)
{
	void __iomem *base = phy->reg_base;

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 1);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 1);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4,
		0x100);
}

static void dsi_28nm_phy_regulator_ctrl(struct msm_dsi_phy *phy)
{
	void __iomem *base = phy->reg_base;

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_0, 0x3);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_1, 0xa);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_2, 0x4);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_3, 0x0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CTRL_4, 0x20);
}

static void dsi_28nm_phy_calibration(struct msm_dsi_phy *phy)
{
	void __iomem *base = phy->reg_base;
	u32 status;
	int i = 5000;

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_REGULATOR_CAL_PWR_CFG,
			0x3);

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_SW_CFG_2, 0x0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_1, 0x5a);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_3, 0x10);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_4, 0x1);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_CFG_0, 0x1);

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x1);
	usleep_range(5000, 6000);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_MISC_CAL_HW_TRIGGER, 0x0);

	do {
		status = dsi_phy_read(base +
				REG_DSI_28nm_8960_PHY_MISC_CAL_STATUS);

		if (!(status & DSI_28nm_8960_PHY_MISC_CAL_STATUS_CAL_BUSY))
			break;

		udelay(1);
	} while (--i > 0);
}

static void dsi_28nm_phy_lane_config(struct msm_dsi_phy *phy)
{
	void __iomem *base = phy->base;
	int i;

	for (i = 0; i < 4; i++) {
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_0(i), 0x80);
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_1(i), 0x45);
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_CFG_2(i), 0x00);
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_DATAPATH(i),
			0x00);
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_0(i),
			0x01);
		dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LN_TEST_STR_1(i),
			0x66);
	}

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_0, 0x40);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_1, 0x67);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_CFG_2, 0x0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_DATAPATH, 0x0);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR0, 0x1);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LNCK_TEST_STR1, 0x88);
}

static int dsi_28nm_phy_enable(struct msm_dsi_phy *phy, int src_pll_id,
				struct msm_dsi_phy_clk_request *clk_req)
{
	struct msm_dsi_dphy_timing *timing = &phy->timing;
	void __iomem *base = phy->base;

	DBG("");

	if (msm_dsi_dphy_timing_calc(timing, clk_req)) {
		DRM_DEV_ERROR(&phy->pdev->dev,
			"%s: D-PHY timing calculation failed\n", __func__);
		return -EINVAL;
	}

	dsi_28nm_phy_regulator_init(phy);

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_LDO_CTRL, 0x04);

	/* strength control */
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_0, 0xff);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_1, 0x00);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_STRENGTH_2, 0x06);

	/* phy ctrl */
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x5f);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_1, 0x00);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_2, 0x00);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_CTRL_3, 0x10);

	dsi_28nm_phy_regulator_ctrl(phy);

	dsi_28nm_phy_calibration(phy);

	dsi_28nm_phy_lane_config(phy);

	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0f);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_1, 0x03);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_0, 0x03);
	dsi_phy_write(base + REG_DSI_28nm_8960_PHY_BIST_CTRL_4, 0x0);

	dsi_28nm_dphy_set_timing(phy, timing);

	return 0;
}

static void dsi_28nm_phy_disable(struct msm_dsi_phy *phy)
{
	dsi_phy_write(phy->base + REG_DSI_28nm_8960_PHY_CTRL_0, 0x0);

	/*
	 * Wait for the registers writes to complete in order to
	 * ensure that the phy is completely disabled
	 */
	wmb();
}

const struct msm_dsi_phy_cfg dsi_phy_28nm_8960_cfgs = {
	.src_pll_truthtable = { {true, true}, {false, true} },
	.has_phy_regulator = true,
	.reg_cfg = {
		.num = 1,
		.regs = {
			{"vddio", 100000, 100},	/* 1.8 V */
		},
	},
	.ops = {
		.enable = dsi_28nm_phy_enable,
		.disable = dsi_28nm_phy_disable,
		.pll_init = dsi_pll_28nm_8960_init,
	},
	.pll_ops = {
		.get_provider = dsi_pll_28nm_get_provider,
		.destroy = dsi_pll_28nm_destroy,
		.save_state = dsi_pll_28nm_save_state,
		.restore_state = dsi_pll_28nm_restore_state,
		.disable_seq = dsi_pll_28nm_disable_seq,
		.enable_seq = dsi_pll_28nm_enable_seq,
	},
	.min_pll_rate = VCO_MIN_RATE,
	.max_pll_rate = VCO_MAX_RATE,
	.io_start = { 0x4700300, 0x5800300 },
	.num_dsi_phy = 2,
};