summaryrefslogtreecommitdiff
path: root/drivers/crypto/atmel-ecc.c
blob: e66f18a0ddd03446c5bf7d8eadbd8a22224e6b32 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
/*
 * Microchip / Atmel ECC (I2C) driver.
 *
 * Copyright (c) 2017, Microchip Technology Inc.
 * Author: Tudor Ambarus <tudor.ambarus@microchip.com>
 *
 * This software is licensed under the terms of the GNU General Public
 * License version 2, as published by the Free Software Foundation, and
 * may be copied, distributed, and modified under those terms.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 */

#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <crypto/internal/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/kpp.h>
#include "atmel-ecc.h"

/* Used for binding tfm objects to i2c clients. */
struct atmel_ecc_driver_data {
	struct list_head i2c_client_list;
	spinlock_t i2c_list_lock;
} ____cacheline_aligned;

static struct atmel_ecc_driver_data driver_data;

/**
 * atmel_ecc_i2c_client_priv - i2c_client private data
 * @client              : pointer to i2c client device
 * @i2c_client_list_node: part of i2c_client_list
 * @lock                : lock for sending i2c commands
 * @wake_token          : wake token array of zeros
 * @wake_token_sz       : size in bytes of the wake_token
 * @tfm_count           : number of active crypto transformations on i2c client
 *
 * Reads and writes from/to the i2c client are sequential. The first byte
 * transmitted to the device is treated as the byte size. Any attempt to send
 * more than this number of bytes will cause the device to not ACK those bytes.
 * After the host writes a single command byte to the input buffer, reads are
 * prohibited until after the device completes command execution. Use a mutex
 * when sending i2c commands.
 */
struct atmel_ecc_i2c_client_priv {
	struct i2c_client *client;
	struct list_head i2c_client_list_node;
	struct mutex lock;
	u8 wake_token[WAKE_TOKEN_MAX_SIZE];
	size_t wake_token_sz;
	atomic_t tfm_count ____cacheline_aligned;
};

/**
 * atmel_ecdh_ctx - transformation context
 * @client     : pointer to i2c client device
 * @fallback   : used for unsupported curves or when user wants to use its own
 *               private key.
 * @public_key : generated when calling set_secret(). It's the responsibility
 *               of the user to not call set_secret() while
 *               generate_public_key() or compute_shared_secret() are in flight.
 * @curve_id   : elliptic curve id
 * @n_sz       : size in bytes of the n prime
 * @do_fallback: true when the device doesn't support the curve or when the user
 *               wants to use its own private key.
 */
struct atmel_ecdh_ctx {
	struct i2c_client *client;
	struct crypto_kpp *fallback;
	const u8 *public_key;
	unsigned int curve_id;
	size_t n_sz;
	bool do_fallback;
};

/**
 * atmel_ecc_work_data - data structure representing the work
 * @ctx : transformation context.
 * @cbk : pointer to a callback function to be invoked upon completion of this
 *        request. This has the form:
 *        callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
 *        where:
 *        @work_data: data structure representing the work
 *        @areq     : optional pointer to an argument passed with the original
 *                    request.
 *        @status   : status returned from the i2c client device or i2c error.
 * @areq: optional pointer to a user argument for use at callback time.
 * @work: describes the task to be executed.
 * @cmd : structure used for communicating with the device.
 */
struct atmel_ecc_work_data {
	struct atmel_ecdh_ctx *ctx;
	void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
		    int status);
	void *areq;
	struct work_struct work;
	struct atmel_ecc_cmd cmd;
};

static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
{
	return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
}

/**
 * atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
 * CRC16 verification of the count, opcode, param1, param2 and data bytes.
 * The checksum is saved in little-endian format in the least significant
 * two bytes of the command. CRC polynomial is 0x8005 and the initial register
 * value should be zero.
 *
 * @cmd : structure used for communicating with the device.
 */
static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
{
	u8 *data = &cmd->count;
	size_t len = cmd->count - CRC_SIZE;
	u16 *crc16 = (u16 *)(data + len);

