1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (c) 2016 The Linux Foundation. All rights reserved.
*/
#include <linux/pm_opp.h>
#include "a5xx_gpu.h"
/*
* The GPMU data block is a block of shared registers that can be used to
* communicate back and forth. These "registers" are by convention with the GPMU
* firwmare and not bound to any specific hardware design
*/
#define AGC_INIT_BASE REG_A5XX_GPMU_DATA_RAM_BASE
#define AGC_INIT_MSG_MAGIC (AGC_INIT_BASE + 5)
#define AGC_MSG_BASE (AGC_INIT_BASE + 7)
#define AGC_MSG_STATE (AGC_MSG_BASE + 0)
#define AGC_MSG_COMMAND (AGC_MSG_BASE + 1)
#define AGC_MSG_PAYLOAD_SIZE (AGC_MSG_BASE + 3)
#define AGC_MSG_PAYLOAD(_o) ((AGC_MSG_BASE + 5) + (_o))
#define AGC_POWER_CONFIG_PRODUCTION_ID 1
#define AGC_INIT_MSG_VALUE 0xBABEFACE
/* AGC_LM_CONFIG (A540+) */
#define AGC_LM_CONFIG (136/4)
#define AGC_LM_CONFIG_GPU_VERSION_SHIFT 17
#define AGC_LM_CONFIG_ENABLE_GPMU_ADAPTIVE 1
#define AGC_LM_CONFIG_THROTTLE_DISABLE (2 << 8)
#define AGC_LM_CONFIG_ISENSE_ENABLE (1 << 4)
#define AGC_LM_CONFIG_ENABLE_ERROR (3 << 4)
#define AGC_LM_CONFIG_LLM_ENABLED (1 << 16)
#define AGC_LM_CONFIG_BCL_DISABLED (1 << 24)
#define AGC_LEVEL_CONFIG (140/4)
static struct {
uint32_t reg;
uint32_t value;
} a5xx_sequence_regs[] = {
{ 0xB9A1, 0x00010303 },
{ 0xB9A2, 0x13000000 },
{ 0xB9A3, 0x00460020 },
{ 0xB9A4, 0x10000000 },
{ 0xB9A5, 0x040A1707 },
{ 0xB9A6, 0x00010000 },
{ 0xB9A7, 0x0E000904 },
{ 0xB9A8, 0x10000000 },
{ 0xB9A9, 0x01165000 },
{ 0xB9AA, 0x000E0002 },
{ 0xB9AB, 0x03884141 },
{ 0xB9AC, 0x10000840 },
{ 0xB9AD, 0x572A5000 },
{ 0xB9AE, 0x00000003 },
{ 0xB9AF, 0x00000000 },
{ 0xB9B0, 0x10000000 },
{ 0xB828, 0x6C204010 },
{ 0xB829, 0x6C204011 },
{ 0xB82A, 0x6C204012 },
{ 0xB82B, 0x6C204013 },
{ 0xB82C, 0x6C204014 },
{ 0xB90F, 0x00000004 },
{ 0xB910, 0x00000002 },
{ 0xB911, 0x00000002 },
{ 0xB912, 0x00000002 },
{ 0xB913, 0x00000002 },
{ 0xB92F, 0x00000004 },
{ 0xB930, 0x00000005 },
{ 0xB931, 0x00000005 },
{ 0xB932, 0x00000005 },
{ 0xB933, 0x00000005 },
{ 0xB96F, 0x00000001 },
{ 0xB970, 0x00000003 },
{ 0xB94F, 0x00000004 },
{ 0xB950, 0x0000000B },
{ 0xB951, 0x0000000B },
{ 0xB952, 0x0000000B },
{ 0xB953, 0x0000000B },
{ 0xB907, 0x00000019 },
{ 0xB927, 0x00000019 },
{ 0xB947, 0x00000019 },
{ 0xB967, 0x00000019 },
{ 0xB987, 0x00000019 },
{ 0xB906, 0x00220001 },
{ 0xB926, 0x00220001 },
{ 0xB946, 0x00220001 },
{ 0xB966, 0x00220001 },
{ 0xB986, 0x00300000 },
{ 0xAC40, 0x0340FF41 },
{ 0xAC41, 0x03BEFED0 },
{ 0xAC42, 0x00331FED },
{ 0xAC43, 0x021FFDD3 },
{ 0xAC44, 0x5555AAAA },
{ 0xAC45, 0x5555AAAA },
{ 0xB9BA, 0x00000008 },
};
/*
* Get the actual voltage value for the operating point at the specified
* frequency
*/
static inline uint32_t _get_mvolts(struct msm_gpu *gpu, uint32_t freq)
{
struct drm_device *dev = gpu->dev;
struct msm_drm_private *priv = dev->dev_private;
struct platform_device *pdev = priv->gpu_pdev;
struct dev_pm_opp *opp;
u32 ret = 0;
opp = dev_pm_opp_find_freq_exact(&pdev->dev, freq, true);
if (!IS_ERR(opp)) {
ret = dev_pm_opp_get_voltage(opp) / 1000;
dev_pm_opp_put(opp);
}
return ret;
}
/* Setup thermal limit management */
static void a530_lm_setup(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
unsigned int i;
/* Write the block of sequence registers */
for (i = 0; i < ARRAY_SIZE(a5xx_sequence_regs); i++)
gpu_write(gpu, a5xx_sequence_regs[i].reg,
a5xx_sequence_regs[i].value);
/* Hard code the A530 GPU thermal sensor ID for the GPMU */
gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_ID, 0x60007);
gpu_write(gpu, REG_A5XX_GPMU_DELTA_TEMP_THRESHOLD, 0x01);
gpu_write(gpu, REG_A5XX_GPMU_TEMP_SENSOR_CONFIG, 0x01);