	*crc16 = atmel_ecc_crc16(0, data, len);
}

static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
{
	cmd->word_addr = COMMAND;
	cmd->opcode = OPCODE_READ;
	/*
	 * Read the word from Configuration zone that contains the lock bytes
	 * (UserExtra, Selector, LockValue, LockConfig).
	 */
	cmd->param1 = CONFIG_ZONE;
	cmd->param2 = DEVICE_LOCK_ADDR;
	cmd->count = READ_COUNT;

	atmel_ecc_checksum(cmd);

	cmd->msecs = MAX_EXEC_TIME_READ;
	cmd->rxsize = READ_RSP_SIZE;
}

static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
{
	cmd->word_addr = COMMAND;
	cmd->count = GENKEY_COUNT;
	cmd->opcode = OPCODE_GENKEY;
	cmd->param1 = GENKEY_MODE_PRIVATE;
	/* a random private key will be generated and stored in slot keyID */
	cmd->param2 = cpu_to_le16(keyid);

	atmel_ecc_checksum(cmd);

	cmd->msecs = MAX_EXEC_TIME_GENKEY;
	cmd->rxsize = GENKEY_RSP_SIZE;
}

static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
				   struct scatterlist *pubkey)
{
	size_t copied;

	cmd->word_addr = COMMAND;
	cmd->count = ECDH_COUNT;
	cmd->opcode = OPCODE_ECDH;
	cmd->param1 = ECDH_PREFIX_MODE;
	/* private key slot */
	cmd->param2 = cpu_to_le16(DATA_SLOT_2);

	/*
	 * The device only supports NIST P256 ECC keys. The public key size will
	 * always be the same. Use a macro for the key size to avoid unnecessary
	 * computations.
	 */
	copied = sg_copy_to_buffer(pubkey, 1, cmd->data, ATMEL_ECC_PUBKEY_SIZE);
	if (copied != ATMEL_ECC_PUBKEY_SIZE)
		return -EINVAL;

	atmel_ecc_checksum(cmd);

	cmd->msecs = MAX_EXEC_TIME_ECDH;
	cmd->rxsize = ECDH_RSP_SIZE;

	return 0;
}

/*
 * After wake and after execution of a command, there will be error, status, or
 * result bytes in the device's output register that can be retrieved by the
 * system. When the length of that group is four bytes, the codes returned are
 * detailed in error_list.
 */
static int atmel_ecc_status(struct device *dev, u8 *status)
{
	size_t err_list_len = ARRAY_SIZE(error_list);
	int i;
	u8 err_id = status[1];

	if (*status != STATUS_SIZE)
		return 0;

	if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
		return 0;

	for (i = 0; i < err_list_len; i++)
		if (error_list[i].value == err_id)
			break;

	/* if err_id is not in the error_list then ignore it */
	if (i != err_list_len) {
		dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
		return err_id;
	}

	return 0;
}

static int atmel_ecc_wakeup(struct i2c_client *client)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
	u8 status[STATUS_RSP_SIZE];
	int ret;

	/*
	 * The device ignores any levels or transitions on the SCL pin when the
	 * device is idle, asleep or during waking up. Don't check for error
	 * when waking up the device.
	 */
	i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);

	/*
	 * Wait to wake the device. Typical execution times for ecdh and genkey
	 * are around tens of milliseconds. Delta is chosen to 50 microseconds.
	 */
	usleep_range(TWHI_MIN, TWHI_MAX);

	ret = i2c_master_recv(client, status, STATUS_SIZE);
	if (ret < 0)
		return ret;

	return atmel_ecc_status(&client->dev, status);
}

static int atmel_ecc_sleep(struct i2c_client *client)
{
	u8 sleep = SLEEP_TOKEN;

	return i2c_master_send(client, &sleep, 1);
}

static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
			    int status)
{
	struct kpp_request *req = areq;
	struct atmel_ecdh_ctx *ctx = work_data->ctx;
	struct atmel_ecc_cmd *cmd = &work_data->cmd;
	size_t copied;
	size_t n_sz = ctx->n_sz;

	if (status)
		goto free_work_data;

	/* copy the shared secret */
	copied = sg_copy_from_buffer(req->dst, 1, &cmd->data[RSP_DATA_IDX],
				     n_sz);
	if (copied != n_sz)
		status = -EINVAL;

	/* fall through */
free_work_data:
	kzfree(work_data);
	kpp_request_complete(req, status);
}

/*
 * atmel_ecc_send_receive() - send a command to the device and receive its
 *                            response.
 * @client: i2c client device
 * @cmd   : structure used to communicate with the device
 *
 * After the device receives a Wake token, a watchdog counter starts within the
 * device. After the watchdog timer expires, the device enters sleep mode
 * regardless of whether some I/O transmission or command execution is in
 * progress. If a command is attempted when insufficient time remains prior to
 * watchdog timer execution, the device will return the watchdog timeout error
 * code without attempting to execute the command. There is no way to reset the
 * counter other than to put the device into sleep or idle mode and then
 * wake it up again.
 */
static int atmel_ecc_send_receive(struct i2c_client *client,
				  struct atmel_ecc_cmd *cmd)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
	int ret;

	mutex_lock(&i2c_priv->lock);

	ret = atmel_ecc_wakeup(client);
	if (ret)
		goto err;

	/* send the command */
	ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
	if (ret < 0)
		goto err;

	/* delay the appropriate amount of time for command to execute */
	msleep(cmd->msecs);

	/* receive the response */
	ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
	if (ret < 0)
		goto err;

	/* put the device into low-power mode */
	ret = atmel_ecc_sleep(client);
	if (ret < 0)
		goto err;

	mutex_unlock(&i2c_priv->lock);
	return atmel_ecc_status(&client->dev, cmd->data);
err:
	mutex_unlock(&i2c_priv->lock);
	return ret;
}

static void atmel_ecc_work_handler(struct work_struct *work)
{
	struct atmel_ecc_work_data *work_data =
			container_of(work, struct atmel_ecc_work_data, work);
	struct atmel_ecc_cmd *cmd = &work_data->cmd;
	struct i2c_client *client = work_data->ctx->client;
	int status;

	status = atmel_ecc_send_receive(client, cmd);
	work_data->cbk(work_data, work_data->areq, status);
}

static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
			      void (*cbk)(struct atmel_ecc_work_data *work_data,
					  void *areq, int status),
			      void *areq)
{
	work_data->cbk = (void *)cbk;
	work_data->areq = areq;

	INIT_WORK(&work_data->work, atmel_ecc_work_handler);
	schedule_work(&work_data->work);
}

static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
{
	if (curve_id == ECC_CURVE_NIST_P256)
		return ATMEL_ECC_NIST_P256_N_SIZE;

	return 0;
}

/*
 * A random private key is generated and stored in the device. The device
 * returns the pair public key.
 */
static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
				 unsigned int len)
{
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
	struct atmel_ecc_cmd *cmd;
	void *public_key;
	struct ecdh params;
	int ret = -ENOMEM;

	/* free the old public key, if any */
	kfree(ctx->public_key);
	/* make sure you don't free the old public key twice */
	ctx->public_key = NULL;

	if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
		dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
		return -EINVAL;
	}

	ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
	if (!ctx->n_sz || params.key_size) {
		/* fallback to ecdh software implementation */
		ctx->do_fallback = true;
		return crypto_kpp_set_secret(ctx->fallback, buf, len);
	}

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return -ENOMEM;

	/*
	 * The device only supports NIST P256 ECC keys. The public key size will
	 * always be the same. Use a macro for the key size to avoid unnecessary
	 * computations.
	 */
	public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
	if (!public_key)
		goto free_cmd;

	ctx->do_fallback = false;
	ctx->curve_id = params.curve_id;

	atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);

	ret = atmel_ecc_send_receive(ctx->client, cmd);
	if (ret)
		goto free_public_key;

	/* save the public key */
	memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
	ctx->public_key = public_key;

	kfree(cmd);
	return 0;

free_public_key:
	kfree(public_key);
free_cmd:
	kfree(cmd);
	return ret;
}

static int atmel_ecdh_generate_public_key(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
	size_t copied;
	int ret = 0;

	if (ctx->do_fallback) {
		kpp_request_set_tfm(req, ctx->fallback);
		return crypto_kpp_generate_public_key(req);
	}