/* Until we get clock scaling 0 is always the active power level */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
gpu_write(gpu, REG_A5XX_GPMU_BASE_LEAKAGE, a5xx_gpu->lm_leakage);
/* The threshold is fixed at 6000 for A530 */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x00201FF1);
/* Write the voltage table */
gpu_write(gpu, REG_A5XX_GPMU_BEC_ENABLE, 0x10001FFF);
gpu_write(gpu, REG_A5XX_GDPM_CONFIG1, 0x201FF1);
gpu_write(gpu, AGC_MSG_STATE, 1);
gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
/* Write the max power - hard coded to 5448 for A530 */
gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
/*
* For now just write the one voltage level - we will do more when we
* can do scaling
*/
gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE, 4 * sizeof(uint32_t));
gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
}
#define PAYLOAD_SIZE(_size) ((_size) * sizeof(u32))
#define LM_DCVS_LIMIT 1
#define LEVEL_CONFIG ~(0x303)
static void a540_lm_setup(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
u32 config;
/* The battery current limiter isn't enabled for A540 */
config = AGC_LM_CONFIG_BCL_DISABLED;
config |= adreno_gpu->rev.patchid << AGC_LM_CONFIG_GPU_VERSION_SHIFT;
/* For now disable GPMU side throttling */
config |= AGC_LM_CONFIG_THROTTLE_DISABLE;
/* Until we get clock scaling 0 is always the active power level */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE, 0x80000000 | 0);
/* Fixed at 6000 for now */
gpu_write(gpu, REG_A5XX_GPMU_GPMU_PWR_THRESHOLD, 0x80000000 | 6000);
gpu_write(gpu, AGC_MSG_STATE, 0x80000001);
gpu_write(gpu, AGC_MSG_COMMAND, AGC_POWER_CONFIG_PRODUCTION_ID);
gpu_write(gpu, AGC_MSG_PAYLOAD(0), 5448);
gpu_write(gpu, AGC_MSG_PAYLOAD(1), 1);
gpu_write(gpu, AGC_MSG_PAYLOAD(2), _get_mvolts(gpu, gpu->fast_rate));
gpu_write(gpu, AGC_MSG_PAYLOAD(3), gpu->fast_rate / 1000000);
gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LM_CONFIG), config);
gpu_write(gpu, AGC_MSG_PAYLOAD(AGC_LEVEL_CONFIG), LEVEL_CONFIG);
gpu_write(gpu, AGC_MSG_PAYLOAD_SIZE,
PAYLOAD_SIZE(AGC_LEVEL_CONFIG + 1));
gpu_write(gpu, AGC_INIT_MSG_MAGIC, AGC_INIT_MSG_VALUE);
}
/* Enable SP/TP cpower collapse */
static void a5xx_pc_init(struct msm_gpu *gpu)
{
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_CTRL, 0x7F);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_BINNING_CTRL, 0);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_INTER_FRAME_HYST, 0xA0080);
gpu_write(gpu, REG_A5XX_GPMU_PWR_COL_STAGGER_DELAY, 0x600040);
}
/* Enable the GPMU microcontroller */
static int a5xx_gpmu_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct msm_ringbuffer *ring = gpu->rb[0];
if (!a5xx_gpu->gpmu_dwords)
return 0;
/* Turn off protected mode for this operation */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 0);
/* Kick off the IB to load the GPMU microcode */
OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
OUT_RING(ring, lower_32_bits(a5xx_gpu->gpmu_iova));
OUT_RING(ring, upper_32_bits(a5xx_gpu->gpmu_iova));
OUT_RING(ring, a5xx_gpu->gpmu_dwords);
/* Turn back on protected mode */
OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
OUT_RING(ring, 1);
a5xx_flush(gpu, ring, true);
if (!a5xx_idle(gpu, ring)) {
DRM_ERROR("%s: Unable to load GPMU firmware. GPMU will not be active\n",
gpu->name);
return -EINVAL;
}
if (adreno_is_a530(adreno_gpu))
gpu_write(gpu, REG_A5XX_GPMU_WFI_CONFIG, 0x4014);
/* Kick off the GPMU */
gpu_write(gpu, REG_A5XX_GPMU_CM3_SYSRESET, 0x0);
/*
* Wait for the GPMU to respond. It isn't fatal if it doesn't, we just
* won't have advanced power collapse.