	/* public key was saved at private key generation */
	copied = sg_copy_from_buffer(req->dst, 1, ctx->public_key,
				     ATMEL_ECC_PUBKEY_SIZE);
	if (copied != ATMEL_ECC_PUBKEY_SIZE)
		ret = -EINVAL;

	return ret;
}

static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
{
	struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
	struct atmel_ecc_work_data *work_data;
	gfp_t gfp;
	int ret;

	if (ctx->do_fallback) {
		kpp_request_set_tfm(req, ctx->fallback);
		return crypto_kpp_compute_shared_secret(req);
	}

	gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
							     GFP_ATOMIC;

	work_data = kmalloc(sizeof(*work_data), gfp);
	if (!work_data)
		return -ENOMEM;

	work_data->ctx = ctx;

	ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
	if (ret)
		goto free_work_data;

	atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);

	return -EINPROGRESS;

free_work_data:
	kfree(work_data);
	return ret;
}

static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
	struct i2c_client *client = ERR_PTR(-ENODEV);
	int min_tfm_cnt = INT_MAX;
	int tfm_cnt;

	spin_lock(&driver_data.i2c_list_lock);

	if (list_empty(&driver_data.i2c_client_list)) {
		spin_unlock(&driver_data.i2c_list_lock);
		return ERR_PTR(-ENODEV);
	}

	list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
			    i2c_client_list_node) {
		tfm_cnt = atomic_read(&i2c_priv->tfm_count);
		if (tfm_cnt < min_tfm_cnt) {
			min_tfm_cnt = tfm_cnt;
			min_i2c_priv = i2c_priv;
		}
		if (!min_tfm_cnt)
			break;
	}

	if (min_i2c_priv) {
		atomic_inc(&min_i2c_priv->tfm_count);
		client = min_i2c_priv->client;
	}

	spin_unlock(&driver_data.i2c_list_lock);

	return client;
}

static void atmel_ecc_i2c_client_free(struct i2c_client *client)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);

	atomic_dec(&i2c_priv->tfm_count);
}

static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
{
	const char *alg = kpp_alg_name(tfm);
	struct crypto_kpp *fallback;
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);

	ctx->client = atmel_ecc_i2c_client_alloc();
	if (IS_ERR(ctx->client)) {
		pr_err("tfm - i2c_client binding failed\n");
		return PTR_ERR(ctx->client);
	}

	fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
	if (IS_ERR(fallback)) {
		dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
			alg, PTR_ERR(fallback));
		return PTR_ERR(fallback);
	}

	crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));

	dev_info(&ctx->client->dev, "Using '%s' as fallback implementation.\n",
		 crypto_tfm_alg_driver_name(crypto_kpp_tfm(fallback)));

	ctx->fallback = fallback;

	return 0;
}

static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);

	kfree(ctx->public_key);
	crypto_free_kpp(ctx->fallback);
	atmel_ecc_i2c_client_free(ctx->client);
}

static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
{
	struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);

	if (ctx->fallback)
		return crypto_kpp_maxsize(ctx->fallback);

	/*
	 * The device only supports NIST P256 ECC keys. The public key size will
	 * always be the same. Use a macro for the key size to avoid unnecessary
	 * computations.
	 */
	return ATMEL_ECC_PUBKEY_SIZE;
}

static struct kpp_alg atmel_ecdh = {
	.set_secret = atmel_ecdh_set_secret,
	.generate_public_key = atmel_ecdh_generate_public_key,
	.compute_shared_secret = atmel_ecdh_compute_shared_secret,
	.init = atmel_ecdh_init_tfm,
	.exit = atmel_ecdh_exit_tfm,
	.max_size = atmel_ecdh_max_size,
	.base = {
		.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
		.cra_name = "ecdh",
		.cra_driver_name = "atmel-ecdh",
		.cra_priority = ATMEL_ECC_PRIORITY,
		.cra_module = THIS_MODULE,
		.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
	},
};

static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
{
	u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);

	/* return the size of the wake_token in bytes */
	return DIV_ROUND_UP(no_of_bits, 8);
}

static int device_sanity_check(struct i2c_client *client)
{
	struct atmel_ecc_cmd *cmd;
	int ret;

	cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
	if (!cmd)
		return -ENOMEM;

	atmel_ecc_init_read_cmd(cmd);

	ret = atmel_ecc_send_receive(client, cmd);
	if (ret)
		goto free_cmd;

	/*
	 * It is vital that the Configuration, Data and OTP zones be locked
	 * prior to release into the field of the system containing the device.
	 * Failure to lock these zones may permit modification of any secret
	 * keys and may lead to other security problems.
	 */
	if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
		dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
		ret = -ENOTSUPP;
	}

	/* fall through */
free_cmd:
	kfree(cmd);
	return ret;
}

static int atmel_ecc_probe(struct i2c_client *client,
			   const struct i2c_device_id *id)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv;
	struct device *dev = &client->dev;
	int ret;
	u32 bus_clk_rate;

	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
		dev_err(dev, "I2C_FUNC_I2C not supported\n");
		return -ENODEV;
	}

	ret = of_property_read_u32(client->adapter->dev.of_node,
				   "clock-frequency", &bus_clk_rate);
	if (ret) {
		dev_err(dev, "of: failed to read clock-frequency property\n");
		return ret;
	}

	if (bus_clk_rate > 1000000L) {
		dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
			bus_clk_rate);
		return -EINVAL;
	}

	i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
	if (!i2c_priv)
		return -ENOMEM;

	i2c_priv->client = client;
	mutex_init(&i2c_priv->lock);

	/*
	 * WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
	 * 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
	 * will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
	 */
	i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);

	memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));

	atomic_set(&i2c_priv->tfm_count, 0);

	i2c_set_clientdata(client, i2c_priv);

	ret = device_sanity_check(client);
	if (ret)
		return ret;

	spin_lock(&driver_data.i2c_list_lock);
	list_add_tail(&i2c_priv->i2c_client_list_node,
		      &driver_data.i2c_client_list);
	spin_unlock(&driver_data.i2c_list_lock);

	ret = crypto_register_kpp(&atmel_ecdh);
	if (ret) {
		spin_lock(&driver_data.i2c_list_lock);
		list_del(&i2c_priv->i2c_client_list_node);
		spin_unlock(&driver_data.i2c_list_lock);

		dev_err(dev, "%s alg registration failed\n",
			atmel_ecdh.base.cra_driver_name);
	} else {
		dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
	}

	return ret;
}

static int atmel_ecc_remove(struct i2c_client *client)
{
	struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);

	/* Return EBUSY if i2c client already allocated. */
	if (atomic_read(&i2c_priv->tfm_count)) {
		dev_err(&client->dev, "Device is busy\n");
		return -EBUSY;
	}

	crypto_unregister_kpp(&atmel_ecdh);

	spin_lock(&driver_data.i2c_list_lock);
	list_del(&i2c_priv->i2c_client_list_node);
	spin_unlock(&driver_data.i2c_list_lock);

	return 0;
}

#ifdef CONFIG_OF
static const struct of_device_id atmel_ecc_dt_ids[] = {
	{
		.compatible = "atmel,atecc508a",
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
#endif

static const struct i2c_device_id atmel_ecc_id[] = {
	{ "atecc508a", 0 },
	{ }
};
MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);

static struct i2c_driver atmel_ecc_driver = {
	.driver = {
		.name	= "atmel-ecc",
		.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
	},
	.probe		= atmel_ecc_probe,
	.remove		= atmel_ecc_remove,
	.id_table	= atmel_ecc_id,
};

static int __init atmel_ecc_init(void)
{
	spin_lock_init(&driver_data.i2c_list_lock);
	INIT_LIST_HEAD(&driver_data.i2c_client_list);
	return i2c_add_driver(&atmel_ecc_driver);
}

static void __exit atmel_ecc_exit(void)
{
	flush_scheduled_work();
	i2c_del_driver(&atmel_ecc_driver);
}

module_init(atmel_ecc_init);
module_exit(atmel_ecc_exit);

MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
MODULE_LICENSE("GPL v2");