*/
if (spin_usecs(gpu, 25, REG_A5XX_GPMU_GENERAL_0, 0xFFFFFFFF,
0xBABEFACE))
DRM_ERROR("%s: GPMU firmware initialization timed out\n",
gpu->name);
if (!adreno_is_a530(adreno_gpu)) {
u32 val = gpu_read(gpu, REG_A5XX_GPMU_GENERAL_1);
if (val)
DRM_ERROR("%s: GPMU firmware initialization failed: %d\n",
gpu->name, val);
}
return 0;
}
/* Enable limits management */
static void a5xx_lm_enable(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
/* This init sequence only applies to A530 */
if (!adreno_is_a530(adreno_gpu))
return;
gpu_write(gpu, REG_A5XX_GDPM_INT_MASK, 0x0);
gpu_write(gpu, REG_A5XX_GDPM_INT_EN, 0x0A);
gpu_write(gpu, REG_A5XX_GPMU_GPMU_VOLTAGE_INTR_EN_MASK, 0x01);
gpu_write(gpu, REG_A5XX_GPMU_TEMP_THRESHOLD_INTR_EN_MASK, 0x50000);
gpu_write(gpu, REG_A5XX_GPMU_THROTTLE_UNMASK_FORCE_CTRL, 0x30000);
gpu_write(gpu, REG_A5XX_GPMU_CLOCK_THROTTLE_CTRL, 0x011);
}
int a5xx_power_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
int ret;
/* Not all A5xx chips have a GPMU */
if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu)))
return 0;
/* Set up the limits management */
if (adreno_is_a530(adreno_gpu))
a530_lm_setup(gpu);
else if (adreno_is_a540(adreno_gpu))
a540_lm_setup(gpu);
/* Set up SP/TP power collpase */
a5xx_pc_init(gpu);
/* Start the GPMU */
ret = a5xx_gpmu_init(gpu);
if (ret)
return ret;
/* Start the limits management */
a5xx_lm_enable(gpu);
return 0;
}
void a5xx_gpmu_ucode_init(struct msm_gpu *gpu)
{
struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
struct drm_device *drm = gpu->dev;
uint32_t dwords = 0, offset = 0, bosize;
unsigned int *data, *ptr, *cmds;
unsigned int cmds_size;
if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu)))
return;
if (a5xx_gpu->gpmu_bo)
return;
data = (unsigned int *) adreno_gpu->fw[ADRENO_FW_GPMU]->data;
/*
* The first dword is the size of the remaining data in dwords. Use it
* as a checksum of sorts and make sure it matches the actual size of
* the firmware that we read
*/
if (adreno_gpu->fw[ADRENO_FW_GPMU]->size < 8 ||
(data[0] < 2) || (data[0] >=
(adreno_gpu->fw[ADRENO_FW_GPMU]->size >> 2)))
return;
/* The second dword is an ID - look for 2 (GPMU_FIRMWARE_ID) */
if (data[1] != 2)
return;
cmds = data + data[2] + 3;
cmds_size = data[0] - data[2] - 2;
/*
* A single type4 opcode can only have so many values attached so
* add enough opcodes to load the all the commands
*/
bosize = (cmds_size + (cmds_size / TYPE4_MAX_PAYLOAD) + 1) << 2;
ptr = msm_gem_kernel_new_locked(drm, bosize,
MSM_BO_UNCACHED | MSM_BO_GPU_READONLY, gpu->aspace,
&a5xx_gpu->gpmu_bo, &a5xx_gpu->gpmu_iova);
if (IS_ERR(ptr))
return;
msm_gem_object_set_name(a5xx_gpu->gpmu_bo, "gpmufw");
while (cmds_size > 0) {
int i;
uint32_t _size = cmds_size > TYPE4_MAX_PAYLOAD ?
TYPE4_MAX_PAYLOAD : cmds_size;
ptr[dwords++] = PKT4(REG_A5XX_GPMU_INST_RAM_BASE + offset,
_size);
for (i = 0; i < _size; i++)
ptr[dwords++] = *cmds++;
offset += _size;
cmds_size -= _size;
}
msm_gem_put_vaddr(a5xx_gpu->gpmu_bo);
a5xx_gpu->gpmu_dwords = dwords;
}
|